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ABSTRACT. Using a complex parameterizing rational spherical chains, we construct explicit cocycles for GLnpQq valued in the motivic

cohomology of (open subsets of) the algebraic n-torus Gn
m. The resulting cocycles directly generalize the work of Sharifi and Venkatesh

from the case n “ 2. Even in this special case, our systematic use of pushforwards allows us to avoid the use of their “connecting sequences,”

and allows us to refine the construction and Hecke properties of Sharifi’s mapϖ to the maximal expected statements, while inverting only the

prime 2. For general n, the d log regulator of our cocycle is related by convex conical duality to cocycles constructed from Shintani cones.

This affords a systematic approach to p-adic L-functions for totally real fields without need for auxiliary data or logarithm sheaf coefficients,

including a distribution-valued GLnpZq-cocycle specializing in a simple way to all such p-adic L-functions. It moreover provides a direct

conceptual link between polylogarithmic constructions of Eisenstein classes (e.g., Beilinson–Kings–Levin), and those constructed using

Shintani cones (e.g., Charollois–Dasgupta–Greenberg or Dasgupta–Spiess). We also show how our formalism gives an alternate, purely

algebraic proof of the exceptional divisibilities of the Deligne-Ribet 2-adic L-function (in almost all cases).
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1. INTRODUCTION

The degree-n Milnor K-theory of a field F , denoted KM
n pF q, is a quotient of Fˆ b . . . b Fˆ by certain (“Steinberg”) relations,

with a general element written tf1, . . . , fnu for f1, . . . , fn P Fˆ. When F “ Qpz1, . . . , znq, which we think of as the fraction

field of the n-fold power of the multiplicative group Gnm, the simple-looking elements given by GLn-translates of

t1 ´ z1, . . . , 1 ´ znu,

contain surprisingly interesting arithmetic information: for n “ 1, specializing them at N th-roots of unity leads to N -cyclotomic

units, and when n “ 2, similar specializations are also important in cyclotomic Iwasawa theory, and in particular the Sharifi

conjectures. For n ą 2, the specializations in K-theory are not as interesting, but one can formally take the coordinate-wise

logarithmic derivative of these Milnor K-theory elements to get generating series which look like

e2πipt1`...`tnq

p1 ´ e2πit1q . . . p1 ´ e2πitnq

where zi “ e2πiti , 1 ď i ď n, which are generating series of generalized Bernoulli numbers. For n “ 1, the Mellin transform of

this series is used classically in the integral representation of the Riemann zeta function

ξpsq :“ Γps{2qζpsq “

ż 8

0

xs

ex ´ 1

dx

x

and thereby to prove the functional equation and find rational formulas for its values at negative integers; in the general case, this

method was generalized by Shintani to to L-values of totally real fields of degree n [Shin], using a formalism which viewed these

series as generating series associated to rational polyhedral cones in Rn (which is often called the “Shintani method”).

In [SV], with applications to the Sharifi conjectures in mind, the authors construct 1-cocycles for GL2pZq and its congruence

subgroups, taking values in elements like t1 ´ z1, 1 ´ z2u in the second Milnor K-group KM
2 pkpG2

mqq. In this article, we

generalize their approach by constructing analogous cocycles for (subgroups of) GLnpQq valued in KM
n pkpGnmqq, or various

refinements/specializations thereof. When n “ 2, our formalism enables us to to improve on their results and obtain new integrality

and Hecke equivariance properties for one of the maps in the Sharifi conjectures, while at the same time being more geometrically-

flavored and requiring fewer technical computations.

The d log regulator of our cocycle yields a new construction of an “Eisenstein cocycle” containing a large amount of interesting

arithmetic information, closely related to many previous cocycles appearing in the literature. In particular, our cocycles bear a

“conical dual” relation to cocycles constructed based on Shintani’s techniques, which we will exploit to give a systematic treatment

of the integrality properties of L-values for totally real fields, including a conceptual proof of “exceptional“ 2-adic divisibilities

previously only known by explicit automorphic computations.

1.1. Relation to existing work. The primary inspiration for the methods of this article was the motivic GL2pZq-Eisenstein cocycle

defined by [SV]: our main symbol construction can in large part be seen as an extension of the method of [SV, §5] from n “ 2
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to general n, though they use toric geometry in place of Bloch cycles to prove relations, and do not work with pushforwards. In

the arithmetically interesting case n “ 2, we are able to refine their result by computing that the Hecke action is the expected

one on a certain modular symbol, rather than just a cohomology class. In particular, we use a new method to obtain a Hecke-

equivariant map on homology of the modular curve relative to cusps, rather than on the closed modular curve. Using our tools, we

are also able to directly compute the Hecke actions at primes dividing the level while only inverting the prime 2, improving on both

Sharifi-Venkatesh’s results as well as the work of Lecouturier-Wang [LcW] on operators dividing the level.

