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Symbols for toric Eisenstein cocycles and arithmetic applications

PETER XU

ABSTRACT. Using a complex parameterizing rational spherical chains, we construct explicit cocycles for GLy, (Q) valued in the motivic
cohomology of (open subsets of) the algebraic n-torus G}},. The resulting cocycles directly generalize the work of Sharifi and Venkatesh
from the case n = 2. Even in this special case, our systematic use of pushforwards allows us to avoid the use of their “connecting sequences,”
and allows us to refine the construction and Hecke properties of Sharifi’s map o to the maximal expected statements, while inverting only the
prime 2. For general n, the d log regulator of our cocycle is related by convex conical duality to cocycles constructed from Shintani cones.
This affords a systematic approach to p-adic L-functions for totally real fields without need for auxiliary data or logarithm sheaf coefficients,
including a distribution-valued GL, (Z)-cocycle specializing in a simple way to all such p-adic L-functions. It moreover provides a direct
conceptual link between polylogarithmic constructions of Eisenstein classes (e.g., Beilinson—-Kings—Levin), and those constructed using
Shintani cones (e.g., Charollois—Dasgupta—Greenberg or Dasgupta—Spiess). We also show how our formalism gives an alternate, purely
algebraic proof of the exceptional divisibilities of the Deligne-Ribet 2-adic L-function (in almost all cases).
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1. INTRODUCTION

The degree-n Milnor K-theory of a field F', denoted K, fl‘/[ (F), is a quotient of F* ® ... ® F* by certain (“Steinberg”) relations,
with a general element written {f1,..., f,} for fi,...,fn € F*. When F' = Q(z1,...,2,), which we think of as the fraction
field of the n-fold power of the multiplicative group G

m>

the simple-looking elements given by GL,,-translates of
{1—21,...,1—=z,},

contain surprisingly interesting arithmetic information: for n = 1, specializing them at Nth-roots of unity leads to N-cyclotomic
units, and when n = 2, similar specializations are also important in cyclotomic Iwasawa theory, and in particular the Sharifi
conjectures. For n > 2, the specializations in K-theory are not as interesting, but one can formally take the coordinate-wise
logarithmic derivative of these Milnor K -theory elements to get generating series which look like

e2mi(ti+.Htn)

(1 _ eQﬂitl) . (1 _ 627ritn)

where z; = 2™, 1 < i < n, which are generating series of generalized Bernoulli numbers. For n = 1, the Mellin transform of

this series is used classically in the integral representation of the Riemann zeta function

z°  dx

o0

=I(s/2 =
€)= T2 = | 51 5
and thereby to prove the functional equation and find rational formulas for its values at negative integers; in the general case, this
method was generalized by Shintani to to L-values of totally real fields of degree n [ ], using a formalism which viewed these

series as generating series associated to rational polyhedral cones in R™ (which is often called the “Shintani method”).

In [SV], with applications to the Sharifi conjectures in mind, the authors construct 1-cocycles for GL2(Z) and its congruence
subgroups, taking values in elements like {1 — 21,1 — 23} in the second Milnor K-group K2 (k(G2))). In this article, we
generalize their approach by constructing analogous cocycles for (subgroups of) GL,,(Q) valued in K (k(G?",)), or various
refinements/specializations thereof. When n = 2, our formalism enables us to to improve on their results and obtain new integrality
and Hecke equivariance properties for one of the maps in the Sharifi conjectures, while at the same time being more geometrically-

flavored and requiring fewer technical computations.

The dlog regulator of our cocycle yields a new construction of an “Eisenstein cocycle” containing a large amount of interesting
arithmetic information, closely related to many previous cocycles appearing in the literature. In particular, our cocycles bear a
“conical dual” relation to cocycles constructed based on Shintani’s techniques, which we will exploit to give a systematic treatment
of the integrality properties of L-values for totally real fields, including a conceptual proof of “exceptional 2-adic divisibilities

previously only known by explicit automorphic computations.

1.1. Relation to existing work. The primary inspiration for the methods of this article was the motivic GLo(Z)-Eisenstein cocycle

defined by [SV]: our main symbol construction can in large part be seen as an extension of the method of [SV, §5] from n = 2

2
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to general n, though they use toric geometry in place of Bloch cycles to prove relations, and do not work with pushforwards. In
the arithmetically interesting case n = 2, we are able to refine their result by computing that the Hecke action is the expected
one on a certain modular symbol, rather than just a cohomology class. In particular, we use a new method to obtain a Hecke-
equivariant map on homology of the modular curve relative to cusps, rather than on the closed modular curve. Using our tools, we
are also able to directly compute the Hecke actions at primes dividing the level while only inverting the prime 2, improving on both

Sharifi-Venkatesh’s results as well as the work of Lecouturier-Wang [ ] on operators dividing the level.

Also closely related to the present work is the approach of Shintani [ ] using rational generating functions associated to rational
polyhedral cones, originally formulated in a non-cohomological way to compute L-values of totally real fields. Eisenstein cocycles
built on this approach have previously appeared in the literature, e.g. in [SH], [CD] and [ ], [Hill], and [L.P], but our approach
is more systematic: besides being equally applicable to the motivic setting, we are able to quotient by very few relations in the
coefficients, and do not need auxiliary data like lexicographic orderings (as in Richard Hill’s approach [Hill]) or perturbations (as
in the cocycle of Charollois-Dasgupta-Greenberg [ ], after an idea of Colmez); this extra data implicitly appears only in the

“degenerate” values of a choice of cocycle representative.

We achieve this by working with a symbol complex of spherical chains, whose realizations are related to pushforwards of gen-
erating functions of the dual cones to those considered by Shintani. In fact, our symbol complex construction is more directly
tied to “polylogarithmic” constructions of Eisenstein classes, as in the work of Beilinson-Kings-Levin [ ] as well as Bergeron-
Charollois-Garcia [ 11 ], a term we use to refer to Eisenstein classes constructed by specifying residues along torsion
cycles in some algebraic or topological group. We make this relationship precise in Appendix A. The terminology “polylogarith-
mic” reflects that the more general versions of these cocycles (as in [ 1) use coefficients in a large “logarithm” sheaf in order
to obtain a direct relation to higher-weight specializations of Eisenstein series, which is necessary to prove the higher-weight inter-
polation for the corresponding constructions of p-adic L-functions. (We also note that [ ] relatedly constructs a equivariant
polylogarithm class in Deligne cohomology of the torus corresponding to a totally real field, which as noted in Remark 3.3, should

be the restriction of the Deligne regulator of our motivic class ©(n) upon projection to constant coefficients.)

These polylogarithmic-type constructions generally are closely linked to actual analytic Eisenstein series representatives, while the
connection between Shintani-style constructions and actual Eisenstein series is largely more indirect. For example, Cassou-Nogues’
[CN] approach to p-adic L-functions using Shintani’s method produces the same objects as the approach of Deligne-Ribet [DR]
using Hilbert-Eisenstein families, since they interpolate the same L-values, but the conceptual link between the two approaches is
not clarified by this. By producing a cocycle which is both polylogarithmic (from Appendix A) and related by conical duality to
Shintani generating series, we bridge this gap. The relation to Shintani’s method also allows us to prove the interpolation property

of our p-adic L-functions at higher weights using only trivial coefficients, rather than logarithm sheaf.

We also bridge a gap between the p-adic congruences obtained by [DR] and [CN]: the former obtains extra 2-adic divisibilities
coming from a computation of the constant term of Hilbert-Eisenstein series. The issue of whether these could be “seen” by
a Shintani cone approach was already raised in [DR]; this was also considered by Gross [Gro], who put it into an equivariant
algebraic framework, and very recently by Colmez [Col], who obtained partial progress (see Théoreme 3.22, Remarque 3.23 in
loc. cit). Our algebraic setup leads to a proof of the full 2-adic divisibility, except in the particularly delicate case of unramified

totally odd characters at weight s = 0; see Theorem 1.4.

Finally, to review the relation of our cocycle with a few others not yet mentioned: in the motivic setting, Lim and Park [I.P] based
off an idea of Stevens [ ], also construct a cocycle valued in Milnor K-theory of a ring of “trigonometric functions”. Their
construction is a complex-analytic and “infinite level”, with their ring of trigonometric functions corresponding to the functions

on a pro-tower of algebraic tori over all finite isogenies; however, like other previous Shintani-style approaches [ ] and [Hill],
3
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their construction is “conical dual” to ours, and involves addditional quotients by relations. The duality relation they exhibit in [LP,
§3], between the regulator of their motivic cocycle and a naive version of the Shintani cocycle of [Hill], inspired our understanding

of the conical duality linking our construction to previous ones in the literature.

1.2. Structure of the paper. We briefly the structure of the paper: the preliminaries consist of a review of needed facts on motivic
cohomology in Section 2.1, followed by the construction of the symbol complex and resulting cocycles in Sections 2.2 and 2.3.
Section 3, on the motivic cocycle and applications, and Section 4, on the de Rham cocycle and applications, are mostly independent;
readers interested in one or the other may safely skip around and refer back to the preliminary sections as needed. The only major
exception is that existence of the de Rham cocycle is proven using Theorem 3.1 in the motivic section, since we construct the de

Rham cocycle as the regulator of the motivic one.

1.3. Summary of methods and results. We now give more precise formulations of our results and arguments, to the extent

possible without introducing excessive technical background.

Our main initial construction is:

Theorem 1.1. There exists a Milnor K -theory-valued cohomology class

O(n) € H" 1 (GLn(Q), K, (Q(z1, -, 20)) =21, =20 })

with a homogeneous cocycle representative given by

(’Yl,---,’yn)'—>(€1 én)*{l—zl,...,l—zn}

forany v1, ..., vn whose respective first columns ({1, ... £, are linearly independent.

This theorem was previously proven for n = 2 in [SV]. Our method, which is a variant of the approach in [SV, §5], is to construct
an explicit GL, (Q)-module of symbols C(n) parameterizing elements in KM (Q(z{,...,25))/{—21,...,—2n}. We refer to

ey ,,7

these as symbols, as they are in an explicit combinatorial way and are easy to write down.

The module C(n) is constructed as the top-degree chains of a chain complex computing the homology of the (n — 1)-sphere,
modulo the fundamental class, which we refer to as the symbol complex. The GL,,(Q)-action on the resulting length-(n + 1)
exact complex yields explicit (n — 1)-cocycles via a lifting process, all representing the cohomology class. Readers interested only
in arithmetic applications may safely skip the details, referring only when needed to the characterization of the symbol complex

Chains(n) in Proposition 2.4.

Most of the work of constructing ©(n) is in proving that the relations are satisfied in Milnor K-theory, which we prove by
constructing explicit corresponding boundaries in a cohomology complex (the Bloch cycle complex) computing Milnor K -theory.
The details of this realization are in section 3.1. Notably, our systematic use of pushforwards in the realization maps allows us both
to extend our cocycle to GL,, (Q) (rather than just GL,,(Z)), and to avoid the technicalities of the “connecting sequences” used in
[SV], as we can work directly with non-unimodular symbols instead of needing to decompose them into unimodular ones. This

also enables our simpler treatment of Hecke actions (see below).

As in [SV, §5], we also consider variants of the construction in this section, there are various methods by which one can remove
the necessity of quotienting by {—z1, ..., —z,}, (though usually one gives up something else; e.g. inverting primes). Conversely,
by quotienting out by more relations, one can obtain an parabolic version of ©(n). Our use of symbol complexes makes it possible

to understand systematically what modifications are required for each of these variants.
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1.3.1. Application to Sharifi maps. In particular, a modular symbol variant of the cocycle has the following application: in the
case n = 2, Sharifi and Venkatesh use their parabolic cocycle to construct and prove the Eisenstein property of one of the maps
which figures in the eponymous Sharifi conjectures, relating the homology of modular curves and algebraic K -theory of rings of

integers in cyclotomic fields. Their methods produce the desired map in the form
Iy : Hi(X1(N),Z) — K2(Z[1/N, (n]) ® Z[1/2]

which is Eisenstein for the anemic Hecke operators only, i.e. factors through the quotient by the operators Ty — 1 — ¢{¢) for £ 1 N.

The Sharifi conjectures concern an explicitly constructed map
Iy, « Hy(X1(N), C5(N), Z) — Ka(Z[1/N,(n]) © Z[1/2], [u: o] > {1— Gl — (i)

on the larger cohomology group relative to the set of cusps C{(IN) not in the T'g(V)-orbit of oo, and work of Fukaya-Kato [FK]

showed that for p| N, the complex conjugation-fixed (“plus”) version of this map, denoted by subscript +,
() + @ Zp : Hi(X1(N),CY(N), Zp)+ — (K2(Z[1/N,(N]) @ Zyp)+

given by the formula

o] = (1= G 1 = G = (1= G 1 = G+ {1 - G 1= D)

factored through not only the anemic Eisenstein operators Ty — 1 — ¢{¢), but also U, — 1 whenever p|N. Thus, Sharifi-Venkatesh’s
work improved on this by constructing an anemically Eisenstein map with Z[1/2]-coefficients, and not only on the plus part.
However, they were unable to compute the action of the Hecke operators dividing the level, or to define it on the larger relative
cohomology group as in II%,. Later, [ ] combined the methods of Sharifi-Venkatesh and Fukaya-Kato to show that the map
IIy ® Z[1/6] factors through the non-anemic Hecke operators Uy — 1 for ¢| N, again only on the plus part.

After “spreading out” the pullback of the modular symbol variant of our cocycle ©(2) in order to pull it back by an Nth root of

unity, we are able to obtain the improved result:

Theorem 1.2. The map

(ITy)+ « Hi(X1(N), CY(N), Z) — K2(Z[1/N,¢n]) @ Z[1/2]
factors through both T}; — p —{p) for p{ N and U, — 1 for p|N. Further, the diamond operator {d) acts as pullback by the Galois
automorphism [d] : {x > (& forall d e (Z/N)*.

Additionally, if N is a power of a prime, or if we further restrict the set of cusps to exclude To(p)-orbit of o for all p|N, then all
of this holds even for the map 113;, without projecting to the + part.

The point is that these relative homology groups are naturally I'y (IV)-subquotients of the Steinberg module St(2), consisting of
mass-zero finite functions on P!(Q); this, in turn, is a GLa(Q)-equivariant quotient of our spherical chains module C'(n). Our
realization map allows us to understand precisely what elements in K -theory we need to quotient by to have these extra Steinberg

relations, resulting in a GL,, (Q)-equivariant modular symbol
OM5(2) : St(2) — Ko(k(G2,))/extra relations
and which pulls back, upon restriction to I'; (IV)-level, to a modular symbol

St(2)r, vy — K2(Z[1/N,(n])/extra relations ® Z[1]
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where these extra relations are trivial with Z[%]—coefﬁcients upon projection to the plus part (or are already zero, in the special case

noted in the theorem).

Moreover, the Hecke action can be computed directly on the modular symbol ©*9(2) (without ever passing to a cohomology
class), in terms of a simple geometric operation on the torsion sections used to pullback. This enables us to compute the Hecke
action at all primes; we find the Eisenstein property holds if one restricts the set of cusps as indicated in the theorem. We further
give a geometric interpretation and proof of the N-integrality of a restriction of II3; to the homology of the closed curve X7 (N),

which previously had been proven computationally [SV, Lemma 4.2.7] [FK, Lemma 3.3.11].

1.3.2. Application to L-values. We now turn to the regulator of ©(n), i.e. its composition with the map

{f1,--, fn} — dlog f1 A .../\dlogfneQZ(Gm.

After contracting with the SL,, (Q)-invariant vector dz1 A ... A 0z, the resulting de Rham cocycle ©4(n) is valued in precisely
the same kind of generating functions associated by Shintani [ ] to arrangements of cones, closely related to L-functions of
totally real fields. However, the generating function associated to the class of a rational simplex A = S™~! on the (n — 1)-sphere
is not the generating function of the associated (open) cone, but to its dual cone: that is, formally, to the sum

(tla o 7tn) N Z 627ri<3:,t>

n

<I,R20 A>>O

rather than

omida,t
(T D D el
z€Z™ NR< oA

where (—, —) is the usual inner product, and we identify a region of S™~! with the space of rays in its R*-span. In [ ], for
example, the Shintani generating function associated to the anisotropic torus associated to a totally real field F' of degree n is of the
latter form (and also involves delicate choices of lower-dimensional cones), while the specialization of our @dR(n)|O; is of the
former. However, we are able to show that L-value specializations of the latter type of series are the same as those coming from
ours @dR\O;, if one takes the inverse transpose of the embedding O < GL,,(Z): this reflects the underlying conical duality,
and involves a technical argument using stabilized versions of our symbol complex at an auxiliary prime, as well as a geometric

incarnation of conical duality in the Tits building of GL,, (see Appendix B).

As a result of the smoothing, we are able to pull back ©%%(n) along all torsion sections, and hence obtain a single class valued in

distributions which we can show specializes to all different p-adic L-functions associated to totally real fields of degree n:
Theorem 1.3 (Theorem 4.16). For each integer ¢ > 1 prime to a prime p, there exists a cohomology class valued in a certain
space of p-adic distributions (see Section 4.1.2 and the formula (4.11) for notational details)

OB (n) € H" 1 (GL,(2), DO ((Q}) ", Zy)(sgn)\),

such that if F is a totally real field with [F : Q] = nand o : [ = (Z™)V is a choice of dual basis for a fractional ideal I = F,
then the restriction of C@dDIi (n) to the resulting embedded copy of UT := (O5)" — GL,,(Z) satisfies

(] T NG 0 OBl ~ ) = ol ) — (1)

P
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for any function v : I /Ut — Q, locally constant in the p-adic topology." Here cy+ is a fundamental class of Ut =~ 7",

positively oriented in an appropriate sense, and

G, —k) == Do $(AHNA?
eI+ U+

s=—

is a partial zeta value for I.

The fact that we use Shintani’s method (in Section 4.2 onward) to prove the p-adic interpolation is of note, when juxtaposed with
our “polylogarithmic”-style construction (see Appendix A) of our classes. Previously, [ ] constructed p-adic L-functions for
totally real fields using Eisenstein classes constructed polylogarithmically on topological tori (S1)™, but needed coefficients in the
logarithm sheaf to prove the interpolation property at higher weights; the direct relationship with Shintani’s method allows us to

avoid this.

Finally, we remark that we can also obtain S-arithmetic or even GL,,(Q) versions of this class, and representing cocycles (maybe
after inverting primes in the coefficients). We do not go into S-arithmetic applications in this article, so this is only covered in

passing; however, for example, we expect it to give an alternative approach to the rigid analytic cocycles of [ ].

The construction of p-adic L-functions by Deligne-Ribet [DR] also proved extra divisibilities at the prime 2 for certain L-values
“with parity”; it remained an open question whether approaches using Shintani cones (like [CN], contemporaneously) could “see”
these extra congruences; for example, this was considered by Gross [Gro, Proposition 5.4] (who formulated it in algebraic terms
quite related to our distributions) and Colmez [Col, Théoreme 3.22] (who proved a slightly weaker statement). We prove the full

expected congruence for the values we are able to interpolate:

Theorem 1.4 (Theorem 4.23, analogue of (8.11-12) in [DR]). Let 1) : Gox — Qs be a totally odd continuous function on the
2% -narrow ray class group of F. Then, for our 2-adic zeta element (1 constructed in Section 4.3.4, we have the congruence
¥(J)de¢y (J) =0 (mod 2").
Gpo0
This theorem follows in a very formal way from our setup; as such, by comparison with the method of [DR], one could view
it as a “cohomological explanation” for the appearance of 2" in the constant term of Hilbert—Eisenstein series. As in [DR], we
in fact prove the theorem for more general functions on a monoid of ideals strictly larger than the p®™-ray class group. In this
more general setting, the congruence is slightly more subtle and is only modulo 2" ! in some cases, requiring some more delicate
considerations in class field theory. We are able to prove this more delicate statement using our purely algebraic methods, except

for in some particularly subtle cases: see Theorem 4.23 for the precise statement and more discussion of this.

Note that essentially identical results about L-values hold if one introduces ramification at some tame level /N prime to p. Since
these results were already proven by [DR] and the main innovation of this paper is to exhibit “purely cohomological” reasons for
these congruences, we decided to focus on the case with no tame level to present the idea more simply. However, all our methods

generalize to the case of tame level, essentially without change.

1.4. Future work. The basic methods (parameterization by linear algebraic complexes of symbols) of this article apply, though
with some substantial changes, to the setting of elliptic polylogarithms: for example, the action of GL,,/Q on the nth power of the
universal elliptic curve, or GL,,/K on the nth power of an elliptic curve with CM by K. This elliptic case will be the subject of

IFor reasons of brevity, we do not consider adding tame level - i.e., prime-to-p level - to our p-adic L-functions; however, the same constructions all work in this
generality as well.

7
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a sequel to this article. Working analytically over C, certain specializations of the former setting yield (after pullback by torsion
sections) the Siegel unit-valued modular symbols constructed in the recent work of [ ]. This elliptic case has analogous
applications to the arithmetic of totally real fields, as well as to the Sharifi conjectures for the pairs (GL3(Q), GL2(Q)) and
(GL2(K), GL; (K)) in the case of a CM field K, just as the present article deals with the case (GL2(Q), GL1 (Q)). In the setting
of Drinfeld modules for a function field F//F,, we also use symbol complex methods to attack the case (GL,,(F), GL,,—1(F)), in
forthcoming joint work with the the first author of [SV].

Another question posed by [ ] is the relation between Shintani cones and toroidal compactifications of Hilbert-Blumenthal
varieties; via Hirzebruch’s conjecture (now a theorem), this also is closely related to the same L-values studied by Deligne-Ribet
(as well as the present article). We would be interested in a group theoretic/geometric answer to this question, which seems related

to our cohomological methods.

Finally, we do not go into the relation of our cocycles to Gross-Stark units in this article, but it may be of interest to write down the
relationship carefully. As noted in Remark ??, we believe that our “de Rham cocycle” results in the same (smoothed) distributions
for totally real fields as one obtains from [ ], for example, and thus should yield the same now-proven formulas for Gross-
Stark units of [DS] (thanks to the work of [ 1). These other existing cocycles are already perfectly sufficient for explicit
class field theory, but the very natural algebraic formulation of integrality properties in our approach could possibly offer benefits

of exposition, at least.

We do write down the relationship with Gross-Stark units of a closely-related cocycle (from the polylogarithm of a fopological
torus) in the joint work [RX], as well as its relation to the rigid analytic cocycles of [DV]; in joint work in preparation, we will

relate that polylogarithmic cocycle to the one in this article.

1.5. Acknowledgements. Many thanks to Nicolas Bergeron, Marti Roset Julia, Romyar Sharifi, Timothy Smits, Jeehoon Park,

and Pierre Charollois for open ears, discussions, and suggestions.

2. PRELIMINARIES

2.1. Motivic cohomology. In this section, we recall some needed facts about motivic cohomology and Milnor K-theory. For a
smooth equidimensional scheme X over a discrete valuation ring (DVR) R, we will compute (or, for the purposes of this article,
define) the motivic cohomology H(X,Z(n)) as the cohomology H'(X,Z(n)x) of Bloch’s weight-n cubical cycle complex

Z(n) x; this is the approach followed in [Tot] and [GL], for example, over a field.
The Bloch cycle complex is defined as follows: let
F(X,0) = Z"(U x O°)

be the group of codimension-n cycles on X x O° meeting all faces properly. Here, O° is the algebraic i-cube which we identify
with (P! — {1})™ and the jth face map is given by the difference of the pullbacks to the subvarieties cut out by ¢; = 0, respectively
t; = oo; the alternating sum of face maps gives, as usual, a differential from 2" (X, ) to 2" (X,i—1).? It turns out that the resulting

complex splits into a direct sum
ZM(X,i) =d"(U,i) ® 2" (X, 1)

2In some conventions, O is identified with A%, and the face maps are given by t; = 0,1 instead of 0,00. This differs from our convention by a Mobius
transformation; ours is the convention used by [Tot], and we we find it to be more convenient for later applications.
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where the former summand consists of degenerate cycles which can be pulled back from one of the faces of O° given by t; =0,

and the latter summand consists of the reduced cycles which are in the kernel of of the restriction to each face t; = 0. We define
(Z(n)x)" := 2"(X,2n — ).
This complex is suitably functorial for flat pullbacks and proper pushforwards.

More generally, over a Dedekind scheme base, we can define motivic cohomology as the hypercohomology of the Zariski sheafi-
fication of the Bloch complex: the fact that this coincides with our above (non-hypercohomology) definition for the Bloch cycle
complex was proven for fields as [IFS, Corollary 12.2], and for DVRs in [ ]; consult these sources for details. The only fact we

need about this broader definition is the existence in this generality of a localization sequence:

Proposition 2.1 ([ D. If Z < X is a pair of smooth schemes embedded with pure codimension d, over a Dedekind domain,

then there is a localization sequence

.= H72(Z Z(n — d)) - H(X,Z(n)) - H(X — Z,Z(n)) — H*'724(Z Z(n — d)) — ...
This will be used to extend results about pullbacks of our motivic cocycles to bases larger than DVRs.

Remark 2.2. This article is not concerned with the minutiae of motivic constructions, so we only remark briefly on the technical
details we are glossing over in the above definition, in order to provide justifying references: first, this construction should more
properly be called Borel-Moore motivic homology; historically, Bloch called them “higher Chow groups”. For smooth schemes
over a field, higher Chow groups agree with the usual modern construction of motivic cohomology defined via Voevodsky-style
motivic complexes, thanks to the results in [V] and [FS]. Second, simplicial language is more standard than cubical (as in, e.g.,
[ ]), but the two approaches are equivalent for formal reasons, as proven in [GL] over a field (though the proof works also over
aDVR).

When X = Spec F, then [Tot] proves that there is a natural isomorphism
Uk HM(X,Z(n)) = K (F)

between the degree-n, weight-n motivic cohomology and Milnor K -theory, which we recall is given in degree n by
KM(F):=(F*®...@ F*)/I

where [ is the degree-n part of the ideal in the free tensor algebra on F'* generated by « ® (1 — x) for non-identity x € F*. This
map is given on the level of the Bloch cycle complex as follows: for the class of an irreducible closed subvariety [Z] € z"(X, n),

write p : Z — X for the projection map; then we set
(2.1) P (2) = pu([1 ® ... @ tn]) € Ky (F)

where pj is the finite pushforward (also called transfer map) in Milnor K -theory (as defined in [ , §5]) for the map p, where

we recall the ¢, are the coordinate functions on the simplicial cube.

When n = 1 above, the above discussion applies to more than fields: for any scheme X, the map H' (X, Z(1)) — I'x(O%) given
by sending [Z] — p«(t1) (and zero if Z is not dominant over X) is an isomorphism identifying the degree-1 weight-1 motivic

cohomology with the global units. This allows us to more generally consider cup products like

Uy — ... — up € H(X,Z(n))
9
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for units uq, ..., u, on X. Following notational conventions in Milnor K -theory, we will also denote such cup products, as well

as the associated tensors in Milnor K -theory, by the curly braces {u1, ..., u,}.

2.1.1. Trace operators on cohomology of G,,,. We observe the element 1 — z € H(G,,, — {1}, 7Z(1)) satisfies
[a]l«(1—2)=1—2

for any a € N, where [a], denotes the restriction of the map [a] : G,, — G, is the map induced by z — 2z, composed with

n

pullback by the inclusion G,,, —{1} < G,,,. In general, we use the same notation [a] : G}, — G},

for the same map coordinatewise

(z1, .y 2n) — (2%, ...,22), and observe that also

[a]«{l—21,...,1—z,} ={1l—21,...,1 — z,}.

For the submodule of the cohomology G,, or various subspaces thereof, we will write superscript (0) to mean the elements which

are fixed in this way by all [a],; e.g.
{1-z1, 1=z} € H' (G — {11)", Z(n)) ).

Note that H"((G,,, — {1})™, Z(n)) carries a pushforward action of M,,(Z) commuting with all [a].; since the [a], act invertibly,
the M,,(Z) actually induces a GL, (Q)-action on the trace-fixed submodule H"((G,, — {1})"*,Z(n))(®). This applies to the

trace-fixed cohomology of any subspace of G,,, with a M,,(Z)-action.

2.2. Symbols from spherical chain complexes. We turn now to constructing a chain complex CTlEiEs(n) with action by GL,, (Q),
and show that it computes the reduced homology of the sphere S™~! and is thus almost exact. In top degree, this complex will
naturally parameterize special elements in the Milnor K-theory of the function field of G}},, and we will abbreviate the top-degree
module

C(n) := ms(n)n
The construction of this section directly generalizes [SV, §5], who consider the case n = 2, though we use slightly different
conventions for the group action: we are taking left actions on spaces with a resulting pushforward left action on cohomology

groups, while they consider right actions on spaces.

We identify S"~! = (R™ — {0})/RZ, with the set of rays in an n-dimensional real vector space, and write S™~!(Q) for the subset
of rational rays. Consider the poset P of linear triangulations 7" of S™~! with vertices contained in S"~1(Q) < S™~!, ordered by
refinement: that is to say, we say 17 > T if every simplex of 71" is a union of simplices of 77. Here, by linear triangulation, we
mean every k-simplex is the intersection of a S™~! with a dimension-(k + 1) simplicial polyhedral cone in R™ emanating from the
origin. Notice that in particular, the great circle containing any given simplex can be recovered as the intersection of S™~! with
the span of the rays corresponding to the vertices of the simplex. As such, each of these corresponding subspaces are themselves

rationally defined, since these rays are rational.

Given any geodesic k-simplex A with endpoints in S"~1(Q) with k& < n — 1, there exists a triangulation T € P such that A is
one of the triangles in T: indeed, for each face of A, take the corresponding great circle on S™~!; these divide the sphere into
polyhedral regions, which then can be barycentrically subdivided into simplices by picking a rational point in each interior. We

have the following “upper bound” theorem on refinements of trinagulations.

Proposition 2.3. Given any two triangulations T1,T> € P, there exists a common upper bound for them, i.e., a triangulation
T € P refining both T and T5.

10
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Proof. Superimposing the triangulations 7} and T5, we obtain a decomposition of S”~! into convex polyhedral cells. Each vertex
of this superimposition is still in S”~1(Q), because any new vertices are the intersection points of rationally defined subspaces in
R™ (corresponding to the great circles forming the intersecting faces) and hence themselves correspond to rational rays. Pick a
rational point in interior of each polyhedral cell and subdivide it into simplices by joining the point to each (n — 2)-face of the cell

with a (n — 1)-simplex; we obtain a new triangulation which still has all vertices in S"~1(Q). 0

Write Cr for the augmented cellular chain complex of the simplicial complex 7" with
Cr,; = Z{T;}

for all i > 0, freely generated by the i-simplices endowed with their orientation coming from the globally oriented S™~1. (We
will consider the oppositely-oriented version A of a simplex A to live in the chain complex, representing its additive inverse
[A] = —[A].) The boundaries Cr ;41 2, Cr,; given by the alternating face maps when 7 > 0. By “augmented”, we mean that we

set C'r,_1 = Z, with its incoming boundary map given by the degree map on 0-simplices. Then for any T,
H, 1(Cre) =7
is the only nontrivial homology group, since each simplicial complex is homotopy equivalent to S™~*.
For a refinement 7" of T', there is a pullback complex map
Cr — Cp

which is a quasi-isomorphism; these maps are functorial for compositions in the poset of triangulations. We can then define

(2.2) Chains(n); := lim Cr,[1]

as the colimit over all triangulations; by exactness of direct limits, (ilgi_ﬁs(n) also only has homology Z in degree n; recall also

that we abbreviate the top-degree term as C'(n).

Via the left action of GL,,(Q) on S”~1(Q) viewed as parameterizing rays in R", the complex (ﬁl;iﬁs(n) takes a left action of
GL,,(Q). In particular, if ~ fixes a simplex A but det v = —1, then

We now give generators and relations for C/B;i_ﬁs(n). Given any tuple of independent rays (my,ms, ..., my) in S*1(Q) lying in
the same (open) hemisphere, which we will call an acyclic tuple, they span a unique oriented geodesic simplex (with orientation
corresponding to the order), whose 1-frame is formed from the shorter segment of the great 1-circle through each pair of points.

(By assumption, there are no antipodes, so there is no ambiguity.)

For any triangulation 7" containing this simplex, we write

[A(my,ma,...,mi)7r] € Crp—1
for the class in homology; under any triangulation 7" which refines T' with the same property, the class [A(my, ma, ..., mg)7]
maps to [A(mq,ma, ..., mg )7 ]|. Thus, we can speak unambiguously of a class in the direct limit
[A(my, ma,...,myg)] € Chains(n)g.

These classes generate Chains(n); for each ¢, since any rational simplex can be subdivided into rational acyclic simplices.

11
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We claim that the relations between the generators corresponding to these simplices are generated by subdivision of an acyclic

simplex into subsimplices. Indeed, suppose we have an relation of k-simplex generators
(2.3) [A]+...+[A] =0.

Superimposing all the great circles corresponding to the faces of the A; and subdividing the resulting polyhedral cells as in the
proof of 2.3, we can find a set of geodesic simplices Af, ..., A’, disjoint outside of their faces, such that each A, is a union
A= | ] AL
JES;
Associated to this decomposition of simplices we have pushforward relation
(2.4) [A]= > A
JES:
Substituting these into (2.3), the resulting relation is between disjoint simplices, on which the coefficient of each simplex therefore

must be zero. Hence relations of the form (2.4), coming from subdivision of an acyclic simplex, generate all relations as we

claimed.

In fact, we can go even further, and generate all acyclic simplicial subdivision relations in terms of some easily classified ones:

Proposition 2.4. Write T}, for the set of all acyclic positively oriented geodesic k-simplices with rational faces.> The module
C/flzi_ﬁs(n)ifori > 0 is given by

Z{T; 1}/Si—1
where Sy, is the module of acyclic k-simplicial subdivision relations, and is generated by stellar subdivisions of rank r for2 < r < k
given as follows: fix an acyclic simplex A € A(my, ..., my) and a rational point m lying in the great circle corresponding to the
face with vertices (myq, ..., m,), but sharing some hemisphere of the great circle with all of them. Corresponding to this data we

have the stellar subdivision relation

(2.5) [A(my,...,mg)] = E[A(ml, ey TR MM, )]
i=1

Proof. From the discussion preceding the proposition, it remains only to prove that the stellar subdvision relations (2.5) generate

all acyclic subdivision relations.

First, we say that a subdivision of a simplex A is a sequentially stellar subdivision if it can be obtained by a sequence of stellar
subdivisions of A (and the resulting subsimplices at each sequential step). The relation corresponding to a sequentially stellar

subdivision of an acyclic simplex is certainly generated by those of the implicated stellar subdivisions by repeated substitution.
We observe, therefore, that it suffices to show that any acyclic subdivision
A=A u...ul

can be refined to a sequentially stellar subdivision of A, which is also a sequentially stellar subdivision of each A; when restricted
to it; this result in the field of combinatorial topology is due to [ ]. (|
We also write

Chains(n) := Chains(n)/H, (Chains(n))
3As before, we will also freely use negatively oriented simplices as generators, with the convention they are simply —1 times the positively oriented simplex.

12
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for the exact quotient of (ﬁﬂs(n) given by quotienting by top homology. We use the analogous abbreviation

C(n) := Chains(n),
for the top-degree module.

2.3. Combinatorial cohomology classes for GL,,. We now construct “abstract” cohomology classes for GL,,(Q) valued in sym-
bols in the symbol complex, whose realization in Milnor K -theory (and later, differential forms) will yield our arithmetic classes

of interest. We use the following standard construction in group cohomology, whose proof we sketch:
Lemma 2.5. Ifa group G acts on an exact complex C, supported in degrees [0, n], then we have a natural map on cohomology

C§ — H" (G, Cy)

inhomogeneous cocycle representatives of which can be constructed as follows: associated to e € C§', pick a lift {1 of e to Cy, and

consider the 1-cochain

v (y = 1)t e CHG,CY).
By exactness, this is the boundary of an element {5 € C*(G, Cs); we take the chain coboundary 0¢s € C?(G, Cy) which again lifts
to U3 € C?(G,Cs), etc. The lift £, € C"~1(G, Cy,) is a cocycle representing the image of e in H* (G, C},).

Proof. The map C§ — H" (G, C,,) is the composition of connecting homomorphisms

(2.6) Co — H*(G,ker01) = H'(G,imds)
(2.7) — H?(G, ker d2) = H*(G,imd3)
(2.8) — ...

(2.9) — H"Y(G, kerd,,) = H" (G, C,).

for the G-short exact sequences

Oit1 0i -
ker 0; —— C; — imd;.

Unwinding the definition of each of these maps yields precisely the process of iterated lifting described in the lemma. O

We apply the lemma to the action of GL,,(Q) on Chains(n), using the element e € Z in degree zero of each respective complex.

This affords us a cohomology class

(2.10) 05" (n) e H"1(GL,(Q),C(n)).

2.3.1. Explicit cocycle representatives. We can apply Lemma 2.5 to obtain cocycle representatives for ©° ! (n).

To write down our explicit cocycle, it will be useful to specify an extension of the previous notation [A(my, ..., my)] to any tuple
of rays (mq,...,my), even tuples failing to be acyclic or independent. Thus, we define a A-extension E to be a collection of
classes*

[Ag(myq,...,mg)] € Chains(n)g

for arbitrary tuples of rays (mq, ..., my) satisfying the following properties:

“This is somewhat abusive notation, since we are not necessarily saying that [Ag(my1, ..., my)] is actually the class of a particular geodesic simplex when the
tuple is not linearly independent.

13
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(1) If the tuple (mq, ..., my) is independent, then
[Agp(my,...,mg)] = [A(my,...,mg)]
as we have previously defined it.
2) y[Ag(m,...,mg)] = [Ag(ym1,...,ymy)] forall v € GL,(Q).

(3) The image of [Ag(myq,...,my)] under the face map is

Z(—l)i_l[AE(ml, “ee ,mz‘, ce mk)]

i
(4) If (mq, ... my) is a dependent acyclic tuple, then [Ag(myq, ..., my)] is zero.

We will call the data of such an extension a A-extension; all A-extensions by definition agree on linearly independent tuples.
Proposition 2.6. A-extensions exist.

Proof. We show how to construct such an F inductively on the corank of (myq,...,my): that is, on the difference k — r between
the number of rays and the rank of their span. When k = r, the definition of [Ag(m1,...,my)] is forced on us by (1); these
definitions certainly satisfy (2) and (3), and (4) is not applicable. This furnishes the base case.

We will now first complete the inductive step so as to fulfill (2), (3), then return to analyze how one fulfills (4) in different inductive

steps, as fulfilling (4) cannot be analyzed uniformly across all steps.

Indeed, to satisfy (2), all we need to do is construct Ag(myq,...,my) for an arbitrary representative of each GL,,(Q)-orbit of
tuples and extend by group translation, since the conditions (3) and (4) are certainly translation-invariant. Thus, assume that we
have constructed A g for corank up to 7 — 1, and we wish to construct it for tuples of corank . Then the point is that

(2.11) DD AR (m 1, my)]

has boundary zero, so by exactness of Chains(n) it is possible to pick some chain lifting it under the boundary map.