Also closely related to the present work is the approach of Shintani [Shin] using rational generating functions associated to rational

polyhedral cones, originally formulated in a non-cohomological way to compute L-values of totally real fields. Eisenstein cocycles

built on this approach have previously appeared in the literature, e.g. in [SH], [CD] and [CDG], [Hill], and [LP], but our approach

is more systematic: besides being equally applicable to the motivic setting, we are able to quotient by very few relations in the

coefficients, and do not need auxiliary data like lexicographic orderings (as in Richard Hill’s approach [Hill]) or perturbations (as

in the cocycle of Charollois-Dasgupta-Greenberg [CDG], after an idea of Colmez); this extra data implicitly appears only in the

“degenerate” values of a choice of cocycle representative.

We achieve this by working with a symbol complex of spherical chains, whose realizations are related to pushforwards of gen-

erating functions of the dual cones to those considered by Shintani. In fact, our symbol complex construction is more directly

tied to “polylogarithmic” constructions of Eisenstein classes, as in the work of Beilinson-Kings-Levin [BKL] as well as Bergeron-

Charollois-Garcia [BCG1] [BCG2], a term we use to refer to Eisenstein classes constructed by specifying residues along torsion

cycles in some algebraic or topological group. We make this relationship precise in Appendix A. The terminology “polylogarith-

mic” reflects that the more general versions of these cocycles (as in [BKL]) use coefficients in a large “logarithm” sheaf in order

to obtain a direct relation to higher-weight specializations of Eisenstein series, which is necessary to prove the higher-weight inter-

polation for the corresponding constructions of p-adic L-functions. (We also note that [BHYY] relatedly constructs a equivariant

polylogarithm class in Deligne cohomology of the torus corresponding to a totally real field, which as noted in Remark 3.3, should

be the restriction of the Deligne regulator of our motivic class Θpnq upon projection to constant coefficients.)

These polylogarithmic-type constructions generally are closely linked to actual analytic Eisenstein series representatives, while the

connection between Shintani-style constructions and actual Eisenstein series is largely more indirect. For example, Cassou-Noguès’

[CN] approach to p-adic L-functions using Shintani’s method produces the same objects as the approach of Deligne-Ribet [DR]

using Hilbert-Eisenstein families, since they interpolate the same L-values, but the conceptual link between the two approaches is

not clarified by this. By producing a cocycle which is both polylogarithmic (from Appendix A) and related by conical duality to

Shintani generating series, we bridge this gap. The relation to Shintani’s method also allows us to prove the interpolation property

of our p-adic L-functions at higher weights using only trivial coefficients, rather than logarithm sheaf.

We also bridge a gap between the p-adic congruences obtained by [DR] and [CN]: the former obtains extra 2-adic divisibilities

coming from a computation of the constant term of Hilbert-Eisenstein series. The issue of whether these could be “seen” by

a Shintani cone approach was already raised in [DR]; this was also considered by Gross [Gro], who put it into an equivariant

algebraic framework, and very recently by Colmez [Col], who obtained partial progress (see Théorème 3.22, Remarque 3.23 in

loc. cit). Our algebraic setup leads to a proof of the full 2-adic divisibility, except in the particularly delicate case of unramified

totally odd characters at weight s “ 0; see Theorem 1.4.

Finally, to review the relation of our cocycle with a few others not yet mentioned: in the motivic setting, Lim and Park [LP] based

off an idea of Stevens [Ste2], also construct a cocycle valued in Milnor K-theory of a ring of “trigonometric functions”. Their

construction is a complex-analytic and “infinite level”, with their ring of trigonometric functions corresponding to the functions

on a pro-tower of algebraic tori over all finite isogenies; however, like other previous Shintani-style approaches [CDG] and [Hill],
3
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their construction is “conical dual” to ours, and involves addditional quotients by relations. The duality relation they exhibit in [LP,

§3], between the regulator of their motivic cocycle and a naive version of the Shintani cocycle of [Hill], inspired our understanding

of the conical duality linking our construction to previous ones in the literature.

1.2. Structure of the paper. We briefly the structure of the paper: the preliminaries consist of a review of needed facts on motivic

cohomology in Section 2.1, followed by the construction of the symbol complex and resulting cocycles in Sections 2.2 and 2.3.

Section 3, on the motivic cocycle and applications, and Section 4, on the de Rham cocycle and applications, are mostly independent;

readers interested in one or the other may safely skip around and refer back to the preliminary sections as needed. The only major

exception is that existence of the de Rham cocycle is proven using Theorem 3.1 in the motivic section, since we construct the de

Rham cocycle as the regulator of the motivic one.

1.3. Summary of methods and results. We now give more precise formulations of our results and arguments, to the extent

possible without introducing excessive technical background.