We claim that (myq, ..., my) is acyclic, we can pick the extension so that (2.11) is identically zero. Indeed, in the first inductive
step ¢ = 1, (2.11) is precisely a stellar subdivision relation, so it vanishes and we can pick the lift to be zero. When ¢ > 1, then
inductively all the terms of (2.11) are acyclic dependent tuples, which by the inductive hypothesis are zero, and hence we can pick

zero as a lift under the boundary map. O
To any A-extension, there corresponds an explicit cocycle:

Theorem 2.7. For any (n — 1)-tuple of matrices v = (71, ..., Vn—1), write c;(y) for

’)/1’Y2 .. .’)/1;61

fori = 0, where e = (1,0,...,0); this is equivalently the first column of the product matrix written above. Now fix any

A-extension E; for such an extension, we define a (n — 1)-cochain O%n_l (n) by

(2.12) v = [Ae[y]] == [Ar(cn-1(7),cn—2(7), s co(V)]-

. . . . . . . . n—1 . .
(In particular, this is the zero class if the simplex in question is degenerate.) Then 9% (n) is a cocycle representative for
n—1
05" (n).
14
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Proof. This follows immediately from the properties of a A-extension and the lifting process of 2.5: we lift 1 € Z to e;, whose

group coboundary is the 1-cochain v — (v — 1)e; which lifts to

7= [As(e (), co())]-

The group coboundary of this lifts to the 2-cochain

v = [Ap(ca(y1,72), c1(71,72), co(71,72))]

and so on. 0

Remark 2.8. The construction of Shintani cocycles (though not the motivic setting) by [Hill] (and used by [LP]) introduces a
lexicographical order on lines in order to make the cocycle property work. From our perspective, the data of this choice of order
is the same data one needs to specify a certain A-extension, though one must be careful: their construction is actually “dual” to
ours in the sense specified later in Section 4.2, so this is not quite precise. To be more exact, making free use of the language and
concepts of that (later) section, their lexicographic order is used to specify choices of lower-dimensional conical faces to include,

which does correspond under conical duality corresponds to the degenerate wedge classes chosen in a A-extension.

From the point of view of the cohomology class, the particular values of the cocycle (on non-acyclic tuples of group elements only)

resulting from these auxiliary choices are thus not of independent significance. We thank Jeehoon Park for pointing this out.

Remark 2.9. Observe that the ambiguities in the choices of A-extensions only matter for tuples such that the lines associated to
o, - - -, Cn—1 are dependent. In particular, if 1, . .., ~y,_1 are generators of an anisotropic torus of rank n — 1 inside GL,,(Z), then

the value of our cocycle on (71, . ..,7Y,—1) is independent of the A-extension.

2.3.2. Lifting the symbol-valued cocycles. The cohomology class e (n) is valued in C'(n); in particular, we have quotiented

by the fundamental class of the sphere. As we will see in section 3.1, the realizations of these modules will live in a quotient of

n

motivic cohomology groups of G7,

by a rank-one submodule coming from the “orientation obstruction” of the fundamental class.
In [SV, §5], the authors show that their cocycle (which agrees with ours for the case SLo(Z)) can be lifted over this obstruction
after inverting 6; in this section, we indicate how this generalizes. In particular, we will to lift our cocycles to be valued in é(n),

i.e lift over the copy of the rank-1 free module Z corresponding to the fundamental class of S™~1.

To begin, note that applying the lifting process of Lemma 2.5 to the length-(n + 2) exact complex of GL,,(Q)-modules

(2.13) Z(sgn) — Chains(n),

in the same way as we did with Chains(n) yields a cocycle £ € C"(GL,,(Q), Z(sgn)).

Proposition 2.10. The cocycle cE represents the Euler class for the standard representation of GL,,(Q).

Proof. The complex C’hgﬁs(n) is the reduced homology complex of an ind-simplicial model of the (n — 1)-sphere; since this
is a closed manifold, we can view it also by Poincaré duality, as computing cohomology in the complementary degree. Then the
double complex C*(GL,(Q), C/hziﬂs(n).) computes the equivariant cohomology of S™"~!. By Lemma 2.5, the sum of the lifts
associated to

b+ .+l

(using the notation of the lemma) for the lifts of 1 € Z in the augmentation for this complex then is a representative for the Thom

class of the associated sphere bundle, since the Thom class is dual to the zero section. Pulling back to the base (i.e. a point with
15
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the trivial GL,,(Q)-action; equivalently, BGL, (Q)) by the zero section kills all terms except ¢ = ¢,, 1, which is therefore a

representative of the Euler class. O

Suppose now that I is an S-arithmetic subgroup of GL,,(Q), where S is any subset of primes which has nonempty complement.

The following vanishing is a theorem of Sullivan [Sul]:

Theorem 2.11. The cocycle €, restricted to I, is a coboundary after multiplying by the greatest common denominator d,, s of
m™(m™ — 1), as m ranges over all integers divisible only by primes not in S. For S empty, d,, := d,, g is twice the denominator

of the nth Bernoulli number.

The short exact sequence
0 — Z(sgn) — C(n) — C(n) — 0

yields a long exact sequence in cohomology
... — H" YT, Z(sgn)) —» H" YT, C(n)) —» H" YT, C(n)) — H™(', Z(sgn)) — ...

After inverting d,, s, the image of ©° - (n) (i.e. the Euler class) in the rightmost term vanishes, and hence it lifts non-uniquely to

be valued in C'(n), and the set of lifts of is a torsor under the image of d;’ls - H"1(T', Z(sgn)). We thus find that:

Corollary 2.12. After inverting d,, s and restricting to I, representatives for these lifts are given by

v [Ap()] - ¢(v)

where () ranges over primitives of €%

Write 9%;; ' (n) for the cocycle corresponding to the (n — 1)-cochain ¢ transgressing the Euler cocycle; the corresponding class is
(2.14) 07" () = 105, (W] ed, - H"(I.Cn)).

Notice that the difference of two such ¢ is a cocycle, so the space of possible lifts over the Euler class is a torsor under d 15 .

H"1(GL,(Q), Z(sgn)).

Remark 2.13. As mentioned earlier, this generalizes the construction in [SV, §5] of a canonical lift of the analogue to the cocycle
95" (2) for T' = SLy(Z). (When n = 2, the choice of FE is immaterial, so we omit it from the notation.) In this case, H*(T') =
H?(T") = 0 after inverting 6, so there is no ambiguity of lift, and the authors consequently find an explicit distinguished primitive
of the Euler class €5 to give them a canonical lift. This raises the question whether there is some more canonical choice of lift in
general even when H n—1 (T") does not vanish; we do not know the answer in general. However, when n is odd, one can obtain a
canonical lift up to 2-torsion by applying the projector [—1], + 1, which annihilates the Euler class but acts as the scalar 2 on our

cocycles.

2.3.3. The Steinberg quotient. We end this section by explaining how GgH (n) can be modified into a parabolic cocycle if one
quotients out by extra relations; this will also remove the need for a choice of A-extension £ in the lifting process. After defining
our realizations of these symbols, this will correspond to quotienting by certain elements in K -theory; see subsection 3.1.1 for

details. This quotient will also be relevant for the application to Sharifi’s conjectures.
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Let St(n) be the Orlik-Solomon complex [OS] defined as follows: it is the graded-commutative algebra generated in degree 1 by

symbols [¢] for £ € P"~1(Q), with relations generated multiplicatively by the dependence relations
O] A...nfle]) =0

for any lines ¢4, . .., {; spanning a space of rank strictly less than k. Here, the differential-graded structure is defined via 0[¢] = 1
and extended by the graded Leibniz rule. The relations generated as above are closed under the differential, and the resulting
differential-graded algebra is exact. (More generally, for any configuration of lines, not just the set of all rational ones, one can

define an Orlik-Solomon complex with the same properties; this will be used later in Section 4.3.)
Then we have a GL,,(Q)-equivariant map of complexes
(2.15) Chains(n); - 0OS(n);

sending
A(ry, .. rg) — [Qri] A oo A [Qrg].
This map (2.15) is well-defined, since the Orlik-Solomon complex obeys alternation in the vertices, and stellar subdivision relations

simply become dependence relations in the image.
In top degree, the map (2.15) corresponds to the GL,, (Q)-equivariant quotient of the top spherical chains
(2.16) Rgi : C(n) — St(n) := 0S(n),

where St(n) is our notation for a GL,,(Q)-module often called the Steinberg representation. From the definition of the Orlik-
Solomon algebra, we see that it can be described as generated by symbols [£1] A ... A [¢,,] where {1, ..., £, € P"~1(Q), quotiented

by the relations
(1) [b1] A ... A [£,] = 0 if the lines do not span Q", and

(2) Forany Yy, ...,¥¢,, the dependence relation

S o] Ao A TG Ao A €] = 0.
i=0

From this description, one sees that the pushforward of 9%”71 (n) along (2.16) is therefore independent of the choice of E, since
all dependent tuples simply are sent to zero (as all independent tuples bound some acyclic simplex). Hence we get a cocycle

n—1

0% (n) == (Rse)xb  (n), (11, 7n-1) = [enmr (W] A - A [eo(2)]

independent of E, representing a class
©*(n) € H" ' (GLn(Q), St(n))

which one can see from relation (1) is parabolic.5

We conclude this section with the following description of the kernel of (2.16), which will be useful when considering realizations:

Lemma 2.14. The kernel of the map (2.16) is generated by “wedge” classes of the form
A(ryy...,rn) — A(=r1,72, ..., T0)

SAfter restricting to SLy, (Z), this cocycle is in fact the universal parabolic cocycle coming from Bieri-Eckman duality, as the Steinberg module is the dualizing
module for SLy, (Z).
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for independent tuples (ry,...,1ry).

Proof. The top-dimensional spherical chains are generated by acyclic simplices together with stellar subdivision relations, while
the Steinberg module is generated by independent tuples modulo dependence relations. If one imposes all the identification of
spherical simplices

A(ry,.ooyrn) ~ A(Ery, ..o, £10),

for any combination of signs, then the relations resulting from the stellar subdivision relations are precisely the dependence rela-

tions. These identifications can be deduced, by (anti)symmetry, from the identifications
Alryy..o,rn) ~ A(=r1,72, ..., 10)

since we can then change one sign at a time and bootstrap to the general case. O

3. CONSTRUCTION AND APPLICATION OF THE MOTIVIC COCYCLES

To

3.1. Realization map for top-dimensional chains. We now turn to constructing the realization map associating classes in motivic

cohomology/Milnor K -theory to symbols. This section will be devoted to proving the following theorem:

Theorem 3.1. There exists a map of GL,,(Q)-modules
p: Chains(n),, — K} (k(G},)).

defined on generators by®

3.1) (A, oma)] = (my o ma) (U= 211 2 € KM (R(G)©
*
The image of the fundamental class in 7, = Hn((mﬁs(n)) c th;iﬂs(n) is the class {—z1,...,—2zn}, 0 p descends to a map
p: Chains(n), — K5, k(G ) O [{—z1, ..., —z,}.

The hard part of the theorem is proving the relations, so we first view fj as a map from Z{T,,11}.

We note that replacing m,; by a scalar multiple is immaterial because each 1 — z; is invariant under [a]s : G,, — G, in the
corresponding coordinate, so pre-composing (ml e mi) with these isogenies does not change the definition of p. The
*

GL,,(Q)-equivariance of the definition is then completely formal, from functoriality of pushforwards.

It remains to check that the relations in S, between the classes of simplices hold. By Proposition 2.4, it suffices to check the acyclic

stellar subdvision relations.

Proposition 3.2. For any integer 2 < r < n, each acyclic independent tuple m = (my, ..., my) of rays and ray m lying on the
great circle corresponding to the face spanned by (my, . .., my) and sharing some hemisphere with all of them, the relation
(3.2) plA(my,...,mg)] = Z plA(my, ..., My, mymiy1, ... ,my)]
i=1
coming from (2.5) holds.

Here, the matrix columns can be any non-zero vector in the ray; see discussion following the theorem statemnt for why this is well-defined.
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Proof. We may reduce to the case r = n as follows: the claimed relation can be written as

T

(m1 mn)*{l—zh...,l—zn}:Z(ml Tflz m ... mk)*{l—zl,...,l—zn}.

i=1

The left-hand side factors as the cup product

(ml mr) {1—21,...,1—zr}v(mr+1 mn) {1—z41,...,1— 25}
% *

and the right-hand side as

(Z(ml .My mo L mr) {1—21,...,1—z7.}>v(mr+1 mn) 1—2zpp1,..0,1— 2}
% *

i=1
so it suffices to prove that

T

(m1 mr) {l—zl,...,l—zr}:Z(ml oMy omo .. mr) {1—21,...,1— 2}
* *

i=1

But this is the pullback of a top-rank stellar relation from the quotient G, - G, /G, for G the image of

N als n
(mr+1 s mn) . Gm - Gm

We therefore henceforth assume that » = n, and need to prove the relation

n

(ml mn) {1_21,...,1—2,”}_2(77’11 mz moo... m'n,) {1_21,,1—Zn}=0
% = *

Taking the Bloch cycle description
Ky (k(G,)) = 2" (k(Gp,) x O")/02" " (k(Gy,) x O™

we see that it suffices to show that

n+1
(3.3) S0 (m e ) DO =21 2) € 027 (R(G,) x DT,
i=1 *
for all acyclic tuples of rays (my, ..., mp41) such that each sub-n-tuple is full rank. Formally, (3.3) is the image under the cubical
face maps of
(3.4) (m1 " m,,,H) T(1— 21,0y 1 — 2nin) € 02" (R(GD,) x O™
A

where the matrix denotes the map
3.5) (m1 o mnﬂ) .G G

However, this seems not to use the acyclicity condition; what gives? The problem is that (3.5) is not a finite map, so the pushed
forward cycle may have improper intersection with the faces. Indeed, we claim that (3.4) intersects all faces properly exactly when

(mq,...,my41) is acyclic. We will prove this on the level of cycles in
G?n ~ On+l

since this certainly implies it for the restriction to the generic point. Write M for the matrix (mq,...,my+1), and define the

(n + 1)-variable monomials
n+1

M, ;
pj(Zl,...,Z7L+1) = l_[ Z; 7
1=1
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whose exponents are the jth row of M. Then in G, x 0" *!, the cycle (3.4) can be described as the closure of the locus

(p17p27°'~7pn71 - 2«'1,...,1 - Zn+1).

Its intersection with a codimension-d cubical face is then indexed by a labelled subset I € {1,...,n + 1} of cardinality d, with
each element 7 of the subset labelled by ¢ () € {0, o0}; this face is given by the intersection of the cycle with the locus
(01— 2= ta(i)}
iel
i.e. fixing each z; corresponding to the indexing set to be either 1 or co. We wish to check, for each I, whether or not this intersection
has the correct codimension, i.e. codimension n + |I|; the cycle (3.4) meets all faces properly if and only if all codimensions are

correct.

First consider the case where I has at least one label of 0; without loss of generality, we assume that it corresponds to 1 € I, i.e.

the relation 1 — 27 = 1 < 2, = 0. The intersection of (3.4) with {z; = 0} is then the closure of the locus
(36) (pl(zl = 0), AN ,pn(zl = 0), O, 1-— 22y eeny 1-— Zn)

where the notation indicates that we plug in 0 in the ith place. Write M’ for the submatrix of M given by deleting the first column;

by assumption, it has full rank n. Viewing M’ as associated to a map

Gn % O" — Gn x DnJrl

m m

by its natural action on the toric part, and by inclusion 0" < O"*+! in the last n coordinates, we see that the locus (3.6) is then the

finite pushforward
3.7) MT(1—21,...,1—2,).

The intersection of (3.4) with a face corresponding to I is then the intersection of (3.7) with the face corresponding to the labelled set
I\{1}. But (3.7) is a finite pushforward of a cycle meeting all faces properly, so we conclude that (3.4) meets the face corresponding
to I properly as well. Thus, any face with at least one label of 0 always intersects (3.4) properly; it therefore suffices to check the

intersection with faces labelled only with cos.

We claim that if (my,...,m,11) is acyclic, this intersection is always empty, and thus trivially proper.” Note that the property of
having empty intersection with the co-labelled faces is invariant under left multiplication of M by elements of GL,,(Q) n M,,(Z).
Via left multiplication by such a matrix, we can always turn the first n columns of the matrix into scalar multiples of the standard

basis. Thus, it suffices to check matrices of the form

1 Y1

€2 Y2

Tn Yn

where each of the x; and y; must be nonzero by the assumption that every n-by-n submatrix of M is full rank, and sgn(z;) =

sgn(y;) for at least one ¢ by the acyclicity assumption.

"When (m1,...,mn+1) fails to be acyclic, the corresponding stellar simplicial relation should not hold, and thus (3.4) must not meet all faces properly. The
simplest example of what happens in this case: if n = 1, m1 = 1,and ma = —1, then the locus (3.4) is the closure of (21 22_1, 1—21,1—22). Its intersection with
the unique codimension-two face labelled with two cos should therefore be codimension 3, i.e. zero-dimensional. However, the points of the curve parameterized
by (g, 00, 00) are in the closure for all g € Gy, since the point corresponding to each fixed g is in the closure (as ¢ — o) of the curve z1 = gt, zo = t with free
parameter ¢.

20



XU SYMBOLS FOR TORIC EISENSTEIN COCYCLES

In this case, suppose without loss of generality that I = {1,2, ..., k} for some k < n, with £(j) = oo for each j € I. Assume now

for the sake of contradiction that (3.4) intersects the face corresponding to I nontrivially; in particular, suppose it contains a point

with 21 = 29 = ... = 2z, = o0 but

pi = 2728 1 € Gp(k)
for sgn(x;) = sgn(y;). If i € {1,2,...,k}, this is impossible, since at this point we must have 2,1 = 0 = 1 — 2,41 = 1, which
means our point fails to lie in the algebraic cube 0", Otherwise, z; and y; have opposite signs for j = 1,2,. .., k, meaning that

Zn+1 = 00 as well at this point. But then
pi = 22 € G (R)
implies that z; = 0 = 1 — z; = 1, again a contradiction. We conclude the intersection with the face corresponding to [ is in fact

empty, as desired.

It remains only to show that the fundamental class of S™ ! is sent to the generator

{—21,...,—2zn}.

Indeed, we can decompose the fundamental class as a sum of simplicial orthants

[ = > [AD)]
Ie{£1}"
where A([) is the simplex corresponding to o(I)(I; e, ..., I, -e,) where o(I) is an arbitrary even permutation if (I1-eq,..., I, -

ey ) is positively oriented, is an arbitrary odd permutation otherwise. Under f,,, this is sent to the sum

1—=2 1—2z,
{ ! 1}={zl,...,zn}.

— ...
1—211 1— 2z,

Z 0{172{1,...,1727{"}:

Te{+1}"

With the realization map in hand, the proof of Theorem 1.1 is complete. In particular, we obtain the following classes:
O(n) = p0" (n) € H"~H(CL(Q), (K, (R(C})) /=21, =2 ).
and, if I' = GL,,(Q) is S-arithmetic for a co-nonempty set of primes .S, for any transgression ¢ of ¢,, a class
Oy(n) = p+05" " (n) € H" M (L, K (k(GC7,)))[d, 5]-
For any A-extension F, the cocycle representative 05 (n) := py 0;2”71 (n) for the former class is given by
(o) = (e o @) (L=l = 1=z € KN (R(Gm)) /{21, —2)

with ¢; = ; ...y1e1 whenever these columns are independent; for any fixed A-extension F, one can equally in principle work out
the image of any tuple with non-independent such c;, though we do not currently see a systematic way to do this. Similarly, the

latter class is represented by 0g (1) := p*Ggf(; "(n) and under the same assumptions sends
(3.8) Y1y -y Yn—1) — <c1 . Ck)* {1—2,1=20,..., 1= zu} — d(Y{—21,. .., —2n}
in K (k(Gum))[d, s]-

3.1.1. Modular symbols from the Steinberg quotient. We now describe the realization of the parabolic, Steinberg module-valued,

cocycle of section 2.3.3. This amounts to determining the image of the kernel of (2.16) under the map f, which by Lemma 2.14, is
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generated by the GL2(Q)-orbit of

{1—2171—22,...,1—271}—{1—21_1,1—22,...,1—,2"}:{—21,1—22,...,1—zn}.