Our main initial construction is:

Theorem 1.1. There exists a Milnor K-theory-valued cohomology class

Θpnq P Hn´1pGLnpQq,KM
n pQpz˘

1 , . . . , z
˘
n qq{t´z1, . . . ,´znuq

with a homogeneous cocycle representative given by

pγ1, . . . , γnq ÞÑ

´

ℓ1 . . . ℓn

¯

˚
t1 ´ z1, . . . , 1 ´ znu

for any γ1, . . . , γn whose respective first columns pℓ1, . . . , ℓnq are linearly independent.

This theorem was previously proven for n “ 2 in [SV]. Our method, which is a variant of the approach in [SV, §5], is to construct

an explicit GLnpQq-module of symbols Cpnq parameterizing elements in KM
n pQpz˘

1 , . . . , z
˘
n qq{t´z1, . . . ,´znu. We refer to

these as symbols, as they are in an explicit combinatorial way and are easy to write down.

The module Cpnq is constructed as the top-degree chains of a chain complex computing the homology of the pn ´ 1q-sphere,

modulo the fundamental class, which we refer to as the symbol complex. The GLnpQq-action on the resulting length-pn ` 1q

exact complex yields explicit pn´ 1q-cocycles via a lifting process, all representing the cohomology class. Readers interested only

in arithmetic applications may safely skip the details, referring only when needed to the characterization of the symbol complex

Chainspnq in Proposition 2.4.

Most of the work of constructing Θpnq is in proving that the relations are satisfied in Milnor K-theory, which we prove by

constructing explicit corresponding boundaries in a cohomology complex (the Bloch cycle complex) computing Milnor K-theory.

The details of this realization are in section 3.1. Notably, our systematic use of pushforwards in the realization maps allows us both

to extend our cocycle to GLnpQq (rather than just GLnpZq), and to avoid the technicalities of the “connecting sequences” used in

[SV], as we can work directly with non-unimodular symbols instead of needing to decompose them into unimodular ones. This

also enables our simpler treatment of Hecke actions (see below).

As in [SV, §5], we also consider variants of the construction in this section, there are various methods by which one can remove

the necessity of quotienting by t´z1, . . . ,´znu, (though usually one gives up something else; e.g. inverting primes). Conversely,

by quotienting out by more relations, one can obtain an parabolic version of Θpnq. Our use of symbol complexes makes it possible

to understand systematically what modifications are required for each of these variants.
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1.3.1. Application to Sharifi maps. In particular, a modular symbol variant of the cocycle has the following application: in the

case n “ 2, Sharifi and Venkatesh use their parabolic cocycle to construct and prove the Eisenstein property of one of the maps

which figures in the eponymous Sharifi conjectures, relating the homology of modular curves and algebraic K-theory of rings of

integers in cyclotomic fields. Their methods produce the desired map in the form

ΠN : H1pX1pNq,Zq Ñ K2pZr1{N, ζN sq b Zr1{2s

which is Eisenstein for the anemic Hecke operators only, i.e. factors through the quotient by the operators Tℓ ´ 1 ´ ℓxℓy for ℓ ∤ N .

The Sharifi conjectures concern an explicitly constructed map

Π˝
N : H1pX1pNq, C˝

1 pNq,Zq Ñ K2pZr1{N, ζN sq b Zr1{2s, ru : vs ÞÑ t1 ´ ζuN , 1 ´ ζvNu

on the larger cohomology group relative to the set of cusps C˝
1 pNq not in the Γ0pNq-orbit of 8, and work of Fukaya-Kato [FK]

showed that for p|N , the complex conjugation-fixed (“plus”) version of this map, denoted by subscript `,

pΠ˝
N q` b Zp : H1pX1pNq, C˝

1 pNq,Zpq` Ñ pK2pZr1{N, ζN sq b Zpq`

given by the formula

ru : vs ÞÑ t1 ´ ζuN , 1 ´ ζvNu` :“
1

2
pt1 ´ ζuN , 1 ´ ζvNu ` t1 ´ ζ´u

N , 1 ´ ζ´v
N uq

factored through not only the anemic Eisenstein operators Tℓ ´ 1´ ℓxℓy, but also Up ´ 1 whenever p|N . Thus, Sharifi-Venkatesh’s

work improved on this by constructing an anemically Eisenstein map with Zr1{2s-coefficients, and not only on the plus part.

However, they were unable to compute the action of the Hecke operators dividing the level, or to define it on the larger relative

cohomology group as in Π˝
N . Later, [LcW] combined the methods of Sharifi-Venkatesh and Fukaya-Kato to show that the map

ΠN b Zr1{6s factors through the non-anemic Hecke operators Uℓ ´ 1 for ℓ|N , again only on the plus part.

After “spreading out” the pullback of the modular symbol variant of our cocycle ΘMSp2q in order to pull it back by an N th root of

unity, we are able to obtain the improved result:

Theorem 1.2. The map

pΠ˝
N q` : H1pX1pNq, C˝

1 pNq,Zq Ñ K2pZr1{N, ζN sq b Zr1{2s

factors through both T˚
p ´ p´ xpy for p ∤ N and Up ´ 1 for p|N . Further, the diamond operator xdy acts as pullback by the Galois

automorphism rds : ζN ÞÑ ζdN for all d P pZ{Nqˆ.

Additionally, if N is a power of a prime, or if we further restrict the set of cusps to exclude Γ0ppq-orbit of 8 for all p|N , then all

of this holds even for the map Π˝
N , without projecting to the ` part.

The point is that these relative homology groups are naturally Γ1pNq-subquotients of the Steinberg module Stp2q, consisting of

mass-zero finite functions on P1pQq; this, in turn, is a GL2pQq-equivariant quotient of our spherical chains module Cpnq. Our

realization map allows us to understand precisely what elements in K-theory we need to quotient by to have these extra Steinberg

relations, resulting in a GLnpQq-equivariant modular symbol

ΘMSp2q : Stp2q Ñ K2pkpG2
mqq{extra relations

and which pulls back, upon restriction to Γ1pNq-level, to a modular symbol

Stp2qΓ1pNq Ñ K2pZr1{N, ζN sq{extra relations b Zr 12 s

5
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where these extra relations are trivial with Zr 12 s-coefficients upon projection to the plus part (or are already zero, in the special case

noted in the theorem).

Moreover, the Hecke action can be computed directly on the modular symbol ΘMSp2q (without ever passing to a cohomology

class), in terms of a simple geometric operation on the torsion sections used to pullback. This enables us to compute the Hecke

action at all primes; we find the Eisenstein property holds if one restricts the set of cusps as indicated in the theorem. We further

give a geometric interpretation and proof of the N -integrality of a restriction of Π˝
N to the homology of the closed curve X1pNq,

which previously had been proven computationally [SV, Lemma 4.2.7] [FK, Lemma 3.3.11].

1.3.2. Application to L-values. We now turn to the regulator of Θpnq, i.e. its composition with the map

tf1, . . . , fnu ÞÑ d log f1 ^ . . .^ d log fn P ΩnkpGn
mq.

After contracting with the SLnpQq-invariant vector Bz1 ^ . . .^ Bzn, the resulting de Rham cocycle ΘdRpnq is valued in precisely

the same kind of generating functions associated by Shintani [Shin] to arrangements of cones, closely related to L-functions of

totally real fields. However, the generating function associated to the class of a rational simplex ∆ Ă Sn´1 on the pn ´ 1q-sphere

is not the generating function of the associated (open) cone, but to its dual cone: that is, formally, to the sum

pt1, . . . , tnq ÞÑ
ÿ

xPZn

xx,Rě0∆yą0

e2πixx,ty

rather than

pt1, . . . , tnq ÞÑ
ÿ

xPZnXRą0∆

e2πixx,ty,

where x´,´y is the usual inner product, and we identify a region of Sn´1 with the space of rays in its R`-span. In [CDG], for

example, the Shintani generating function associated to the anisotropic torus associated to a totally real field F of degree n is of the

latter form (and also involves delicate choices of lower-dimensional cones), while the specialization of our ΘdRpnq|Oˆ
F

is of the

former. However, we are able to show that L-value specializations of the latter type of series are the same as those coming from

ours ΘdR|Oˆ
F

, if one takes the inverse transpose of the embedding Oˆ
F ãÑ GLnpZq: this reflects the underlying conical duality,

and involves a technical argument using stabilized versions of our symbol complex at an auxiliary prime, as well as a geometric

incarnation of conical duality in the Tits building of GLn (see Appendix B).

As a result of the smoothing, we are able to pull back ΘdRpnq along all torsion sections, and hence obtain a single class valued in

distributions which we can show specializes to all different p-adic L-functions associated to totally real fields of degree n:

Theorem 1.3 (Theorem 4.16). For each integer c ą 1 prime to a prime p, there exists a cohomology class valued in a certain

space of p-adic distributions (see Section 4.1.2 and the formula (4.11) for notational details)

cΘ
dR
Dp

pnq P Hn´1pGLnpZq,Dp0qppQnp q_,Zpqpsgnqp0qq,

such that if F is a totally real field with rF : Qs “ n and α : I
„

ÝÑ pZnq_ is a choice of dual basis for a fractional ideal I Ă F ,

then the restriction of cΘdRDp
pnq to the resulting embedded copy of U` :“ pOˆ

F q` ãÑ GLnpZq satisfies

p´1qn´1

ż

pQn
p q_

ψpα´1ptqqNF
Q pα´1ptqqk dpcΘ

dR
Dp

pnq|U` " cU` q “ ζIpψ,´kq ´ cnζpcqIpψ,´kq

6



XU SYMBOLS FOR TORIC EISENSTEIN COCYCLES

for any function ψ : I`{U` Ñ Qp locally constant in the p-adic topology.1 Here cU` is a fundamental class of U` – Zn´1,

positively oriented in an appropriate sense, and

ζIpψ,´kq :“

¨

˝

ÿ

λPI`{U`

ψpλqNλ´s

˛

‚

s“´k

is a partial zeta value for I .