We thus see it suffices to quotient out by the degree-n part of the ideal I of the Milnor K-theory ring generated by the symbols

—z; € KM (k(G,,)), whereupon we obtain a GLx(Q)-equivariant map
OM5(n) : St(n) — (K, (k(Gm))/ 1)

sending
[gl]A/\[gn:lH <€1 fk)*[{lley]-*z%7172n}]EK1{Lu<k(Gm))/I

From this modular symbol, one can also deduce an explicit parabolic cocycle
H" " (GL2(Q), (K, (k(G)) /1)

represented by
(o) = (e ) =201 = 21— 20l € K G/
with ¢; = 7;...v1e1. When we wish to use the Steinberg quotient, however, we will generally work directly with the modular

symbol, as it retains more information than the associated cohomology class or cocycle.

Remark 3.3. Assuggested in [SV, §5], the cocycles of the form ©(n) come from equivariant motivic polylogarithms for the action
of GL,(Z) on the group scheme G”,. The argument of Sharifi-Venkatesh essentially proves this for n = 2 by realizing their chain
complex in a Gersten complex computing motivic cohomology; our realization map could similarly be extended to map from the
whole spherical chain complex to a Gersten complex as well. However, for general n, the Gersten complex does not necessarily
compute motivic cohomology, so we would need instead a symbol complex with fewer relations, in order to map to the Bloch cycle
complex (which does compute motivic cohomology); such a complex can in fact be constructed using matroids. We omit these
arguments from this article due to their considerable length and technical overhead, and irrelevance to our main results; however,
we will use the matroid approach and prove the relationship with polylogarithms in the sequel to this article, in the elliptic setting
(which degenerates at the cusps to the setting of the present article). In that setting, having the formalism of equivariant motivic

polylogarithms is useful for comparison reasons.

However, for the regulator of the motivic cocycle, we have included the proof the comparison with an equivariant polylogarithm
class in de Rham/coherent cohomology, in Appendix A, as this requires less technical overhead. The flavor of the argument would

be exactly the same in motivic cohomology.

3.2. Specialization at torsion sections and Sharifi maps. For briefness, we have only been working over the generic point until
now, but to construct and analyze the properties of the maps in Theorem 1.2, we will need to consider specializations of our
cocycles to torsion points: let I' < GL,(Q) be any subgroup. The proof of Theorem 3.1 applies identically to show that the
realization map factors, as a I'-map, through H™(Ur, Z(n))(?), where Ut is defined by
(3.9) Ur :=limGy, — H

H

and the direct limit ranges over finite subarrangements of the hyperplane arrangement which is the I'-orbit of

n—1 n
Gm - Gm
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embedded as the kernel of 1 — z,,. For n > 3, the norm residue isomorphism theorem and cohomological dimension arguments
show that all pulled back cocycles by torsion points are trivial; thus, from here on, we work only in the case n = 2. (Forn = 1, we

get classical cyclotomic N-units, for pullback by N-torsion.)

Remark 3.4. Though the torsion specializations for n > 2 are not expected to be interesting, we expect that the pre-specializations
cocycles valued in cohomology of open subschemes of G}}, should still contain interesting information about L-values, following
the philosophy of the “Eisenstein symbol” approach to polylogarithm classes [Beil]. The non-properness of G,,, makes these
considerations technically daunting, however; we will thus treat this kind of perspective in more depth in the sequel (on the elliptic

case). Nevertheless, we would be very interested in an approach using only the toric cocycle.

Suppose now that I' = T'g(N) fixes the line generated by a torsion section sy : Spec Q(uy) — G2, which is (1,(y) in the

coordinates z1, zs.

While 'y (V) does not fix s, since it fixes the line generated by z, we can define a homomorphism
o:Tg(N)— (Z/NZ)*

by the rule vsy = o(7)sn, with kernel the index-¢(N') subgroup I'; (N) fixing sy. We can then define an action of I'o(/N) on
Q(un) by
—1y7. o(y7h)
v ([o(y )] v =Gy,

which yields also pullback maps on motivic cohomology. Now, the pullback
sk H2(Ur, 2(2)) 0 — H*(Q(uw), Z(2))

is a priori only I'; (V)-equivariant, but with our newly defined action of I'o(/N) on the right-hand side, one can check (cf. [SV,

§4]) that it is actually I'g(N)-equivariant. We thus get a corresponding specialization of our Eisenstein cocycle
syO(2) € H' (Lo(N), H*(Q(pn), Z(2)))

In fact, the localization sequence (2.1) for

@ Zun]/p = Z[pn, N7
pIN

yields a left-exact sequence

H*(Z[pn, N7, 2(2)) — K3'( 5 @ KM (Z[pn]/p)
ptN
where the last arrow is are the tame symbols which vanish on integral-at-p elements. The injectivity is because the Milnor K -theory
of finite fields vanishes above degree 1, as one can always express 1 as the sum of quadratic residues. Taking the restriction of the
action via o of T'g (V) to the cohomology of Z[(x, N ~], we see that our pullbacks are actually valued in the integral-away-from-N

submodule, i.e. we actually have a cocycle

sNO(2) € H' (Do(N), H™(Z[¢n, N1 Z[51(2)))
This argument will be applied implicitly also to everything that follows, as well in the next subsection.

One can equally make a “Steinberg” version of this construction: if we let St(2)° be the I'g(V)-invariant submodule of St(2)

generated by lines not reducing to [0 : 1] modulo N (i.e. cusps not in the I'g(N)-orbit of [0 : 1]), then the argument of section
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3.1.1 affords us a map

OMS(2) () : S1(2)° — limy H(G2, — H,Z(2))/Ix)
H
where [ ) is module of relations spanned by symbols in the orbit of

(3.10) {—21,1— 22}

under matrices of the form L = (El 62), for £1, {5 cusps not in the T'y(N)-orbit of [0 : 1], as above. This affords us a modular
symbol

skOMI(2) () [(1] A [b2] — sk (El 62) {1—21,1— 2} € H*(Z[un, N~'], Z[3](2)) /extra relations from I
*
After pullback, the module of relations J (V) consists of elements of the form
{=Ch» —Ch {=Ch 1= G4 }-

The former relations {—(};, fCJjV} = 0 are all true up to 2-torsion by alternation of the Steinberg symbol. The latter relations

vanish upon taking the projection onto the plus part
(o) : {5 ({29} + T,
since, with 2 inverted, we have
2= 1= Qb = G 1= G G 1= QA = (G R =0,
If we restrict now to the subgroup I'; (V) fixing sy := (1, (), we thus obtain a specialization
(I3)+ = (sKOM%(2)(w))+ : S8(2)° — H*(Z[¢w, N7, 2[5](2)) +

which is a 'y (IV)-invariant modular symbol with the trivial action on the target. However, if N = p*, the relations { —C,1— Cf\,}

are zero before projection: the cyclotomic distribution relation
t = t+pF Tt
pt _ +po e
L-gr=]]1-¢t
i=0
means we can assume (j, p) = 1, in which case
{1 = QA = MR 1= =0
by the Steinberg relation {z,1 — 2} = 0, where here kj =i (mod p*). Thus in this case, we have a map
V= (RO (2)w)) 1 SU2)” — HA(Z[¢n, N1, Z[5](2))

In the remainder of this section, for brevity of notation we will write everything without the + projection, with the understanding

that we always mean the + part except for when N = p°.

Consider now a unimodular symbol [¢1] A [£2], i.e. so that one for which the associated matrix formed from integer generators of

these lines satisfies
det (61 £,) € GLa(2).
The map of [SV, §4] is defined in terms of these, writing all symbols as sums thereof via their “connecting sequences” (which we

avoid due to using pushforwards). To compare our map with theirs, we have that if /1, ¢ # [0 : 1] (meaning that that sy is not in
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the polar locus and the pullback is well-defined),
-1 *
50" @]~ D) = (&) o) (-1 s) = (1= G 1= Gl e 2w N Z)

where (u, v) is the top row of the matrix (61 62) . On symbols disjoint from [0 : 1], therefore, up to sign and convention of basis,
our specialization coincides with the Eisenstein cocycle defined in [SV, §4], as they agree on unimodular generators. (In loc. cit.,

(u, v) is the bottom row of the analogous matrix; this corresponds to swapping the role of the standard basis lines e; and e5.)

Remark 3.5. The above calculation shows that the relations of the form {—(%;,1—¢ g\, }, where (%, and ¢ JJV have orders divisible by
distinct primes, also do not appear if we omit symbols in the Steinberg module containing lines [a : b] with a divisible by primes
dividing N; thus, the full (non-plus part) II%; can also be constructed (and shown to be Hecke equivariant, etc., as below) if we are
willing to restrict our set of symbols: this corresponds to restricting the set of cusps to those not in the I'g(p)-orbit of oo for any
prime p| N (in the language of the following section; see below). This remark explains how the calculations of [SV, §4] result in a

parabolic cocycle while only inverting 2 in the coefficients, as they only work with homology of the closed curve.

3.2.1. Hecke operators and modular symbols. In this section, we define the Hecke operators and prove Theorem 1.2, for

(IX)+ = (s¥OM5(2) )+ : U7, vy — H(Zlpw, N1, ZI5))+

though as discussed previously, we will omit the + signs for ease of notation, with the understanding that this is only actually
allowed if N = p° (or by omitting cusps, as in the remark at the end of last section). Let us explain the notation (also used in
Theorem 1.2). Write X (V) for the compactified modular curve of level I'y (IV), and Cy (V) for its set of cusps. Then there is a

natural identification between coinvariants of the Steinberg module and the Borel-Moore homology:
St(2)r, vy — H1(X1(N), C1(N), Z)

sending [¢1] A [/2] to the image of the geodesic path usually denoted {1, ¢>} between the cusps corresponding to ¢, > € P1(Q)
under the uniformization of Y7 (V) := X;(N) — C;(N) by the complex upper half-plane; similarly, the co-invariants of Steinberg
symbols St(2)‘;1( ny disjoint from T (N)[0 : 1] can be identified with the homology relative to the restricted cusps Cq(IN)°
disjoint from I'o () - oo [AR]. Hence, modular symbols (respectively, modular symbols restricted away from oo, modular symbols
restricted to a single cusp) valued in a trivial I'; (V)-module can be identified with maps from the homology of (X1 (N), C1(N))
(respectively, (X1(N),C1(N)®)). More generally, we can take any I'; (V)-invariant set of cusps, and obtain as coinvariants the

homology relative to only those cusps.
Now we define Hecke operators on such symbols. A useful notion will be the adjugate of an invertible matrix
adj(M) := (det M)M L.

Note that the adjugate of an integer matrix is an integer matrix, and that the scalar det M = M - adj(M) acts trivially on the
Steinberg module, and hence on the image of any modular symbol equivariant for a group containing these matrices: in other

words, M and its adjugate act as inverses on such elements.

Now, for any double coset
[y (N)al'y(N) € Iy (N)\GL2(Q)/T'1(N)
with left coset decomposition

Iy (N)al;(N) = UaiI‘l(N),
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we can define an associated operator T, on a modular symbol ¢ : St(2), 5y — A (for an abelian group A) by

(Tuc)([1,62]) = Y (o M1, £2]).

i
One can check this is well-defined independent of the choice of left coset representatives, and corresponds to the classical Hecke

action by correspondences on (co)homology of modular curves (and thereby on modular forms, etc.).

First, if ag € Tg(N) with o(«) = d (i.e. the lower right entry is d modulo ), then from previous discussion, the double coset T,

depends only on d; we write T,, = {d) and call it a diamond operator.

Next, for any prime p t N, we have the double coset operator

and its dual

p

One computes the relation 7,* = (p)T;,. We will consider the following set of coset representatives for 7)7: by [SV, Theorem

T* = Dy (N) (1 )n(N)

4.3.7], there exists a set of representatives «; p,, 0 < @ < p, given by

1
Qip = i p
p
Qpp = Qp-

Here, «, is the representative for the diamond operator (p). Note that that considered as maps Q?/Z* — Q?/Z?, the kernel of

for¢ < p, and

these p + 1 matrices are the p + 1 subgroups of order p, and that adj(«;) fixes (0, 1) modulo N.

For primes p| N, we similarly have

We will consider the left coset decomposition
p—1 .
p Ni
v, = ( > Iy (N).
i=0 1
This operator also has a dual, which we ignore (since our symbol will have no simple corresponding equivariance property).

Proof of Theorem 1.2. From previous results, we find that
(siOM(2) () ([l £2]) = sha ©M5(2) ([0, £a]) = [d]*sHOM(2) () ([1, £2])
since asy = [d]sn.

We conclude that (d)IIS; = [d]*II%;, as desired.
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For the operator T;, p1 N, we have

(311) T;S*N@MS(2)(N)([£1,ZQ]) = Z ST\[@MS<2)(N)(OZ,Z;[£1,/€2])
i=0
(3.12) = > sh(adi(@ip)« 0% (2) ) ([, 62])
i=0
(3.13) = 2 sh(adi(aip))* (adi(@: )0 (2) ) ([f1, £2])

-
Il
o

Now observe that for matrix M : G2, — G2, the correspondence M * M, is precisely consists of (z,z - ker M) where - ker M
means translation by this subgroup. Thus, since the kernel of the various ;) are precisely the p + 1 lines of order p torsion, we

have the equality of correspondences
P

D ad(@ip)s = (x,pr + - ker [p]) = G,

i=0
since the union of all p-torsion lines is precisely the p-torsion, except the identity is counted once per line. These correspondences
also all preserve the open set Ur, (y), and hence can be applied to the values of the spread-out cocycle oMs (2)(w). Since
OMS(2)(ny([41,£2]) is [p]«-invariant, we finally obtain
(3.14) T sK0M5(2) (i ([01, L)) = sk (p + []F)OM5(2) () ([, £2])
(3.15) = psh(p)skOM(2) () ([41, L2])
so that XTI, = (p + (p))II;, as desired.

Finally, for the operator U, p| N, we write:

MS = L —Ni MS
(3.16) Upsk OV @) ([61,62]) = 3 5% OM5(2) ) (1. £2])
i=0 b J,
= « (1 — 2 1 MS
(3.17) =) sy » 07 (2) () ([41, £2])
=0 1 * p *
p—1 ) 1
(3.18) = D (G n)* < ) M5 (2) () ([41, £2])
i=0 b/,
(3.19) = sy (p ) OM%(2) () ([t1, £2])
p *
(3.20) = snOM5(2) () ([41, £2])
from which U, = 1 on II%; follows. U

We also furnish a new proof of the N-integrality of II; (or (II%)., depending on N) when restricted to the homology of the
compact curve (compare [SV, Lemma 4.2.7], [FK, Lemma 3.3.11]). For this, we make the observation that the homology of the

closed modular curve X7 (N) is a submodule
Hy(X1(N)) = Hi(X1(N), C1(N))

described in terms of the Steinberg module as being generated by symbols of the form 1 [1 : 0] A y2[1 : 0] for 71,72 € I'1(N),

i.e. geodesic paths between cusps in the orbit of the zero cusp (or, equivalently, any given fixed cusp).
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Theorem 3.6. The restriction of I13; (respectively (I1%;) 4, when N has distinct prime divisors) to Hy (X1(N)) takes values in the

submodule
H*(Z[pn],2[5](2)) — H*(Z[un, N~ Z2[5](2))

(respectively with + parts).

Proof. Again, we will write the proof without + projections, for brevity. By Proposition 2.1, the H?(Z[un],Z[1](2)) is the
submodule of H?(Q(un),Z[4](2)) on which the various tame symbols

H*(Q(un), Z31(2)) — H' (Zlpn]/p. Z51(2))

L=(t )

be the pushforward matrix associated to a Steinberg symbol in St(2)°. We have the following pullback/pushforward functoriality

vanish, for all primes p. Let

of tame symbols [Icv?2]:
HE(Ur, (), 213)(2) —— @ H' (D, Z[3](2))
y* [
(3.21) HE(Ur, ), 213)(2) —— @ H' (D, Z[3](2))

where the direct sums range over irreducible components of the codimension-1 locus G, —Ur, (ny and closed points of Spec Z[(x]
respectively, indexed by convention and familiarity by “D” for divisor (in G2,) for the geometrically-flavored Ur, (n)» and by the
associated prime ideal p for the cyclotomic number ring. In the lower right vertical arrow, s% is zero by convention if sy fails to

properly intersect D.

Now, the value T3, ([¢1] A [¢2]) is the image in the bottom left group of {1 — 21,1 — 23} in the top left group, whose tame symbol
is
{1—=22}z-0 — {1 - 21}z=0-

2

Let the coordinates of (integral generators of) the lines ¢1, {2 be considered as maps (¢1), (¢2) : G, — Gz,.

Then commutativity

of the above diagram implies that

(3.22) oMy ([2] A [2]) = shLa{l — 22}2—0 — {1 = 21} 200
(3.23) = (L) [()s{1 = 2} = (£2)w{1 — 2}]

which vanishes when ¢; = /5 for v € 'y (IV), as in that case (¢1) = 7 o (¢2) as maps, and we have

(LCN)*’Y* = (’y_l(laCN))* = (LCN)*

as maps. ]

Remark 3.7. A certain level compatibility for these Eisenstein cocycles was proven relative to more restrictive sets of cusps in

[ , Theorem 1.1], and asked whether a version existed relative to larger sets of cusps. We expect that the methods of that article
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applied in our formalism furnish a proof of this extended level compatibility. We do not go into the details as the main purpose of
the authors of that article was to prove Hecke equivariance results, which we have established by other means.
4. THE DE RHAM COCYCLES AND APPLICATIONS

In this section, we pass from our motivic/ K -theory-valued class to one valued in differential forms, from which we will be able to

extract actual numbers (or distributions) related to L-values of totally real fields.
There is a regulator map [L.W, §2.1.5]
(dlog)""™ : HY(X,Z(n)) —» Q% ,{u1,...,up} — dlogus A ... A dloguy,

which exists for any scheme X, functorial for pullbacks and pushforwards, to turn our motivic-valued cocycles into differential

form-valued cocycles. We deduce from our motivic cocycle
(dlog)2"O(n) € H" H(GLn(Q), (Uen)) @ /(21 - 20) Hdzr AL A dzn))

which can be represented by a homogeneous cocycle which sends

(="
ce ey Y1) e Ve d coo A dzy,
(70, Yn—1) (’yoel v, 161)* (1—2’1)~-~(1—2’n) 21 A A dz
whenever the first columns of 7, ..., y,—1 are independent (or an analogous condition if we replace e; with any rational ray). If

we write z; = exp(2mwit;) for 1 < i < n, then we have
dzi A ... ANdzy = 2129 ... 2pdty A ... A dEy,.

The n-form dt1 A ... A di, transforms by the character det under pullback by GL,,(Q), so

W

WHdtlA...Adtn

furnishes a GL,, (Q)-equivariant isomorphism
v gny/(dz1 Ao A dzn) — (Mgy, [(1))(— det)

by the push-pull formula

1
Yo (fY*dty A oo A dEy) = Yo (f)dty A ..o A dty

Y (fdty Ao A dty) = dot

- dety

Here, Mg (—det) denotes the meromorphic functions with their pushforward action twisted by the character det™. We then

define our differential Eisenstein cocycle as
O (n) := (1)« © (dlog);"O(n) € H" ! (GLn(Q), (May, /{1)(— det))*)

which can be represented by a homogeneous cocycle sending

2122 ... 2n

(Y0, -+ > n—1) = (det M)~ M, (21 —1)... (2, — 1)

for

M = (7061 - -%—1€1>
whenever the first columns of 7, . . ., 7,1 are independent. Here, the superscript (0) means trace-fixed with the determinant twist;
ie. [a]xf =a"f foraeN.
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In fact, if we restrict to GL,,(Z[S~!]) for some set of primes S, Corollary 2.11 and (2.14) tell us that associated to a lift ¢ of the

Euler class we obtain
O (n) e d, s - H" ' (GLn(Z[S™']), Mgy, (— det)(©).

For our application to L-values of totally real fields, we will be interested in the case S = ¢J, for which d,, is the denominator of
Bn
2
the same statements also hold with essentially the same proofs for S-arithmetic groups.

the halved Bernoulli number ==. For this reason, we will also restrict to the subgroup GL,,(Z) in all that follows, though many of

It will be useful to introduce the shorthand

=1 0dlog""op: C(n) — Men (— det)©
for the realization map from rational spherical chains to meromorphic functions.
4.1. Some transforms of the cocycle.

4.1.1. Stabilizations. To obtain relations to totally real L-values, we will need certain combinations of torsion-section translates
of our de Rham cocycles. In this section, we introduce the requisite notation, and make some basic observations about the resulting

stabilizations when some degree-zero properties are satisfied.
Over Q, the torsion of Gy, is the nth power of the roots of unity /. ; given x € ul%, we will write
ty : G, — G},

for the translation map which is multplication by the inverse x—1. More generally, via the complex uniformization G?, ~ C"/Z",
we can identify torsion sections with elements of Q™ /Z™. Then to any Schwartz function ¢ € S(Q"/Z™) with period Z™ (in other
words, finitely supported functions on Q™/Z™), we define an associated pullback operator on Mgn (— det) by
t:’; = 2 o(x) -tk
zeQn /7™
The group GL,,(Z) acts on Q™/Z" by the standard left action, and for this action, we have the equivariance property
’Y*t;f = t:;ov—l’Y*f
for any f € Mgn .
We observe that if o is '-invariant, for an arithmetic subgroup I' ¢ GL,,(Z), then t;‘;@‘m (n) is a cohomology class for I'; this

applies to all variants of this construction we have seen as well, and to the cocycle representatives we have written down. In

particular, associated to a A-extension E and an Euler class lift ¢, we have a cocycle representative
* ndR
0% (n)

If » sums to zero, t:’; annihilates the Euler class, so ¢ can be taken to be zero and omitted from the notation. Furthermore, we
recall that the ambiguity in the choice of a A-extension is only on degenerate “wedge”-like simplices A¥ (71, ..., r,) with a linear
dependence among the rays. For such a simplex, suppose its rays span a proper subspace V' < Q. Notice that the realization of
the standard wedge Qe; @ ... ® Qe @ QT eri1 @ ... Qv e, is

Zk+1---Rk
(zhe1—1) ... (2 — 1)’
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which is unaffected by translation by elements in V', meaning its ¢-weighted sum over any V' -coset is just the total mass of ¢ on
that coset. By GL,,(Q)-equivariance, this implies that in general, if ¢ sums to zero considered as a function on (Q"/Z")/V (Q/Z),

then t”;f* AE(ry,...,m,) = 0 as well regardless of the choice of A-extension.

For instance, if (o sums to zero on every subspace spanned by I'-orbits of e, then t:’;@d&E (n) is also independent of E' (which can
thus be omitted from the notation in this case), and simply vanishes on all linearly dependent tuples of rays arising from tuples of
matrices in I'. This phemomenon, wherein realizations of “wedge” classes disappear upon stabilization, will be important in our

application to Shintani domains/L-values of totally real fields. It also arises in the following comparison:

Example 4.1. The analytic “cocycle multiplicatif” of [ ] is a homogeneous (n — 1)-cocycle

Sult [ps] : T" — Mgy,

m

for the right pullback action on the coefficients, where ¢ € S(Q"/Z™) is T'-invariant for some arithmetic subgroup I" < SL,,(Z),

and sums to zero on any subspace containing the line corresponding to the first standard basis element e .

In [ , Proposition 8.8], the value of S* . [¢] on a tuple (7o, ...,Vn—1) is computed as
dly Ao A dly,
Z o(v) Z il 6 il —E
veQn /zZn ceQn/z" (6 i ) — 1) Ce (e i(ln—E&n) — 1)

hé=v (mod Z")
whenever
h:= (70_161 'y;ilel)

has linearly independent columns and h*{; = e/. We find that upon restriction of our cocycle to I', we have

(41) Sxﬂ;ult[@]('Yo_lv e 777:711) = tgtfedR(n)(707 tee 77”—1)

where here we use

1
__* -1
rz—1 r—1

and then the degree-zero property of ¢ to see that the contributions of the constants —1 cancel out. As remarked above, our cocycle

representative ¢ 9% (n) (v, .. .,vn_1) equals zero independently of a choice of A-extension when £ is not full rank. Note that the
presence of inverses makes sense, since our cocycle is a left cocycle while theirs is a right cocycle. This reflects their systematic use
of pullback actions rather than pushforwards; since we are working with subgroups of SL,,(Z), the pushforward coincides with the
pullback of the inverse. In fact, this comparison holds in more generality without need for such stringent degree-zero assumptions:
[ , Theorem 1.7] identifies S*

* ale 19 ] with the image under an edge map of a certain equivariant polylogarithm class for G},

up to some controlled ambiguity; we prove the same for our cocycle in Appendix A.

n

> and in

4.1.2. p-power distributions. We now discuss the specializations of elements of Mg (— det)(©) at torsion points of G

particular specializations to distributions over all p-power torsion at once (which will furnish the link to p-adic L-functions).

A general meromorphic function cannot be specialized at arbitrary torsion points, since there may be poles, so we will need
to stabilize. For simplicity, we will from this point on fix one prime p, and will focus on specializations at Np®-torsion. Let
Ay = Mg be the meromorphic functions on G, which are regular on the open p-adic disc around the identity. Note now that
only the matrices in M,,(Z) of determinant invertible in Z[1/p] may act by pushforward on this space: in analogy with preceding
notation, we write A, (— det)(®) for the [p].-fixed vectors in the corresponding representation of GL,,(Z), noting that [p] is the

only remaining trace allowed, and the determinant is only a sign.
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Example 4.2. As an example, for any torsion point z of order ¢ > 1 prime to p with all n coordinates nonzero,

t* Z1...2n
T1=z)... (1= 2z)

More generally, if M € M, (Z) is a matrix, and every torsion section in M~z has all coordinates nonzero, then

€ Ap.

Z1.--Rn

R o s [

€ A,.

Elements in A, can be pulled back by all p-power torsion by definition. Moreover, we have the following formalism in terms of

Schwartz functions on Qj:

Proposition 4.3. There is a unique map

such that
j TTE) di(§)(T) = f(a)
(Zg)v

forany f € A, and x € GI'[p*] = Qp/Zyy (using our fixed identification of ™ and the cocharacter lattice of Gy, as GLy-

m’

representations).

Proof. This is essentially [ , Theorem 1] in slightly different language, except for the minor caveat that Katz’s statement
involves measures, i.e. the continuous dual of continuous functions: since locally constant functions on Z;‘ are dense in continuous
ones, there is a canonical isomorphism

D(Z,,Z,) = Measures(Z,,, Zy)
given by approximating by Riemann sums; here it is important that we take p-complete coefficients, but otherwise this is an

immaterial change of notation.® (]

We observe the following equivariance properties for the map #: for v € GL,,(Z[1/p]) n M,(Z) and f € A,(— det)(®), & restricts
to a map

Ap(—det)@ - DO ((z,7,) = DO(@Q2)",Z,)

of distributions which are fixed by [p]x, in the sense that U and [p]U have the same measure for all opens U < (Zj)" (where

these are extended to (QZ) Vv by this property). Indeed, this follows from the calculation that

627TiT(z) dk N T) = 627riT(a:') dk T
Jo Wenm= 3 | ()

pr'=x

= an- e2mi([p)*T) () di(£)(T)
p-(Z3) "

o f 7T d([plr(£))(T)
p(Zy)™

where the middle equality comes from the corresponding distribution relation on characters.

8We are mostly interested in p-adic integration to obtain p-adic L-functions, so for convenience of exposition, we will use p-adic coefficients in all distributions
going forward, though many of our classes (for example, C@‘jDIZ (n) below) are actually Z-valued when considered only as distributions (i.e. against locally constant

test functions). Using the Z-valued distributions would be necessary to imitate the “multiplicative” construction of [ ], as mentioned in the introduction, for
example.
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Also, we have the pullback functoriality

(4.2) s(YEf) = [v* 1wk (f)

for any v € GL,(Z) n M,,(Q) of determinant prime to p, following from the computation
il (x wi(y* T
| et < | @ an(pm) = | e iy ) (4)(2)
(@) (Zn)~ (z3)~
noting that * preserves the lattice (Z};)" by the determinant condition. Here, v* : (Z")¥ — (Z")" is the usual pullback, and
[v*]« :=D((Z})",—) — D((Z;)", —) the induced pushforward on measures.

Observe that the pullback functoriality leads also to pushforward functoriality on GL,,(Z), as then y*~,. is the identity on A,. The
map x, when restricted to (0)-parts, also has a pushforward functoriality for GL,,(Z[1/p]), but we ignore it as unneeded in this
paper, besides the case of p” given above. Note that one does not expect pushforward functoriality for matrices with determinant

divisible by primes besides p, since Cartier duality does not “see” the prime-to-p torsion.

Going forward, when we only care about the SL,,(Z)-action, we will also sometimes write AZ(,") instead of A,(— det)(®, to still
indicate that we are considering the functions on which [p], acts as p™ (but no longer care about the action of matrices for which

the determinant twist is relevant).

4.2. Shintani generating functions. We review the method of Shintani for obtaining zeta values of a totally real field F' of
absolute degree n [ ], though we formulate things more in the style of [ ] (with some modernizations of notation); this

method is how we will prove interpolation properties connecting our cocycles to L-values.

Let U := O, and let U™ be the totally positive units, i.e. units positive at every real place. We will also write F'", O, etc. for

analogous constructions.

A Shintani decomposition of F ® R is a collection .# of relatively open’ rational simplicial cones (of various dimensions), each
bounded by linearly independent F-rational totally positive rays, such that the Ut -orbit of these cones in .& yield a disjoint
partition of (F' ® R)*: in other words, the union of the cones in such a decomposition constitutes a fundamental (“Shintani’)

domain for U acting on this orthant.
If I < F is any fractional ideal, viewed as a lattice inside F' ® R, we will be interested in coordinatizations
a: FORx~R"

which restricts to an identification of lattices o : I — Z". Given a cone (as above) C with bounding rays generated by integral
points x1, 9, . . ., T, Write

R Z" n{cizn + ... + g, Vi, e € Q,0 < ¢; < 1}
for the lattice points in the “unit cube” spanned by the x;. We also write z, for the monomial z{* ... z%~, for any x € I =~ Z".

Thenif¢ : I — @X is any finite order additive character (which we will identify via o with a character of Z™), identified with a

character of Z", associated to this data we have a rational “Shintani generating function”

(4.3) Fr@) (e vzm) = Y fe@) (e z) = 3 Y H(f@

Ces Ce¥ yeRc 1/1(56)235)

9Meaning, excluding its lower-dimensional conical faces.

33



XU SYMBOLS FOR TORIC EISENSTEIN COCYCLES

where the product in the denominator is over integral generators for the rays bounding the cone C. Note that here, ¢ can be
identified with a torsion point in G7,; namely, the section ((1, ..., () if ¥(z1,...,2,) = (T ... 5. We will also write simply

fe for fo(1).

The rational function f(1)) is a way to make sense of the naive infinite sum

(4.4) @)z

zeC
whose meaning is otherwise ambiguous. Note that if € G?,[] is a torsion point, then

trfo(€) = fo(e - )

for the character v, : Z" — Q= given by (i1, .. i) — (x7™,...,2;), i.e. we are implicitly identifying Z" with the character
lattice of GJ,.

On these Shintani functions, we also define the differential operator sending
DN : zp — N(2)z,

for any x € I, where we write N for the field norm of F'. The main result of Shintani’s approach to L-functions is then the

following:

Theorem 4.4. ([ , Prop. 1], formulation from [ , Theorem 2]) One can define a meromorphic function by analytically

continuing the Dirichlet series

G(w,s) = > YINK)

[\el+/U+
Then for all k = 0,

(¥, —k) = Dy (fr (¥)(L, ... 1)

for any character 1 nontrivial on each ray bounding any C' € ..

The proof of this theorem is an analytic trick generalizing the proof the functional equation of the Riemann zeta function using an

integral representation; what it actually shows is that

Dl%(fC(w))(la AR 1) = Z ¢()‘)N<>‘)_S7

AeC

so that the fact that the union of . is a fundamental domain for It /U™ implies the result.

We also note the following relation to p-adic integration of the differential operator DJ;, noted by Katz [ , Theorem 1], which

will be useful later:

Proposition 4.5. If v : [T/UT — @X is any additive character, we identify 1 with a function 1[) on Zy viap = 1; oNoa '
Then for any k > 0, and any f € Ay, we have

j] SION(* dr(F)(t) = (D& F)()

where we here identify 1), as before, with a p-power torsion point of G}, and I, := I @ Z,,.
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Note that replacing 1 in all of the above by any locally constant function in the p-adic topology, we obtain an analogous result by
taking the associated linear combination of additive characters corresponding to the Fourier transform of that function. We will use

this more general version without comment.

4.2.1. Conical duality. Observe that the functions fc (1) lie in the image of ©%%(n) when ¢ = 1; for general 1, they are linear
combinations of torsion translates of functions in the image. The data of a top-dimensional rational simplicial cone in R" is
equivalent to a the data of its simplex of intersection with S™ 1, i.e. the generators of C (n). One may naively then expect that for
an acyclic simplex qua cone C, our de Rham realization of [C] as a spherical chain'” is the Shintani generating function for C';

i.e., that #([C]) = fo(1) € My .

However, this is not the case: rather, if C = A(rq,...,r,) is an acyclic, positively oriented simplex, then
T Z1...%
1) = ad. ( . ) i 5
Jo(1) = adj {1 ") (L= 21) .. (1= 2p)

1

where adj~y := |det y|y~! is the adjugate matrix of +, while we recall that

e == [adj (rl r”>1] (1- zj; ZL— Zn)’

and we compute that this expression in fact equal to the Shintani generating function fov (1) of the dual cone C', whose bounding

rays are ry,...,r, , defined by
v R+7 1= j
<Ti Ty > = ) e
0, 1% 7
More intrinsically, the dual C'V of any cone C can be defined as the locus pairing positively with C' under {(—, —); for simplicial

cones, one can check this coincides with the definition in terms of bounding rays.

Remark 4.6. This “conical duality” between the two constructions is observed also in the following phenomenon: as we have
seen previously, the realization of a wedge, as defined in Lemma 2.14, is generally nonzero under 7, while it is easy to compute
that fo = 0 for any wedge C, since

z 1
1Tt

cf. [SH]). Conversely, by construction, 7 ignores any kind of degenerate lower-dimensional simplex, while f- makes sense and

fr(2) = [, (2) + fro (2) =0,

is generally nonzero for lower-dimensional cones C. Indeed, the roles played by “wedge” and “lower-dimensional cone” are

swapped; they are precisely the conical duals to each other. For a concrete example, observe that
R, ®R c R?

has realization z1 /(1 — z1), which is the same as the Shintani generating function for its conical dual R @ {0} < R. Note also
that under this duality, the fundamental class [S™ '] corresponds to the degenerate cone {0}; the realization 7, respectively the

association of the Shintani generating function, send these to the constant function 1.

Remark 4.7. A consequence of the previous remark is in the additivity of 7, as opposed to the Shintani generating functions: when

we have a decomposition of top-dimensional simplices/cones
[C1] + [C2] = [Cs],

1076 be strict, here we should write [C' n S™—1] since C is a relatively open cone and we want a closed spherical chain; however, since the open/closed distinction
does not exist within the chain complex, and the cone/simplex identification is very simple, for convenience we simply write [C].
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we have proven previously that 7([C1]) + 7([C2]) = 7([C3]). However, it is not quite the case that

fo, + fo, = fos-

Indeed, from the “naive” generating function definition (4.4), one sees that this almost is obvious from definition, except that
the terms coming from lower-dimensional cones in the intersection C; N C will appear on the right-hand side, but not on the
left-hand side: thus, this “obvious” additivity needs to be corrected by the intervention of lower-dimensional conical faces. This
phenomenon poses a delicate problem in the construction of “true” Shintani domains; see discussion further below. Meanwhile,
the additivity coming from 7 is less obvious on the level of expanding out infinite monomial sums (though it can be deduced by
canceling out generating functions of wedges), but holds on the nose. In the terminology of [GP], the latter is “N-additivity,”
as opposed to the naive “M -additivity” needing correction from lower-dimensional faces. The duality between these types of

additivity is well-known in convexity theory and linear programming; see, for example, [Bv, Chapter 1, Problem 3].

The above two remarks can be viewed more structurally in the following way: let Kg be the module of functions on R™ generated

by indicator functions of relatively open rational simplicial cones, and let and Lg be those generated by indicator functions of

(relatively open) wedges, as in [SH] and [ ]. Notice then that the Shintani generating function can be viewed as an association'!

fo : Ko/Lg — Mgn ,1c — fc

since the Shintani generating function of a wedge is zero; from this viewpoint, a Shintani decomposition .% is simply the corre-

sponding linear combination of indicator functions of its cones. This association satisfies the GL,, (Q)-equivariance property

fwo'y*1 = (a‘d.] VT)*fd)

for ¢ € Kg/Lg. We then have:

Proposition 4.8. The association
[A] = L, A)v,
on a positively-oriented simplex A, defines a map

§:C(n) — Ko/Lq, [A] = 1(g, a)~

satisfying the equivariance property
s(v[A]) = a([A]) 0"
for v € GL,(Q). Furthermore, ©(e) = fs(s)(1).

Proof. This is a direct consequence of the convex cone duality of [Bv, IV, Theorem 1.6], once one notes that the duals of lower-
dimensional cones are precisely wedges (and identifies the “polar” as the negative of the dual). The GL,,-equivariance property is an
immediate consequence of the definition of dual cone, and the asserted equality of “realization maps” is then a direct consequence

of the formulas. U

Now, associated to the coordinatization o of F' ® R is an embedding
to 1 U — GL,(Z).

UThis is just a restricted version of the Solomon-Hu pairing defined in [SH].
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It was an observation of Colmez, generalized in [ ] (and independently by Diaz y Diaz—Friedman), that the value of 95"

on a set of generators for U™, when antisymmetrized, gives a fundamental Shintani domain “up to boundaries,” i.e. up to the

lower-dimensional conical faces. In particular, it follows from [ , Theorem 1.5]:
Proposition 4.9. Ifu1,...,u,_1 is set of generators of U™, then the set of (n — 1)! simplices
A (U, Ur (1)U, + o Ur(1) + - Ur (1)),

forany v € I't, as T ranges over S,_1, contains a unique U™ -translate of any x € (F @ R) ™ /R not in the orbit of their boundary

faces. Equivalently, the associated open cone contains a unique U™ translate of any x € (F @ R)™ not in a boundary orbit.

Fix any ray v in (F @ R)™ & R™, and choose an ordering of basis u1, ..., u,—1 of UT such that A°(v,ujv,...,uy ... Up_10)
is positively oriented with respect to the standard orientation of R™ (given by the ordered standard basis ey, ..., e,). Note that
det(v,u1v,...,u1 ... u,_1v) is nowhere vanishing in (F' ® R)*; thus, by continuity, we may define:

Definition 4.10. We define a choice of fundamental class cf,, € H,_1(U",Z) corresponding to the orientation such that

A°(v,uyv, ..., Uy ... uy_1v) is positively oriented for any v € (F ® R) ™. (Note that the dependence on « is only up to sign.)

Remark 4.11. More generally, there are 2" orthants in ¥ ® R corresponding to possible combinations of signs at real places
of F; their disjoint union is the complement of the zero locus of v — det(v,u1v,...,u;...u,—1v), so the orientation of
A°(v,u1v, ..., Uy ... up_1v) is constant on each of them. This will be +1 on all the orthants with an even number of neg-
ative signs, and —1 otherwise: this is clear if one simultaneously diagonalizes w1, ...,u,—1, and notices that the matrices
diag(+£1,...,+1) (which is orientation-preserving exactly when the number of —1s is even) in the resulting eigenbasis transi-

tively permute the simplices along with their corresponding orthants.

Now take a cocycle like 85" (n)|y+, but lifting to some general A(v) € S"~1(Q) instead of [A(e1)] from 1 € Chains(n)o,
representing the class ©5" ' (n)|+ € H"1(U*, C(n)). Then the cap product

4.5) 95"71(71) ~chs = Z (=1)8" T [A(V, Ur (1) Vs - 5 Ur(1) -+ - Ur(n—1)V)] € Ho(UT,C(n))

0€Sn—1

is a formal sum of simplices whose R™-span is a Shintani domain, up to lower-dimensional cones.