The fact that we use Shintani’s method (in Section 4.2 onward) to prove the p-adic interpolation is of note, when juxtaposed with

our “polylogarithmic”-style construction (see Appendix A) of our classes. Previously, [BKL] constructed p-adic L-functions for

totally real fields using Eisenstein classes constructed polylogarithmically on topological tori pS1qn, but needed coefficients in the

logarithm sheaf to prove the interpolation property at higher weights; the direct relationship with Shintani’s method allows us to

avoid this.

Finally, we remark that we can also obtain S-arithmetic or even GLnpQq versions of this class, and representing cocycles (maybe

after inverting primes in the coefficients). We do not go into S-arithmetic applications in this article, so this is only covered in

passing; however, for example, we expect it to give an alternative approach to the rigid analytic cocycles of [RX2].

The construction of p-adic L-functions by Deligne-Ribet [DR] also proved extra divisibilities at the prime 2 for certain L-values

“with parity”; it remained an open question whether approaches using Shintani cones (like [CN], contemporaneously) could “see”

these extra congruences; for example, this was considered by Gross [Gro, Proposition 5.4] (who formulated it in algebraic terms

quite related to our distributions) and Colmez [Col, Théorème 3.22] (who proved a slightly weaker statement). We prove the full

expected congruence for the values we are able to interpolate:

Theorem 1.4 (Theorem 4.23, analogue of (8.11–12) in [DR]). Let ψ : G28 Ñ Q2 be a totally odd continuous function on the

28-narrow ray class group of F . Then, for our 2-adic zeta element cζ
F
2 constructed in Section 4.3.4, we have the congruence

ż

Gp8

ψpJq dcζ
F
2 pJq ” 0 pmod 2nq.

This theorem follows in a very formal way from our setup; as such, by comparison with the method of [DR], one could view

it as a “cohomological explanation” for the appearance of 2n in the constant term of Hilbert–Eisenstein series. As in [DR], we

in fact prove the theorem for more general functions on a monoid of ideals strictly larger than the p8-ray class group. In this

more general setting, the congruence is slightly more subtle and is only modulo 2n´1 in some cases, requiring some more delicate

considerations in class field theory. We are able to prove this more delicate statement using our purely algebraic methods, except

for in some particularly subtle cases: see Theorem 4.23 for the precise statement and more discussion of this.

Note that essentially identical results about L-values hold if one introduces ramification at some tame level N prime to p. Since

these results were already proven by [DR] and the main innovation of this paper is to exhibit “purely cohomological” reasons for

these congruences, we decided to focus on the case with no tame level to present the idea more simply. However, all our methods

generalize to the case of tame level, essentially without change.

1.4. Future work. The basic methods (parameterization by linear algebraic complexes of symbols) of this article apply, though

with some substantial changes, to the setting of elliptic polylogarithms: for example, the action of GLn{Q on the nth power of the

universal elliptic curve, or GLn{K on the nth power of an elliptic curve with CM by K. This elliptic case will be the subject of

1For reasons of brevity, we do not consider adding tame level - i.e., prime-to-p level - to our p-adic L-functions; however, the same constructions all work in this
generality as well.
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a sequel to this article. Working analytically over C, certain specializations of the former setting yield (after pullback by torsion

sections) the Siegel unit-valued modular symbols constructed in the recent work of [BPPS]. This elliptic case has analogous

applications to the arithmetic of totally real fields, as well as to the Sharifi conjectures for the pairs (GL3pQq,GL2pQq) and

(GL2pKq,GL1pKq) in the case of a CM field K, just as the present article deals with the case (GL2pQq,GL1pQq). In the setting

of Drinfeld modules for a function field F {Fq , we also use symbol complex methods to attack the case pGLnpF q,GLn´1pF qq, in

forthcoming joint work with the the first author of [SV].

Another question posed by [Katz] is the relation between Shintani cones and toroidal compactifications of Hilbert-Blumenthal

varieties; via Hirzebruch’s conjecture (now a theorem), this also is closely related to the same L-values studied by Deligne-Ribet

(as well as the present article). We would be interested in a group theoretic/geometric answer to this question, which seems related

to our cohomological methods.

Finally, we do not go into the relation of our cocycles to Gross-Stark units in this article, but it may be of interest to write down the

relationship carefully. As noted in Remark ??, we believe that our “de Rham cocycle” results in the same (smoothed) distributions

for totally real fields as one obtains from [CDG], for example, and thus should yield the same now-proven formulas for Gross-

Stark units of [DS] (thanks to the work of [DKSW]). These other existing cocycles are already perfectly sufficient for explicit

class field theory, but the very natural algebraic formulation of integrality properties in our approach could possibly offer benefits

of exposition, at least.

We do write down the relationship with Gross-Stark units of a closely-related cocycle (from the polylogarithm of a topological

torus) in the joint work [RX], as well as its relation to the rigid analytic cocycles of [DV]; in joint work in preparation, we will

relate that polylogarithmic cocycle to the one in this article.