Previous cohomological approaches, such as [Hill] or [ ], used auxiliary data (a lexicographic order, respectively a “Colmez”
perturbation vector) to find the lower-dimensional cones which correct the top-dimensional term corresponding to the “fake Shin-
tani domain” f(§), for

C=RiA (0, Ur(1)V; -+, Ur(n—1) - - - Ur(1)V),

and thus obtain totally real L-values; for example, [ , Theorem 2.1] shows that
D = (linear combination of indicators of lower dim. cones) + Z LRy A% (0, Ur(1)V, -+ o5 Up(n—1) - - - Ur(1)V) € KR
TESh_1

is a “signed Shintani domain,” which is to say formally satisfies the requirements of Theorem 4.4 if we view f, as a function on

Ko/Lg. However, our cocycle has values which look like

F([A(v, Ur(1)Vy - ooy Ur(n—1) -+ - u‘r(l)v)])v
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which as we have seen, are actually not the generating functions considered in those articles. Thus, even ignoring the issue of lower-
dimensional faces, it is not immediately clear how Shintani’s result Theorem 4.4 can be used to relate our cocycle to L-values of

totally real fields; we are a “conical duality” away.

The solution lies in the following observation: the target Kg/Lg of the duality morphism § is very similar in nature to é(n),
as remarked previously, the difference is that the latter “cares about” wedges, while the former “cares about” lower-dimensional
cones. If we could define the realization map 7* on the former module instead of the latter, then 7* o é would carry the class of our
“fake fundamental domain” to the “main” (top-dimensional) term contributing to a Shintani function for a totally real field F'. But

7 does care about wedges, and ignores lower-dimensional cones, so this strategy does not quite make sense, as written.

The work-around is that if we introduce certain stabilizations of our symbol complexes by torsion sections, then we can remove
all the above obstructions: the classes of wedges and lower-dimensional cones alike are annihilated, so that § becomes a kind of
auto-duality, whereupon a realization extending 7 makes sense on the target. This stabilization will also remove the contribution of
all lower-dimensional terms in associated Shintani generating functions, effectively making our fake fundamental domain as good
as a real one. The resulting stabilized cocycle can then be directly related to a (stabilized) Shintani function for a totally real field

F, and therefore to L-values.

4.3. Stabilized duality and p-adic L-functions. We introduce stabilizations at auxiliary integers, necessary to realize the previously-
stated strategy for constructing and proving interpolation properties for our p-adic L-functions. Because J is a duality map, there
will be two dual notions of stabilization, which we will call avoiding and smoothing. Broadly speaking, “avoiding” corresponds
to ensuring the poles of the values of ©¢%(n) avoid zero, while “smoothing” enforces a degree-zero condition killing off lower-

dimensional conical faces.

Remark 4.12. The Euler factors that appear corresponding to these two types of stabilization are precisely those corresponding to

the two kinds of sets of places often labelled S and T’ in literature on Stark-type conjectures; e.g., in [DK].

4.3.1. c-avoiding. Let c > 1 be an integer prime to p; though it is not necessary, for later convenience we may as well take it to be
prime. We first describe a “c-avoiding” modification of our symbol complex, as well as the resulting stabilization of @7 (n); this

latter class has the upside is that it is valued in functions holomorphic in a p-adic neighborhood of the identity.

Write

-Chains’(n); = P \Chains (n);
AePn—1(Z/c)

where the definition of ACTlEi_ﬁs(n). [—1] needs to be explained: roughly, it is the augmented simplicial chain complex for the ind-
triangulation of S™~! consisting of simplices whose < (n — 1)-dimensional faces do not contain any line reducing to A modulo c.

We will call a triangulation of S”~! satisfying this property “\-avoiding”.

The existence of A-avoiding triangulations is clear from the density of points reducing to any given ray in (Z/c)™ in any open set of
S"~1, The existence of a direct limit over all such triangulations (analogous to (2.2)) is slightly less obvious, but follows from just
a slight refinement in the proof of Proposition 2.3: we need two A-avoiding triangulations 7 and 75 to have a A-avoiding common
refinement. In that argument, when superimposing two A-avoiding triangulations, all the resulting polyhedral faces of dimension
< (n—1) will automatically already avoid A modulo ¢ by assumption. To ensure all faces avoid A, we pick the point of barycentric
subdivision such that all the resulting new faces also avoid A, rather than picking an arbitrary rational point, which again is clearly

possible by density.
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Thus, as in (2.2), we can define ,\Ch/_;iﬁs(n).[fl] as the direct limit over all chain complexes of z-avoiding triangulations, as

before; it is naturally a subcomplex of C/Tlgi_ﬁs(n)., and the inclusion is a quasi-isomorphism.

Clearly, pushforward by v € GL,,(Z,)) carries A-avoiding triangulations to yA-avoiding triangulations, for the natural left action

on lines. Then the complex .Chains’(n); carries a natural GL,,(Z) action, which permutes the summands
»Chains(n); — 4 Chains(n);

given simply by the pushforward ~, : S"~1 — S™~! on the level of chains. As representations of this group, we can identify

Chains'(n)y = Z{P"~Y(Z/c)}.
Similarly,
H,,(cChains(n),) = Z{P"~"(Z/c)}(sgn)

with the same action twisted by the sign character, since there is one fundamental class of the sphere for A\ € P"~1(Z/c). If we
write H° = Z{P"~1(Z/c)} for the submodule of degree-zero elements in Z{P"~1(Z/c)}(sgn), we can define

(4.6) Chains(n), := .Chains’(n),/H°
(4.7) «Chains(n), := ,Chains’(n)s/H, (.Chains(n),),

and the latter complex is exact. The same argument in the proof of Theorem 3.1 (but skipping the motivic realization to pass

directly to the d log regulator) shows that there is a GL,,(Z)-equivariant realization map
o céfl;i_ﬁs(n)n — Mgn (— det)(©®

given on acyclic simplicial generators by

(=D)"21...2n
(I=21)...(1—2zp)

1
4.8) [Alrs, )= Y, M
zeA—{0}

where we here use the identification u]} = G},

" [¢] = (Z/c)™ coming from considering Z" as the homology lattice of GI!

m>

as we

have been doing, to consider the various z as torsion points in G}},, and

M= (rl rn).

(Here, one has to be careful that the (0) condition needs also to exclude the trace [c].; this applies going forward.) This realization
quotients down to a map
e : Chains(n),, — Mgn (sgn)©) /constants.

By the A-avoiding condition, the image of .r lands in the intersection of A]g,")

for all p prime to c. Fixing some such p, we obtain
by lifting the fixed class

A€ CCTlEi_H/S(TL)O
AeP™—1(Z/c)
a cocycle
0% (n) e H*(GL,(Z), A} (sen)/Z,)

which, via Cartier duality (as discussed previously), yields a cocycle
Op: (n) € H" 1 (GLa(2), D ((Z}) ", Zy)(sgn) /{60))
where Jg is the atomic (“Dirac delta”) measure at zero.
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Remark 4.13. There is a simple relation between .©%%(n), viewed as valued in Mgn (sgn)(®), and ©%(n): we can view both
“spherical chain complexes” GL,,(Z)-equivariantly inside @, i Chains(n),, by including .Chains(n) by embedding its \-
summand into all the nonzero x contained in )\, and inclusion at the identity section for Chains(n). The class ©4%(n) is obtained
by lifting {1} € Chains(n)o, while .©%%(n) is obtained by lifting ([c]* — 1){1}; then by functoriality under [¢]* of the lifting
process in group cohomology, we find

("[e]* — DO (n) = O (n)
after noting that .7 o [¢]* = ¢"[c]* o .r.12
4.3.2. Restriction to a nonsplit torus. We now restrict to a nonsplit torus corresponding to a totally real field F' of degree n: as
before, we pick a fractional ideal I of F', but instead of identifying it with Z" as in the original Shintani method, we will fix instead
an isomorphism

a: I = (Z™)Y

to the dual, which is equivariant for U ¢ GL,,(Z) for the usual unit multiplication on the source and the standard dual represen-
tation on the target. The definition of the orientation cj;, € H n=Y(U*,Z) is as in Definition 4.10, with respect to the standard

orientation on (R™)V; i.e., corresponding to the ordering ey, ..., e, .

We write ¢ : U — GL,,(Z) for the resulting inclusion; remark that any scaling o o [ xa] for a € F is U-equivariant for the same
inclusion ¢,. Conversely, ¢, can be recovered from the data of o by writing out the matrix action of U on I, then taking the inverse

transpose, so each ¢, is uniquely associated to an “isogeny class” of coordinatizations .

Then « induces a U-equivariant identification

(4.9) DO(Qp)Y,Zy) = DONE,,Z,), > (9= plpoa™))
via which we view .OF (n)|y+ as living inside H™~' (U, D(Fy, Zy) ) /{80))).

4.3.3. Stabilizing at ideals of F. We record some transformations of our cocycle, and properties thereof, which only make sense
after restriction via some ¢, : U < GL,,(Z) associated to a dual coordinatization « as in the previous section. Via considering
the rationalization of «, we see that ¢,, extends uniquely to an algebra embedding F' — M (Q) which we continue to denote ¢,.
Then for any integral ideal a = Op, it makes sense to speak of the a-torsion G, [a], as the torsion points annihilated by the action
of all elements a via ¢, ; this torsion group has size Na. Notice that I is here identified with the character lattice of G}, so that
Gl [a] = homp,. (I,0p/a) = IY ®o, Or/a for example. The natural multiplication action of Op on I can be thought of a

pullback action in this optic.
This has the following upshot: if we first restrict to the image of F* %> GL,,(Q), then we may define the F'* -equivariant complex

«Chains(«), for any prime ideal ¢ of F' (which we choose prime to p):

Definition 4.14. The U-module .Chains(«). is defined similarly to .Chains(n)., except the direct sum is taken over only the lines
A € P""Y(Z/c) contained in the subspace of (Z/c)™ corresponding to G"[c] (for the action of F* on G, given by ).

The subspace of (Z/c)™ indicated can also be described as the dual of the kernel of the natural projection I /c — I /¢, recalling that
I is identified with (Z™)".

12The extra scalar ¢ comes from the det-twist in the contraction from n-forms to functions: in general, we have v (f dt1 A ... A dtn) = (detv)(v* ) dt1 A
oA dty.
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Then the corresponding cycle G, [c] — {1} € (Chains(«), is to(U)-fixed, and we have a realization map
v+ (Chains(a), — Mgn (sgn)®) /constants.
defined exactly analogously to .r via a sum of translates (4.8). We therefore can define de Rham classes
O (1) e HM (U, Aé”)/constants)
as in the case of c-stabilization, but only after restricting to U along ¢,.

Since U™ preserves the angular domain (F ® R)* < R” (along with all other orthants coming from combinations of signs at
places of F', all lifted chains in any A-extension always are contained in such an orthant and never contain any full line. Thus, the
Euler cocycle &, |+ is identically zero regardless of A-extension chosen, and we can canonically lift (©9%(.,,) over the orientation

obstruction, allowing us to view these classes (following the convention of Section 4.3.3)
(4.10) O (1a) € H MU, AL), 05 () = (@) sku O (o) € H' (U, D(F,, Z,))

without quotienting by the images of the orientation obstruction. Another way to view this Euler obstruction vanishing is that we
have exact U-equivariant subcomplexes

«Chains(a), < Chains(a),

consisting of chains contained entirely in the (contractible) totally positive orthant of the sphere, and we define the above classes

by lifting in these complexes.

If ¢ is principal and generated by an element of positive norm, say 3 € Of, then we also have ((N¢)[3]* — 1)0 % (n)|y =
(O (,,,), if one uses the totally positive orthant to lift the restriction of ©?%(n) over the Euler class in the same way, where here

we use that the determinant of the action of [ is its norm as an element of F'.

4.3.4. p-adic L-functions. We now define (;* to be the image of (O () under the composition

@.11) HY (U, D(F,2,) %) =55 Ho(U+, D(F,, 2,)®) = D(F,/U*,2,)
Here, the last map is the natural map
Ho(U™, D(F, Zp)(o)) — Ho(U™, D(Fy, Zp))(o) - D(Fp/U+» Zp)(o)-
Explicitly, if ¢ is a U-invariant compactly supported continuous function on Fj,, which we view as a function on (Q} )" via
@) = F 5 Q,
we have

@12) | eeagew = | et e mlos ~ ).
Fp/ut (@)~
For ¢ = (c) an ideal of Z, these zeta elements are specializations of the “global” cocycle .09 (n) (up to the orientation ambiguity);

otherwise, it is only a specialization of ©9%(.,).

Recall now that the coordinatization o determines ¢, but not vice versa; scaling o by elements of F' (and therefore identifying
the lattice (Z™)" with different ideals in the same class) does not change the latter. We consider the dependence of .04 (), and

< on « (instead of merely ¢,).
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In particular, if we start with some fixed identification o : I — (Z™)", we can consider also the scaling
ao[t™]: (I — (Z™)"

for any ¢ € F'*; as noted, this is equivariant for the same ¢, : U < GL,,(Z). As with cgr+, the dependence of the p-adic L-function

on « is quite weak; rescaling by ¢ results in the same information up to a flip of sign:

Proposition 4.15. We have the relation
(4.13) (sgn N[ty oGl = {07l

for the map
[l : D(F,/U",Z,)"" — D(E /U, 2,)V, pi= (0= (0 [1])).

Proof. Starting from the fact that .©9%(.,,) only depends on ¢,,, we obtain immediately that
[t]::OB (o) = OF (a0 [t71]).

-1
Then from the functoriality under [t], of the sequence of maps (4.11), this amounts to showing that cgi[t I (sgnNt)cp -,

which follows from Remark 4.11. O

This provides a strong sense in which the information in our p-adic L-functions only depends on the narrow ideal class of I, and
in fact only on the wide ideal class “up to sign”. This will be used later in Section 4.4.3 to build p-adic L-functions for ray class

characters, and prove 2-adic congruences.

We have thus defined certain “p-adic L-function” elements, but have not justified the name; we need an interpolation theorem:

Theorem 4.16. Let ) : [T/UtT — Z,, be any locally constant function and k = 0 any integer. Then we have the specialization
property
(D" [ BN G0 = G, k)~ NetCa (6,
Fp/U*
Note that Theorem 1.3 from the introduction is an immediate corollary. Most of the remainder of this article will be dedicated to
proving this interpolation theorem, by finding a duality reconciling the (stabilized) values of @@ (n) to the (stabilized) classical

Shintani method for F'.

4.3.5. c-smoothing. We now describe the “c-smoothed” modification of C/l_igi_ﬁs(n): in fact, this modification will set all wedge
classes to zero, so it is actually rather a “Orlik-Solomon”-flavored complex (as in Section 2.3.3), moreso than a “spherical chains”
flavored one. As with c-avoiding, after describing the case of smoothing at an integer resulting in a GL,,(Z)-cocycle, we will also
indicate a generalization to smoothing at an arbitrary ideal ¢ < F; this yields only a U-cocycle when ¢ is not a rational ideal.
Again, we emphasize smoothing at integers more for expository purposes, as working with GL,,-actions makes the underlying

linear algebraic structure conceptually clearer.

We write P to mean the dual projective space (parameterizing hyperplanes) and G for the Pontryagin dual of a group G. Then we
define the c-smoothed complex
‘OS(n); = €@  *0S(n);
nePn—1(z/c)
where "OS(n), is defined as the Orlik-Solomon complex for the lines £ € P*~1(Q) = P"~!(Z) not contained in 1 modulo c.

Each summand is exact as a complex by the usual Orlik-Solomon formalism, so the whole complex is as well. In top degree, we
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will also St(n) instead of OS(n),, continuing earlier “Steinberg representation” notation. We define the GL,, (Z)-action on this

complex by
"08(n); = MMOS(n)i, (] A - A [li])y = (V] A - A [(Vi]) -

Proposition 4.17. There is a GL,,(Z)-equivariant realization map

“r:“St(n) — (Mgn (sgn))(o)

given by
(4.14) ([e1] A - 3 D] )t (det M) M (D" 2
’ N A=21)...(1—2z,)
Eefic" wEN
ker {=n
where M = (61 . én) ; here, the notation as usual means we pick any integral generator of the line (or in fact, any integral

point, by the usual trace-fixedness argument).

Proof. We saw previously, in Section 2.3.3, that the Orlik-Solomon relations are generated by the spherical chain relations together
with the “wedge” relations, where the latter amount to checking that the formula (4.14) is independent of replacing a column in M
with its negative: our previous trace-fixedness arguments show that the formula is independent of scaling the generators by [a] for

a € N, but not for scaling by [—1].

The proof that the stellar subdivision relations hold in the image of “r is identical to the argument for Theorem 1.1, so it suffices to

check latter wedge relations. Indeed, if we identify ¢4, ..., ¢, with a set of integral generators, let

M= (_el en)

be the matrix for the same set of integral generators, with one sign flipped. Then we compute that the difference between the
expression (4.14) for M and M’ is

DD E(x)tk(det M)~ 1M*< (D"t ()" RS )

e depn (I1—21)... (1 —2zp,) (l—zfl)...(l—zn)
ker {=n

(et M)1 S Y e(@yEm _1)n_1z2 .
cn depn 1—20)...(1—2)
PRI
ker £é=n

If we split this sum over x into cosets for the order-c subgroup (¢1)4 . 12, then one computes that

(=) 1z .. 2,
(I—22)...(1—2,)

is constant on each coset, and £ has sum zero over each coset since it is a nontrivial character on (1) .. The result follows. [

tE M,

Inside “OS(n)o =~ Z{P"~1(Z/c)}, we have the GL,, (Z)-fixed element
- Z m,
nebr—1(z/c)
which, if viewed as a function on 7, via considering 7 as the sum over all characters with kernel 7 and then as a formal linear

combination of elements thereof in the usual way where the values of the functions become the coefficients, corresponds to the
torsion cycle ([c]* — ¢™){1}.
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As usual, lifting this element and taking the realization “r then affords us a cocycle
0% (n) e H"1(GL,(Z), Mgn (sgn) )
which, by the same argument used in Remark 4.13, satisfies (c"[c]* — ¢")O%%(n) = <O (n).
Now if we first restrict to U %> GL,(Z), we can likewise define a c-smoothed complex with U-action
‘OS(a); = " 0S();

where 7 is the hyperplane which is the kernel of projecting G,,[c] — G,,[c], and an ¢, (U)-equivariant realization map ‘r :
“St(a) — (Mgn (sgn))®), where as usual the Steinberg notation means the top degree module in the Orlik-Solomon complex.
Then the ¢, (U)-fixed element
> ¢
£eGy, [e]—{1}
(viewing these characters as being inflated via the natural projection G?,[c] — G [¢]) affords us a cocycle

‘0'M(a) € H"(U, (May, (sgn) ).

Again, if ¢ = (/3) generated by a positive-norm element, we have N¢([3]* — 1)04%(n)|y = “©9%(a), generalizing the case of
¢ = ().

4.3.6. Stabilized duality. We now let b and c be distinct rational primes, which are also distinct from p. With identical arguments,
we can combine the stabilizations of the preceding two sections to be simultaneously b-avoiding and c-smooth, resulting in an exact
homological complex
;0S(n)e = P @  10S(n).
nebr—1(z/c) AeP"~1(Z/c)

where the summands consisting of symbols whose < (n — 1)-dimensional spans avoid A, and whose lines modulo d are not

- Z Z Lo

XeP"=1(Z/c) nePrn—1(Z/c)

yields a class §©5%(n) € H"~1(GL,,(Z), {St(n)). The GL,,(Z)-equivariant realization map

contained in 7. The GL,,(Z)-invariant class

b2 §St(n) — Ay (sgn)™

results in
F01(n) := §ri§0° (n) € H" ' (GLn(Z), Ap(sgn)™)
such that
(c"[e]* = ") " [o]* = 1) (n) = (c"[c]* — "),0 1 (n) = (B"[b]* — 1)°0(n) = ;O (n).

Analogously, for b and ¢ distinct primes of F' not dividing p, we have a doubly stabilized complex { OS(«)., with top-degree

module §St () and ¢, (U)-equivariant realization map §r : §St(a) — A, (sgn)™, resulting in classes
c0t(a) e H™ (U, 588(a)); §07(a) = §rus05(a) € HL(U, Ay(sgn)™)
such that
(4.15) (Ne[e]* — Ne)(Nb[A]* — 1)0%%(n)|U = (Nc[e]* — N¢)y0(a) = (Nb[B]* — 1)°0E(n) = {0 (n)
if c = (¢), b = (B) are generated by positive-norm elements.
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We are now ready to define the stabilized conical duality map and prove its properties. For convenience, let us denote the inverse

transpose involution on GL,,(Q) by *. Then (x*)%St(n) carries the action

(6] Ao A almr = ()] A e A TG D )1y 1.

Specializing this, we also write (x*)?St(«) for the *U-module with the same underlying space as ?St(«), on which v € *U acts
by the action of *y € U on ?St(n).

Proposition 4.18. There is a GL,,(Z)-equivariant map

50 £St(n) — (x*)eSt(n)

c

given by sending
([l Ao A lnD))pa = ([T A A TG DA
The same formula yields a U -equivariant map
50 1 pSt(a) — ESt(a*)

when b, ¢ are ideals in F, where
Oé* . 071]71 o~ (Zn)v
is the (xvo,)(U)-equivariant map

D—l]—l By oY% (7)Y 7 v—~{v,—) (Zn)v

where the first arrow is from the trace pairing on F. Note that here, the U-action on the lines in the source is defined via v, as

before, whereas the action on the lines in the target is via tox = *iy."

Proof. The proof in the U-equivariant case is formally identical to the general linear case, so we treat just the latter.

If the formulas are well-defined, then GL,,(Z)- (respectively U-)equivariance are clear. We have already seen previously that the

Steinberg module is the quotient of C/fl;i_ﬁs(n)n by wedges, and the latter quotient
Kq/Lg — St(n)

is given on top-dimensional generators as
LR+ AC(ry,ern) ™ (1] Ao A [6n]

This is well-defined by the earlier discussion of “M-additivity” (along with the evident fact that there can be no relations between
a top-dimensional cone indicator function and any combination of lower-dimensional ones). One then needs only to note that the
“local” conditions with respect to a c-torsion line A and a d-hyperplane 7 are dual to each other under the standard inner product,
and hence under ¢: indeed, if [(1] A ... A [€,] avoids A, then the line of c-torsion characters given by taking the standard inner
product with \ precisely have kernels A*, and are hence nontrivial on each of ¢y, ..., £Y: the former condition says none of the
(n — 1)-hyperplanes spanned by these pass through A, which is the same as saying that the line A is not in the kernel of the any of
the dual linear forms (¢}, —), which is to say that none of these lines were contained in A\* to begin with. The 1 conditions are
symmetric. O
By particular, the definitions of the modules in question only depend on the algebra embedding ¢ : F' — My (Q) and not the actual coordinatization «; the map

we denote o* is just a particular canonical-looking such coordinatization whose corresponding algebra embedding is .o (F')-equivariant. For the purposes of this
proposition, however, it is not any better or worse than any other coordinatization in its F-isogeny class.
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We consider now the classes

50507 (n) € H" Y (GLy(Z), (+*)¢St(n)),  §6+507 () € H" (U, {St(a”))
whose realizations under ’r, and r, we notate respectively as
(4.16) beShn(n) e H" H(GL,(Z), (x*) Ay(sgn)™), 05" (a) e H" 1 (U, Ap(sgn)(™)),
where we have put a subscript to record the action of U on A,,.

To prove Theorem 4.16, we will first need a statement to the effect that ;¢ “acts trivially” on cohomology: we note that  induces

a kind of tautological action on GL,,(Z)-cohomology
** 2 H'(GLn (Z), M) — H'(GLn(Z), (+*) M)
by acting on cochains as ¢(71, . ..,7%) = (co*)(y1,..., 7).

Then the main part of the result we need is a considerable technical digression which we defer to the appendix:
Proposition 4.19. The class 205" (n) is equal to (x*)20% (n), and correspondingly, *©"" () is equal to O (a*).

Proof. Using a duality of (restricted) Tits buildings giving rise to (restricted) Steinberg representations in their top reduced ho-
mology, we prove in Appendix B that §5,$©5¢(n) is equal to 2©5%(n), which implies the proposition by taking realizations. The

statement for b and ¢ follows similarly from the equality of {d,{©%¢(a) and *©5¢(a*), proved in the same way. O
4.4. Results on L-values.
4.4.1. Interpolation property for smoothed/avoiding cocycles. We now compute the values of ?©5%"(a*) using the Shintani

method. The notation in the following proposition is as in Section 4.3.4.

b@Shin (o) with a class in H"~(U*, D(F,, Z,)®) via

c

Proposition 4.20. Let b and ¢ be ideals as previously. We identify k.
the map (4.9). (Note that the natural action of U on the space F,, identified via o with (Z™)", in the distributions is via i, by

preceding discussion.)

Then the image of this class under the chain of arrows (4.11) (which we will also denote f(jé’a, in analogy with cg;v“), when

evaluated against the function
Fp/U* =@yt = g(t)N()*
for any Schwartz function ¢ : I,/JUt — @X, is
(=1)"INB(Cr (Yo — 3, —k) — NeGer (v — 9, —k))
where Yy : [/UT — @X is the function t — 1,7(t)1)(t) on I. (Note that this cannot be defined on I,/U™.)
Proof. We recall the definition of * @5 (a*) is
(4.17) (€7)%(50)+5 0" ().

Let U(b,¢)™ < U™ be the congruence subgroup reducing to the identity modulo b and ¢. This is a finite-index subgroup of the

rank-(n — 1) free abelian group U™; let cff _ be the positively-oriented fundamental class of U (b, ¢)*, so that cf . pushes forward
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to [U* : U(b, ¢)*]ce. under the subgroup inclusion. Then we compute (4.17) as

1

+

+ *
(418) mcoresg(b’c)+ resg(b)c)+(ET)*(Eé)*E@St(Q )
We spell out the inside symbol Z := resg:mcﬁ (*r)(£0)+ O (xa*). Let ug,. .., u,—1 be a basis of U(b,c)*, which we will

implicitly view via x¢,, inside GL,,(Z). We write T} for G}, considered with the ¢,-action, and 75 for G}, considered with the
*L-action; the map of Proposition 4.18 then U-equivariantly identifies the torsion of 7} with the Pontryagin dual of torsion of 75

of the same order, and vice versa.

We compute

= _ b
E(Ury ..y Un_1) = Tx | — Z [ul...un_lﬂ/\h)\é,...,ﬂ)\h%]
/\1€P(T2 [C]) )\QE]P(TQ [b])

=— Z Z 2 X(y)fC(Z/c{L,(Z/b-y)L)(571 “X) €A
ceTalc]—{1} veT2[b]—{1} yeT,]b]
where /5 ,, is any choice of ray satisfying suitable avoidance conditions for A and 7, and C'(\, n7) the associated cone bounded by

the U-translates indicated.'* From (4.5), Theorem 4.4, and Proposition 4.5, we then find that the realization under % of = satisfies

(4.19)
f(z . bl BN () dr(E ~ e )t = (1) D] > > DT XX (NETH AN

Xely [U(b,0)* geTyle]—{1} vET2[0]—{1} yeTy 0]
(420) = (_1)n_1[U+ : U(ba c)+]Nb(CI(¢b - ZZ% _k) - NCCCI(wb - ¢7 _k))

The last equality follows from Shintani’s Theorem 4.4 because all the terms corresponding to any lower-dimensional conical face
C’ vanish from the b-stabilization in the sum: there exists a line in the dual space (uniformizing 7)) annihilating the subspace
Q - C" < R™ (uniformizing T5); taken modulo b, this means there is a line of x € T1[b] for which for = feor(x). The terms
for (€71 - x) thus are all equal on cosets for this line in the sum over x. Then 3, considered as a character on these Y, is nontrivial
on this line, due to our initial assumption that (in the dual formulation) y is not contained in any of the implicated lines modulo b
(cf. the discussion before Example 4.1). Thus, the coefficients in the total sum on each coset of these lines sums to zero, whence

all the terms corresponding to generating functions of C” vanish.

The result then follows from the commutative diagram in group (co)homology

H" (U (6,¢)*, D(F,, Z,) ) =5 Ho(U(b,0)*, D(F}, Z,)®) —— D(F,/U(b, )", Z,)
(421) lcores lcores lprojection

(e

Hnil(UJraD(FpaZp)(o)) i’ HO(UJraD(FpaZp)(O)) E— D(FP/U+’ZP)(O)
O

Remark 4.21. We note that working with the GL,,(Z)-version of the duality statement was not logically necessary for the proof

of this theorem: only the U-restricted duality, with the more general stabilizations at ideals b, ¢ < F/, is strictly required. However,

1411 the simpler case when b and ¢ have residual degree 1, so that the corresponding torsion subgroups are actually lines, one can actually find one line ¢ which
works across the board; i.e. we can compute = simply as 074 (—[(u1 e Un—10)Y o (ul)Y, Ev]A},M) for some appropriate line £. This is the kind of
stabilization usually considered in the literature (e.g. in [ 1), since it results in simpler-to-compute formulas whose existence can be deduced without the
symbolic cohomological considerations of the present article.
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we find the duality statement (and the geometry behind its proof in Appendix B) much clearer to understand from the GL,,(Z)-
equivariant perspective, because of the essential intervention of its involution * (which simply “switches the embedding” when
acting on U, in a potentially confusing way if one is not keeping track of the ambient group). Thus, we emphasized its role in the

exposition.

4.4.2. Assembling the partial zeta functions. To deduce Theorem 4.16 from our above calculations, and in particular, to remove
all b-smoothing, we need to assemble the various different partial zeta functions into one framework. Recall the formalism of
L-functions associated to the narrow Hilbert class group of F': following [ ], given an integral ideal 91 < F', we write My for
the monoid (under multiplication) of integral ideals of , modulo the equivalence relation I ~ J whenever I.J ! is generated by
a totally positive element in 1 + 91J 1. We consider also the inverse limit

Mpe 1= 1im M.

k

As noted previously, we will omit consideration of the more general construction with tame level My, considered in [ 1;

however, the same results should follow from identical arguments.

Let G,» be the pF-ray class group of F, and G := lim G« ; it acts on My by level-wise multiplication. Write also X for the
subgroup of G generated by towers of principal ideals generated by elements 1 (mod p"); writing Sy, for the set of infinite
places of F, we have a canonical isomorphism ¥ = {+1}%=, the generator at the place v given by a tower of principal ideals
which are negative at precisely v and positive at all the other places. We also have a norm map N : ¥ — {+1} by taking the
product over all places. We say the a function ¢ : M, — Q, has sign sgn(p) € {£1}5= if ¢ 0 o = sgn(yp) - p for all o € %; if
sgn () consists of all —1s, we call ¢ totally odd, and if sgn(¢) is all 1s, we call it totally even.

From [DR, §2], for any k > 0, the finite-level ideal class monoid M= can canonically be decomposed as a disjoint union of “cells”

which are ray class groups of conductors dividing p*, via the ¥-equivariant isomorphism

Dy, : |_| G(pk)b—l = M, [J](pk)a—l — [0- J](pk)
?|(p*)

One can compute that the monoid multiplication between two “cells” corresponding to (p*)0; ! and (p*)0; ! lands in the “cell”
corresponding to their GCD, and is given by usual ideal multiplication on representatives. All of this can be extended to infinite

level M= in the obvious way by taking inverse limits everywhere, yielding

Doo : G1 [ I_l Gpoc/a = Mpac
2|(p™)
where each G/, is abstractly just a copy of the p™-ray class group, with the different labels just serving to distinguish them.

Note that the copy of G is, however, not open: in the case F' = Q, this is the decomposition (up to +1)
w© .
Z,={0}u | | Pz
j=0

Choose now integral representatives Iy, . . ., I, for the narrow Hilbert ideal classes of F'. For each 1 < i < h, fix an isomorphism
Q; Iz = (Zn)v

and a corresponding embedding ., , along with the fundamental class ¢}, satisfying the condition of Definition 4.10.
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We have the identification
h
|_| (im I;/p* 1) /Ut > My, (21)x — ((xx) - I Y, for (), € im I /pP
from loc. cit. The norm function on ideals extends to a continuous map N : M,» — Z,,, and we have the relation
(Nof)(z) =NI; ' Nz
for x € I; ® Z,. Given a locally constant function ¢ : M,» — C, we have the associated complex L-function analytically
)=y ¢([7])
~ (NJ)®
where the sum ranges over all integral ideals of F'. From ), for each class [I;], we also get an associated locally constant function

Yi: (Ii)p = Qp, t = (f(1)).

for which we can form (;, (¢;, s) as previously; then we have, from the identification coefficient-wise of the associated Dirichlet

continuing the Dirichlet series

series, that
h

Crt,s) == Y (NL) Cr, (i, 9).-
i=1
For any 1 < ¢ < h, write also T; for G}, with the action corresponding to «; under the embedding ¢;, i.e. so that the character
lattice of T; is identified with I; under «;, as U-representations where U is viewed as a subgroup of GL,,(Z) via ¢;. As U-spaces,

we have T; = hom(I;, G,,).

We note also that if ¢ : G» — Cis locally constant, and we consider it as a function on G, /5, then (D')*4 is a function on

M=, and one can check that

Cr(¥,s) = NO*Cp((D!) 9, ).

One can also express this relation at each finite level p*.

Suppose we have any relatively prime ideals b, ¢ both prime to p, and that [I;b] = [I;] for some 1 < ¢, j < h; thus, we can write
wOp = Iiblj_l for some totally positive € F}°. Fix also a positive integer ¢ € N for which € := tw € OF. For a judicious

choice of representatives I,, we can always ensure that the resulting ¢ can be chosen prime to p and ¢, for any b prime to p and c.
Then there is a canonical U-equivariant identification
T;/T;le] = T/ T;[tb]
dual to the identification (t)I;b = €I; of character lattices. We notate below several related U-equivariant maps:
4.22) 7, L 1mie] = e Y 1) < T,
these maps all being isomorphisms except for g, of degree Nb. The dual maps of character lattices are
I; 25 Ii(e) = L(H)b <L I;b — I,.

Now write (¢} := (l"* for 1 < i < h, and analogously for the b-smoothed versions. Similarly, write (©¢7 := ©(«;) and

analogously for the b-smoothed versions. Then we have:

Proposition 4.22. We have the relation

8¢} = Nb([@]«c() — cCp)
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where we write [ ]y for the map

D((1j)p: Zp)"” = D)y, )", 1 = (0 = (i 0 [w]))-
Proof. Tt suffices to prove that
(4.23) 80! = Nb(qgi ([t]*)'[e]*©F — OL) e H" 1 (U, AJ(T;))

since by the pullback functoriality (4.2), the action of (e.g.) [¢]4+ on meromorphic functions is [¢]* on distributions, recalling that
the pullback action on (Z™)" becomes the natural action of F' on F},. Note that here, we decorate A,, with the space on which it is
considered, since this is no longer simply implicit. Observe also that when b is principal and generated by an element of positive

norm, this is consistent with our earlier stabilization statements.
We have a U-equivariant map of complexes which we denote with the notation

{w} : Chains(n)s”" — @  Chains(n)e""
peP(T;[b])

defined by sending A(r1, ..., ) (for A € P(T}[c])) to

S i Al k) v

pEP(T:[b])
where A" € P(T;[c]) is the image of A coming from the series of maps
e]™t t
@424)  Ty[c] = homo, (I;, O /¢) < homo, (e1;, Op/c) = home, (b(t)];, Or/c) 15 homo, (I;, OF /c) = Ti[c]
attached to (4.22).
In top degree, we claim this leads to a commutative diagram

Chains(n)n?™" = veT o] «Chains(n)go"

(4.25) l l

Nb-g¥o([t]~")*o[e]* .
Ap(T5)™ : Ap(T;)™

where here we reuse the notation °r to denote sending A(r1,...,7r,)x,, tO

Z1...2n

D e (7‘1 Tn)* (z1=1)...(zn = 1)

zeA—{1} yep—{1}

(One checks this compatibly extends the earlier definition of %7 on the submodule ®Chains(n)?, considering characters on T;[b]

as formal sums over these torsion points.)
To verify the commutativity, by continuity it suffices to verify it after specialization (of Ap(ﬂ)(")) at any torsion point
z € Ty[p™] = lim hom(I;, 1,x )

(In other words, the bottom vertical arrows are injective, and one can identify distributions by evaluating against finite-order

characters of lattices.) Indeed, via the top right chain of arrows composed with the specialization, the image of A(ry, ..., 7). is
— Z1...%
z*fr[(aiaj DA, ..., rn)e] = Nb Z (' — a2 —y)* =

VeTilo] (z1—=1)...(z, — 1)
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(where we are writing additively the group law on Tj), where 2’ is the image of 2 along the map on p®-torsion analogous to (4.24);
this agrees with the image along the bottom chain. Note the factor Nb = deg(qp o [t] ! o [¢]) comes from the determinant twist

resulting from contracting away the form dt; A ... A dt,, as previously.
Let {1}¢e := Tu[c] — {1} € Z{T\[c]}, for e € {1,2,...,h}. Since *O¢F () can be obtained via lifting the class
{wH{1}ei — Nb-{1}c; € Z{Ti[bc]}
in degree zero of the complex (B, 1, [y < Chains(n o, (4.23) follows. O

Now, the map f induces a pushforward on distributions, which preserves the [p]-invariance property; i.e. yields

h
fe C—BD(IP/U+7ZP)(O) - D(Mpwﬂzp)(o)

i=1
where, analogously to before, the superscript (0) on distributions on the monoid means that u(U) = p((p) - U) for any open

compact U. Note that under the cell decomposition, multiplication by (p) maps Gp= 5 — G /(p)

Accordingly, we now define p-adic L-elements

(4.26) D (M=, Z,) 5 (F Z faeGlt, D( My, Z,,) 2 8¢E 2 Ful ¢l
Now, applying Pontryagin duality to each cell of the cell decomposition of M,» given by D, implies that Schwartz functions on
M, are spanned by orbits under multiplication-by-(p) of the following two forms of functions:

(1) ramified finite-order characters of Gy (included as any cell), meaning which do not factor through G,» — G, and

(2) unramified characters, i.e. those factoring through the projection My — M; = Gj.

For any character of either form above 9 : Mpo — Q, Proposition 4.20 then implies the interpolation property

h
k b ~F _ —k ) k b ~F
4.27) s PY(J)NJ® d] G (J) = g NI; J(I )p/m P ()N d] Cp (t)
(4.28) = (~1)""'Nb Z NI (Cr (i = (i)o, —k) = NeCer, ((¢1)6 — ¥, k)
=1
(4.29) = (—1)"'Nb(1 — ¢ ([)Nc"*)Cp (e — ¥, —k)

This suffices to determine the interpolation properties for all Schwartz functions on M, since our zeta distributions are invariant
under multiplication by (p). Note that the multiplicativity of 1 is only needed at the last line; we could have also have written the
interpolation property for a general Schwartz function, but for these spanning characters, it has a more compact form thanks to this

factorization.

Proof of Theorem 4.16. We have, for any ideal b in F prime to p and ¢, that '0%%(a) = *©5""(a*). From Proposition 4.20,
recall that the value of this cocycle at u, .. ., u,_1, after applying (4.11), satisfies

J(Z”)v Y@ ()N 1) de (PO (a) ~ &) (t) = (—1)" " 'Nb(Cr (s — b, —k) — Ne - Cer(vp — ¥, —k))
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for any locally constant v as previously. Then it results from Proposition 4.22 that for any b, 7, j, @ as in the proposition statement,

we have

(4.30) Lo (1h - NF) — [w]* (% (1 - NF) = (=1)""'Nb (¢ (vp — b, —k) — NeCer (1o — 0, —k))
for any locally constant v, and any integer k > 0.