1.5. Acknowledgements. Many thanks to Nicolas Bergeron, Marti Roset Julia, Romyar Sharifi, Timothy Smits, Jeehoon Park,

and Pierre Charollois for open ears, discussions, and suggestions.

2. PRELIMINARIES

2.1. Motivic cohomology. In this section, we recall some needed facts about motivic cohomology and Milnor K-theory. For a

smooth equidimensional scheme X over a discrete valuation ring (DVR) R, we will compute (or, for the purposes of this article,

define) the motivic cohomology HipX,Zpnqq as the cohomology HipX,ZpnqXq of Bloch’s weight-n cubical cycle complex

ZpnqX ; this is the approach followed in [Tot] and [GL], for example, over a field.

The Bloch cycle complex is defined as follows: let

z̃npX, iq :“ ZnpU ˆ 2iq

be the group of codimension-n cycles on X ˆ 2i meeting all faces properly. Here, 2i is the algebraic i-cube which we identify

with pP1 ´ t1uqn and the jth face map is given by the difference of the pullbacks to the subvarieties cut out by tj “ 0, respectively

tj “ 8; the alternating sum of face maps gives, as usual, a differential from z̃npX, iq to z̃npX, i´1q.2 It turns out that the resulting

complex splits into a direct sum

z̃npX, iq “ dnpU, iq ‘ znpX, iq

2In some conventions, 2i is identified with Ai, and the face maps are given by tj “ 0, 1 instead of 0,8. This differs from our convention by a Möbius
transformation; ours is the convention used by [Tot], and we we find it to be more convenient for later applications.
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where the former summand consists of degenerate cycles which can be pulled back from one of the faces of 2i given by tj “ 0,

and the latter summand consists of the reduced cycles which are in the kernel of of the restriction to each face tj “ 0. We define

pZpnqXqi :“ znpX, 2n´ iq.

This complex is suitably functorial for flat pullbacks and proper pushforwards.

More generally, over a Dedekind scheme base, we can define motivic cohomology as the hypercohomology of the Zariski sheafi-

fication of the Bloch complex: the fact that this coincides with our above (non-hypercohomology) definition for the Bloch cycle

complex was proven for fields as [FS, Corollary 12.2], and for DVRs in [Lev2]; consult these sources for details. The only fact we

need about this broader definition is the existence in this generality of a localization sequence:

Proposition 2.1 ([Geis]). If Z Ă X is a pair of smooth schemes embedded with pure codimension d, over a Dedekind domain,

then there is a localization sequence

. . . Ñ Hi´2dpZ,Zpn´ dqq Ñ HipX,Zpnqq Ñ HipX ´ Z,Zpnqq Ñ Hi`1´2dpZ,Zpn´ dqq Ñ . . .

This will be used to extend results about pullbacks of our motivic cocycles to bases larger than DVRs.

Remark 2.2. This article is not concerned with the minutiae of motivic constructions, so we only remark briefly on the technical

details we are glossing over in the above definition, in order to provide justifying references: first, this construction should more

properly be called Borel-Moore motivic homology; historically, Bloch called them “higher Chow groups”. For smooth schemes

over a field, higher Chow groups agree with the usual modern construction of motivic cohomology defined via Voevodsky-style

motivic complexes, thanks to the results in [V] and [FS]. Second, simplicial language is more standard than cubical (as in, e.g.,

[Geis]), but the two approaches are equivalent for formal reasons, as proven in [GL] over a field (though the proof works also over

a DVR).

When X “ SpecF , then [Tot] proves that there is a natural isomorphism

ψnX : HnpX,Zpnqq
„

ÝÑ KM
n pF q

between the degree-n, weight-n motivic cohomology and Milnor K-theory, which we recall is given in degree n by

KM
n pF q :“ pFˆ b . . .b Fˆq{I

where I is the degree-n part of the ideal in the free tensor algebra on Fˆ generated by x b p1 ´ xq for non-identity x P Fˆ. This

map is given on the level of the Bloch cycle complex as follows: for the class of an irreducible closed subvariety rZs P znpX,nq,

write p : Z Ñ X for the projection map; then we set

(2.1) ψnXpzq :“ p˚prt1 b . . .b tnsq P KnpF q

where p˚ is the finite pushforward (also called transfer map) in Milnor K-theory (as defined in [BaTa, §5]) for the map p, where

we recall the t‚ are the coordinate functions on the simplicial cube.

When n “ 1 above, the above discussion applies to more than fields: for any scheme X , the map H1pX,Zp1qq Ñ ΓXpOˆ
Xq given

by sending rZs ÞÑ p˚pt1q (and zero if Z is not dominant over X) is an isomorphism identifying the degree-1 weight-1 motivic

cohomology with the global units. This allows us to more generally consider cup products like

u1 ! . . . ! un P HnpX,Zpnqq

9
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for units u1, . . . , un on X . Following notational conventions in Milnor K-theory, we will also denote such cup products, as well

as the associated tensors in Milnor K-theory, by the curly braces tu1, . . . , unu.

2.1.1. Trace operators on cohomology of Gm. We observe the element 1 ´ z P H1pGm ´ t1u,Zp1qq satisfies

ras˚p1 ´ zq “ 1 ´ z

for any a P N, where ras˚ denotes the restriction of the map ras : Gm Ñ Gm is the map induced by z ÞÑ za, composed with

pullback by the inclusion Gm´t1u ãÑ Gm. In general, we use the same notation ras : Gnm Ñ Gnm for the same map coordinatewise

pz1, . . . , znq ÞÑ pza1 , . . . , z
a
nq, and observe that also

ras˚t1 ´ z1, . . . , 1 ´ znu “ t1 ´ z1, . . . , 1 ´ znu.

For the submodule of the cohomology Gnm, or various subspaces thereof, we will write superscript p0q to mean the elements which

are fixed in this way by all ras˚; e.g.

t1 ´ z1, . . . , 1 ´ znu P HnppGm ´ t1uqn,Zpnqqp0q.

Note that HnppGm ´ t1uqn,Zpnqq carries a pushforward action of MnpZq commuting with all ras˚; since the ras˚ act invertibly,

the MnpZq actually induces a GLnpQq-action on the trace-fixed submodule HnppGm ´ t1uqn,Zpnqqp0q. This applies to the

trace-fixed cohomology of any subspace of Gm with a MnpZq-action.

2.2. Symbols from spherical chain complexes. We turn now to constructing a chain complex ČChainspnq with action by GLnpQq,

and show that it computes the reduced homology of the sphere Sn´1 and is thus almost exact. In top degree, this complex will

naturally parameterize special elements in the Milnor K-theory of the function field of Gnm, and we will abbreviate the top-degree

module

C̃pnq :“ ČChainspnqn

The construction of this section directly generalizes [SV, §5], who consider the case n “ 2, though we use slightly different

conventions for the group action: we are taking left actions on spaces with a resulting pushforward left action on cohomology

groups, while they consider right actions on spaces.

We identify Sn´1 “ pRn ´ t0uq{Rˆ
ą0 with the set of rays in an n-dimensional real vector space, and write Sn´1pQq for the subset

of rational rays. Consider the poset P of linear triangulations T of Sn´1 with vertices contained in Sn´1pQq Ă Sn´1, ordered by

refinement: that is to say, we say T1 ě T if every simplex of T is a union of simplices of T1. Here, by linear triangulation, we

mean every k-simplex is the intersection of a Sn´1 with a dimension-pk` 1q simplicial polyhedral cone in Rn emanating from the

origin. Notice that in particular, the great circle containing any given simplex can be recovered as the intersection of Sn´1 with

the span of the rays corresponding to the vertices of the simplex. As such, each of these corresponding subspaces are themselves

rationally defined, since these rays are rational.

Given any geodesic k-simplex ∆ with endpoints in Sn´1pQq with k ď n ´ 1, there exists a triangulation T P P such that ∆ is

one of the triangles in T : indeed, for each face of ∆, take the corresponding great circle on Sn´1; these divide the sphere into

polyhedral regions, which then can be barycentrically subdivided into simplices by picking a rational point in each interior. We

have the following “upper bound” theorem on refinements of trinagulations.

Proposition 2.3. Given any two triangulations T1, T2 P P , there exists a common upper bound for them, i.e., a triangulation

T P P refining both T1 and T2.
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Proof. Superimposing the triangulations T1 and T2, we obtain a decomposition of Sn´1 into convex polyhedral cells. Each vertex

of this superimposition is still in Sn´1pQq, because any new vertices are the intersection points of rationally defined subspaces in

Rn (corresponding to the great circles forming the intersecting faces) and hence themselves correspond to rational rays. Pick a

rational point in interior of each polyhedral cell and subdivide it into simplices by joining the point to each pn´ 2q-face of the cell

with a pn´ 1q-simplex; we obtain a new triangulation which still has all vertices in Sn´1pQq. □

Write CT for the augmented cellular chain complex of the simplicial complex T with

CT,i “ ZtTiu

for all i ě 0, freely generated by the i-simplices endowed with their orientation coming from the globally oriented Sn´1. (We

will consider the oppositely-oriented version ∆ of a simplex ∆ to live in the chain complex, representing its additive inverse

r∆s “ ´r∆s.) The boundaries CT,i`1
B

ÝÑ CT,i given by the alternating face maps when i ě 0. By “augmented”, we mean that we

set CT,´1 “ Z, with its incoming boundary map given by the degree map on 0-simplices. Then for any T ,

Hn´1pCT,‚q – Z

is the only nontrivial homology group, since each simplicial complex is homotopy equivalent to Sn´1.