From the earlier discussion on characters of M,,«, the fact that [Cf satisfies the (0) property implies that it suffices to check the
interpolation property for the functions 1) - N* as 1) ranges across characters of of Gp (included as any cell) and characters of G';
(considered as functions on M= by inflation). Given a fixed b and two indices ¢, j for which I;b = (w)I; as before, observe that

we have a commutative diagram

X

(Lj)p — (Li)p
431 lfj lfi

My —=%5 My
where we write, e.g., f; for the restriction of f to the [I;]-component. Thus, assembling (4.30) across ideal classes yields
(4.32) (W ([B])NB* —1)c¢) (v - N¥) = (=1)" " (& ([b])NO* — 1) (Cr (v, —k) = Ne'** - Cp(v, —k)),

the right-hand side factorization following formally from factoring Dirichlet series, and the left-hand side factorization following

from the fact that 1) is a character, allowing us to factor out a ¢)(b) from the x b-shifted terms coming from Proposition 4.22.

Then the only case in which we cannot find b such that the Euler factor is nonzero is the subcase of (2) when ¢) = 1 is the trivial
character and k = 0; in all other cases, canceling the nonzero Euler factor yields the desired interpolation. But in this exceptional
case, (r(1,0) = 0 as well: indeed, (4.13) implies that the terms coming from pairing [I;] and [I; - a] in the sum (4.26) cancel, for
any fixed principal ideal a generated by an element having negative norm. The result follows. (I

As noted previously, Theorem 1.3 from the introduction is an immediate corollary.

4.4.3. Extra 2-adic congruences of Deligne-Ribet. As an application of our formalism, we recover the exceptional 2-adic congru-
ences for totally odd functions proven in [DR, Theorems 8.11, 8.12]. We state here the theorem in the same maximum generality
as loc. cit.; sadly, however, there are some delicate edge cases for which we have no cohomolgical account, and can only rely on

the original automorphic arguments. We specify exactly what the missing piece is at the end of the proof below.

Theorem 4.23 (Theorem 1.4). Let v : Mo — Q5 be a totally odd continuous function of compact support. Then
f Y(J)dE(T)=0 (mod 2"71).
Mz00)
Furthermore, we even have the stronger congruence
| e =0 modz)
M0

except in the following case:

e the invariant

S() = > (x) (mod ?2)

zeG1 /2
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15

equals 1 € 7,/2, where here we view G — Gaw via the earlier-discussed inclusion," and

o all units have positive norm and all combinations of signs with positive norm occur (F' is exceptional, in the terminology
of Deligne—Ribet), and

e the prime ¢ is inert in the extension M /F given by adjoining square roots of all totally positive units.

Note in particular that the second condition means that the stronger congruence is satisfied for any totally odd character 1 except

possibly if it is totally unramified, i.e. factors through the narrow Hilbert class group.

Proof. By continuity, we may assume v is locally constant; thus, we can represent the elements in 3 by actual principal ideals at
some fixed level 2* for some sufficiently large integer k, and we may consider integrals of totally odd functions 1 on M, (2k) against

the image of (> considered in D(M ok, Z2).

Note that if 1 is totally odd, then D*) is totally odd on the “cell” G/(or)p—1 for each k (noting that the cell decomposition is
Y-equivariant). Thus, it suffices to prove the theorem separately for odd functions supported on each of these open cells, together

with functions inflated from the unramified quotient M (20) = M; =~ (G4, by a similar argument as before.

In the former case, note that we always want divisibility by 2", as remarked in the theorem statement. We consider Dz ' ¢, €
D(G (2xyp-1,Z2) for some 9[(2"). The exponent k can be chosen to be any sufficiently large integer for v to be well-defined, so
without loss of generality, we may consider k sufficiently large so that 3 acts freely on G (gr)5-1. Then, by Proposition 4.15, for
o e = {+1}5%, we have [0]4.(2 = No - (. This means (s lies in the invariant submodule (D (Ggry-1, Zo)(IN))® (where we
have written a norm twist on the X-action), since multiplication by a generator (in G5r,-1) of o is orientation preserving exactly
when No = +1 by definition; the same is then true for D' .(; by Y-equivariance of D. We then have the exact sequence in Tate
cohomology

D(Gary 1+ Z2) (N) X2 (D(Gary 1, Z2) (N))® — HY(S,D(Gorg 1, Z2)(N)) = 0.

Here,

NE:ZU

oex

is the norm map for %, and the vanishing is by Shapiro’s lemma for Tate cohomology, since ¥ acts freely on D(Ggry-1,Z2)(N).
We thus have proven that the image of (2 in D(Gary-1,Z2)(IN) is divisible by >} __s. o, and [Gro, Lemma 5.3] implies that the

evaluation against any totally odd 1) on G'axy—1 is divisible by 2.

Finally, we consider the more delicate case, in which ¢ is inflated from M. We fix a rank-(n—1) subgroup U/ < U containing U+
such that U =~ Uf x{£1};let [U/ : U*] = 2°. We fix a fundamental class c;; such that the corestriction of coresgi cu+ = 2%cys.
Then for ¥; the image of ¥ in Gy, we have |¥;| = 277571,

If we now define cﬁé, for 1 < i < h, to be the image of

c@dR(Ozi) A caUl}

in D(15/U*, Zy)(N)y s ,u+, and similarly
h .
cef = Z f*ceg € D(MQOO,ZQ)(N)Uf/U+7
i=1

I5Note that the sum here is over the wide class group, and that this is well-defined for odd % only because of the reduction modulo 2.
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then we can identify 2 .01 with the image of (" under the natural quotient
D (M, Z2)(N) = D (M, Z2)(N) s o7+ -

Note that because ¢ is unramified, it factors through it factors through the quotient to D(G1,Z2)(N), which factors through the
quotient above. Write (0[1]4 for the image of (64" in D(G1, Z2)(N); Proposition 4.15 implies it is ¥ -invariant, as in the ramified
case. Then also as before, we have the sequence in Tate cohomology
N 1
D(G1,Z)(N) = (D(G1,Z2)(N))™* — H(£1,D(G1,Z2)(N)) = 0,
from which it follows (as in the ramified case) using [Gro, Lemma 5.3] that |3 | = 2" =51 divides (0[1]% (1)), and thus (1" () is
always divisible by 271,

If F' contains a unit of negative norm, then all the unramified totally odd L-values are zero, so improving this divisibility to 2"
becomes a trivial statement. To understand the extra divisibility when 6(¢)) = 0 as in the theorem statement, then following [Gro],
we can explicate the preceding cohomological calculation as follows: there then exists a lift (under Nx;) of (6[1]%" to some element

~F
A[1], € D(G1,Z3), such that we have a commutative diagram

D(G1,Z3)(N) 2, Za(v)

(4.33) lNZ lxzwfl
D(G1,Z2)(N) 2, Za(v)

~F

for any totally odd . Thus, to get an extra divisibility by 2 of (0[1]4 (¢), it would suffice to show that [1], (¢/) is divisible by 2.

But observe that reduced modulo 2, Ny, actually factors through the quotient

D(G1,Z/2)(N)s, - D(G1/%1,Z/2).

~—F

In this quotient, the image of the reduction of .6[1], modulo 2 is simply given by the formula for the map ¢ from the theorem

statement. Then the condition that the evaluation of this at 1) exactly becomes 6(v) = 0, as desired.

Observe now that the quantity

s ()
gn—1
is actually independent of the choice of totally odd function ¢» with §(1)) = 1, since the difference of two such functions has image

(mod 2)

under J equal to zero. In this case, one can calculate directly from the Dirichlet series that as a function of ¢, the above expression

actually gives a homomorphism G- — 7,/2 (see [DR, (8.11)]).1¢

Deligne—Ribet are able to prove that this homomorphism is nontrivial if and only if F' is exceptional, and that in this case, it is the
Artin reciprocity map for the Kummer extension M /F' (as in the theorem statement). From this, the theorem’s characterization of
the remaining cases in which we have divisibility by 2" in the unramified case follow. A purely cohomological account for these

class field-theoretic interpretations eludes us, but we would be very interested to learn one. O
APPENDIX A. COMPARISON WITH A CYCLOTOMIC EQUIVARIANT POLYLOGARITHM
In this appendix, working over the complex numbers, we argue that our de Rham left cohomology class
0% (n) € H" *(SL,(Z), Mgn /{dlog 21 A ...dlog z,))

1Note that this would correspond to a stabilization identity similar to Proposition 4.22 in our setting, but since we already have proven the interpolation property,
it also follows more simply from the identity of complex L-values.
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coincides with the right cohomology class
Smun[{1}] € H"™'(SLn(Z), Mgy,)

of [ , Théoréme 1.7], under the anti-involution v +> v~ of SL,,(Z). This latter class is only well-defined up to the ambiguity
H"1(SL,(Z),C), so what we really mean by this is that S,,,;;[{1}] coincides with the H"~!(SL, (%), C)-torsor of lifts of

©7%(n) defined from transgressions of the Euler class.
To briefly recall the definition of S,,.,;¢[{1}], it is obtained from an equivariant (“polylogarithm”) cohomology class

Z, e B\ (G, — {13,0)©

which is characterized (up to ambiguity H2" ' (G?,,C)(?)) by having image a positive generator of {1} € H2"({1}) under the
residue map, along with its trace-invariance. Then if H < (G, is a suitable set of hyperplanes through zero, the image of Z,, under
the edge map

HEY(Gy, — H,C)© — H" (T, H" (G}, — H)Y)
together with a “formality” isomorphism

H (G}, — H)© = (O, )

yields S, [0], up to the earlier-specified ambiguity.'’
Let

P> ... ...D™

be the distributional de Rham complex computing the de Rham cohomology of G} ; then the equivariant cohomology can be

computed by the double complex of inhomogeneous cochains C*(SL,,(Z), D*); see [RX2] or the author’s thesis [X].

Fix a A-extension E and an Euler transgression ¢ € C"~1(SL,(Z), C); then one computes by the Poincaré-Lelong formula that

the map
[AE(Tl,...,m)]»—»(rl rk)*(dlog)w{l—zl,...,l—zk}

is a SL,, (Z)-equivariant map Chains(n), — D2"~*. Then the sum of the lifts from Lemma 2.5
b+l +...+ 4, — ¢ (dlog)""{—21,...,—2k}

is a trace-fixed class which has total coboundary {1}, and hence represents Z,,. Its image under the Hochschild-Serre edge map
is (dlog)"*0p 4(n), valued in trace-invariant holomorphic forms, and which therefore is identified with Sy,,¢[{1}] under the

formality isomorphism up to the specified ambiguity.

By the same argument, using a stabilized equivariant class . Z,,, the class .O%%(n) coincides with S, ,i¢ [ — {1}], where now the
hyperplanes H can be taken to avoid lines through p; (and thus the resulting cohomology class extends holomorphically over all
p-power torsion). (If one does this with c-smoothing rather than c-avoiding, one also can eliminate the ambiguity coming from the

orientation obstruction.)

APPENDIX B. DUALITY IN RESTRICTED TITS BUILDINGS

In this appendix, we prove that §6,£©5%(n) and (»*)2©5!(n) yield the same class in H"~*(GL,(Z), (+*)2St(n)). To give the

idea of the argument, we first treat the unstabilized version: observe that the unstabilized duality map  of Proposition 4.8 descends

17Using instead the approach of Kings-Sprang [KS] and starting with a polylogarithm class in coherent cohomology instead, the formality isomorphism can be
avoided.
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to a GL,,(Q)-equivariant map

§:St(n) > (**)St(n), [li] Ao Aln] =[] A oo A 6]

n

by the same argument in Proposition 4.18. It is indeed also the case that'®
(B.1) 505" (n) = —(x*)©%"(n) € H" 1 (GL,(Q), (+*)St(n)).

To see this, let T}, be the Tits building for GL,,(Q): the (n — 2)-dimensional simplicial complex whose i-simplices are proper flags

of length 7 in Q", i.e. chains of proper inclusions of proper nonzero subspaces of Q™
Vic...cV

The Solomon-Tits theorem says that 7T}, has the homotopy type of a wedge of (n—2)-spheres. The group GL,, (Q) acts on T}, via its

standard action on Q”, and the only nontrivial reduced homology group H, n—2(Ty) is then a model for the Steinberg representation
St(n).

To describe the identification

St(n) — anz(Tn)»
we note that given the standard set on [n] elements {1,2,...,n}, we can form the standard (n — 1)-simplex A"~! whose i-faces
correspond to the (7 + 1)-subsets of [n], and inclusion of sets corresponds to the face relation. Then its first barycentric subdivision
sd A"~ is also a contractible (n — 1)-simplicial complex whose i-simplices are flags of non-empty subsets (i.e. chains of subsets
of [n] under proper inclusion).Then, as shown in [AR], the generator [¢1] A ... A [£,] (in our previous Orlik-Solomon-based
notation) is identified with the image of the fundamental class (for the orientation corresponding to the usual order on [n]) under

the simplex map
(B.2) osd A" > T,

corresponding to the set £1,...,¢,, where we identify for example the flag of subsets [1] < [1,3] < [1,3,4] with the flag of
subspaces (¢1) < (l1,€3) < {l1, L3, 04).

Then the point is that using the lifting process in Lemma 2.5, one straightforwardly computes that the class 6#°%(n) arises by
lifting the GL,, (Q)-fixed element 1 € Z along the map H°(GL, (Q),Z) — H" '(GL,(Q), H,_5(T})) coming from the exact

doubly-augmented homology complex
(B.3) C(Tn)e := Hy_o(T}) = Cpo(Ty) — ... — Co(Ty) — Z,
in the same way as we previously did with the Orlik-Solomon complex.

The Tits building admits an automorphism d7 : T, — T}, sending a vertex corresponding to a subspace V' < Q" to its orthogonal
complement V- under the standard inner product, and similarly on the simplices corresponding to flags (where L reverses the
inclusion chains). Further, one checks that this automorphism sends the top-degree homology class corresponding to the symbol

(1] Ao A [l]to =[] A ... A [€)]; hence, it induces the automorphism 6 on St(n).

As with the duality map §, the map 7 is not GL,,(Q)-equivariant, but it is GL,,(Q)-equivariant for the x-twisted action on the

target, so induces an equivariant automorphism of homology complexes

(07)s : C(Tn)e = (+*)C(Tn)s

18gce following footnote.
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which evidently fixes the class of 1 € 7Z, and hence the corresponding derived classes in top homology. From this, the duality

relation (B.1) follows immediately.'”

To attack the stabilized case, let (b)) = b N Z, (¢) = ¢ n Z, and fix a c-torsion line A and a b-torsion line y such that neither is

the reduction of the basis vector e;; let I' = GL,,(Z) be the congruence subgroup fixing A~ and 1, so that xI' = GL,,(Z) is the

subgroup fixing A and p. Then write ;\f 65%(n) for the T'-cocycle

N
Y1y oy 1) = [71 - Yn—1€1] A oo A [11e1] A [e1] € ﬁ St(n)
ad f;l ©5t(n) for its corresponding class in H" (T, f St(n)); switching the roles of ¢ and b, we can analogously produce
L 1 L
[ 05 (n)] = &~ ©5t(n) € B (D', St(n)).

Then Shapiro’s lemma reduces Proposition 4.19 to proving that*’

(B.4) (59)s w0 (n) = —(+*)5 5 (n) € H""1(T, (+*)} St(n))
where we we are restricting 6 to the summand ;\f St(n), which it precisely maps to the summand *ALL St(n).

Let QL T, be the restricted Tits building consisting of the induced subcomplex of 7;, on the vertices corresponding to subspaces
which do not contain the line y modulo d, and are not contained in AL modulo ¢; let éf T,, be similar, but switching the role of A

and p, c and b.

We write C (;\LL T,)e and C (ﬁL T,.)« for the respective doubly-augmented homology complexes of the form (B.3). Then the auto-

. . < + .
morphism d7 of T}, restricts to a map f; T, — % T,, and hence a I'-equivariant map

(61)s : C Th)e = (O T).

14
1
It remains only to prove that f;l T, and § T, have reduced homology concentrated only in top degree, such that that we have an

P ~ il o o L
identification i‘bl St(n) — n,g(f; T,,) fitting in a I'-equivariant commutative diagram

1 ~ ~ €1
;\L St(n) —— Hn,g(ﬁ T,)

(B.5) j l

and similarly for ﬁlTn and *I'. The conclusion would then follow by the same argument as the unstabilized case.

Since the two cases are symmetric in swapping A and u, ¢ and d, we may as well focus only on the former case. Indeed, we note

that the conditions defining ,’)l St(n) precisely state that it is generated by symbols

(1] Ao A 0]

191f we take de Rham realizations of St(n) directly using this duality, we obtain that (x*)©%R (n) agrees with
(=1)"21...2n
1—21)...(1—2zn)

(Y1, m—1) — (e yie ... 71...%,1@)(

if taken to be valued in Mgn (— det) (9) modulo the GL, (Q)-orbit of classes of the form

(dlog)A"{le, ceey =20, 1 — Ritlye s 1- Z’n}7
i.e. the image of all wedges (or, dually and equivalently, the Shintani generating functions of all lower-dimensional cones). The latter class is precisely the “naive
Shintani cocycle” which [LP] proves is a cocycle modulo precisely these same relations.

20The appearance of the extra sign here, as well as in the unstabilized version (B.1), is explained by the fact that avoiding comes from lifting the sum over nontrivial
torsion sections, smoothing comes from negative the sum over the nontrivial characters.

57



XU SYMBOLS FOR TORIC EISENSTEIN COCYCLES

for which no line is contained in the A* modulo ¢, and no < (n — 1)-subtuple span contains z modulo b. Thus, the simplex map
(B.2) exists and makes sense when restricted to subspaces for the vertices of ;/Y T,, satisfying all the Steinberg relations by the
same arguments in [AR]. This definition for the top arrow evidently is I'-equivariant and makes the diagram above commute, so

the only thing that remains to prove is that it is an isomorphism.

Let us write St(n, F.), St(n,F,) for the Steinberg representation for lines modulo ¢, b respectively, and At St(n,Fe), ,St(n,Fy)
for the same with the corresponding local conditions from the definition of QL St(n).?! Then by definition, we have a Cartesian

square

A"St(n) St(n)

(B.6) l l

A St(n, Fo) @ ,St(n,Fy) — St(n,F,) @ St(n, Fy)

Likewise, let T}, (F.), T,,(F5) be the Tits buildings built from subspaces of Fy, F}}, and ALT,L(IF‘C), u T (Fy) the induced subcom-

plexes on subspaces not contained in A, respectively not containing 1. Then we have a Cartesian square of simplicial complexes

)\L
AT, T,

(B.7) l J

)‘LTn (Fe) @ . Tn(Fp) —— To(Fe) ® T (Fyp)

which leads to a Cartesian square also of the corresponding doubly-augmented homology complexes, and hence of the top-degree
ﬁn_g groups, by the Kiinneth theorem. The left column of (B.6) is isomorphic to the ﬁn_g of the left column of (B.7) via the

simplex maps (B.2); thus, if the same simplex map also induces isomorphisms

(B.8) N St(n,Fe) > Hy_o(N Ta(F.)), uSt(n, Fy) => Hyy_o(, T (Fy))

)\J_
nw
automorphism V'~ V1 (and replacing c by b, etc.) so it suffices to prove the former. Indeed, this identification follows by the

then we also have our desired identification ;/)L St(n) <> H,_»( T,). The maps (B.8) are symmetric to one another under the
identification of the algebras </ and 4 in [OS]: in particular, see the remark on p. 3 relating the Orlik-Solomon complex (<) to
the construction of Steinberg modules from simplicial complexes in [I.] (agreeing with the construction of .2 in top degree); in the

notation of loc. cit., our restricted Tits building is denoted T'(F?, )\L), labeled case (b) on p. 551.
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