For a refinement T 1 of T , there is a pullback complex map

CT Ñ CT 1

which is a quasi-isomorphism; these maps are functorial for compositions in the poset of triangulations. We can then define

(2.2) ČChainspnqi :“ lim
ÝÑ

CT,ir1s

as the colimit over all triangulations; by exactness of direct limits, ČChainspnq also only has homology Z in degree n; recall also

that we abbreviate the top-degree term as C̃pnq.

Via the left action of GLnpQq on Sn´1pQq viewed as parameterizing rays in Rn, the complex ČChainspnq takes a left action of

GLnpQq. In particular, if γ fixes a simplex ∆ but det γ “ ´1, then

γ ¨ r∆s “ r∆s “ ´r∆s.

We now give generators and relations for ČChainspnq. Given any tuple of independent rays pm1,m2, . . . ,mkq in Sn´1pQq lying in

the same (open) hemisphere, which we will call an acyclic tuple, they span a unique oriented geodesic simplex (with orientation

corresponding to the order), whose 1-frame is formed from the shorter segment of the great 1-circle through each pair of points.

(By assumption, there are no antipodes, so there is no ambiguity.)

For any triangulation T containing this simplex, we write

r∆pm1,m2, . . . ,mkqT s P CT,k´1

for the class in homology; under any triangulation T 1 which refines T with the same property, the class r∆pm1,m2, . . . ,mkqT s

maps to r∆pm1,m2, . . . ,mkqT 1 s. Thus, we can speak unambiguously of a class in the direct limit

r∆pm1,m2, . . . ,mkqs P ČChainspnqk.

These classes generate ČChainspnqi for each i, since any rational simplex can be subdivided into rational acyclic simplices.
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We claim that the relations between the generators corresponding to these simplices are generated by subdivision of an acyclic

simplex into subsimplices. Indeed, suppose we have an relation of k-simplex generators

(2.3) r∆1s ` . . .` r∆ts “ 0.

Superimposing all the great circles corresponding to the faces of the ∆i and subdividing the resulting polyhedral cells as in the

proof of 2.3, we can find a set of geodesic simplices ∆1
1, . . . ,∆

1
s, disjoint outside of their faces, such that each ∆i is a union

∆i “
ğ

jPSi

∆1
j .

Associated to this decomposition of simplices we have pushforward relation

(2.4) r∆is “
ÿ

jPSi

∆1
j .

Substituting these into (2.3), the resulting relation is between disjoint simplices, on which the coefficient of each simplex therefore

must be zero. Hence relations of the form (2.4), coming from subdivision of an acyclic simplex, generate all relations as we

claimed.

In fact, we can go even further, and generate all acyclic simplicial subdivision relations in terms of some easily classified ones:

Proposition 2.4. Write Tk for the set of all acyclic positively oriented geodesic k-simplices with rational faces.3 The module
ČChainspnqi for i ą 0 is given by

ZtTi´1u{Si´1

where Sk is the module of acyclic k-simplicial subdivision relations, and is generated by stellar subdivisions of rank r for 2 ď r ď k

given as follows: fix an acyclic simplex ∆ P ∆pm1, . . . ,mkq and a rational point m lying in the great circle corresponding to the

face with vertices pm1, . . . ,mrq, but sharing some hemisphere of the great circle with all of them. Corresponding to this data we

have the stellar subdivision relation

(2.5) r∆pm1, . . . ,mkqs “

r
ÿ

i“1

r∆pm1, . . . , m̂i,m,mi`1, . . . ,mkqs.

Proof. From the discussion preceding the proposition, it remains only to prove that the stellar subdvision relations (2.5) generate

all acyclic subdivision relations.

First, we say that a subdivision of a simplex ∆ is a sequentially stellar subdivision if it can be obtained by a sequence of stellar

subdivisions of ∆ (and the resulting subsimplices at each sequential step). The relation corresponding to a sequentially stellar

subdivision of an acyclic simplex is certainly generated by those of the implicated stellar subdivisions by repeated substitution.

We observe, therefore, that it suffices to show that any acyclic subdivision

∆ “ ∆1 \ . . .\ ∆t

can be refined to a sequentially stellar subdivision of ∆, which is also a sequentially stellar subdivision of each ∆i when restricted

to it; this result in the field of combinatorial topology is due to [New]. □

We also write

Chainspnq :“ ČChainspnq{Hnp ČChainspnqq

3As before, we will also freely use negatively oriented simplices as generators, with the convention they are simply ´1 times the positively oriented simplex.

12



XU SYMBOLS FOR TORIC EISENSTEIN COCYCLES

for the exact quotient of ČChainspnq given by quotienting by top homology. We use the analogous abbreviation

Cpnq :“ Chainspnqn

for the top-degree module.

2.3. Combinatorial cohomology classes for GLn. We now construct “abstract” cohomology classes for GLnpQq valued in sym-

bols in the symbol complex, whose realization in Milnor K-theory (and later, differential forms) will yield our arithmetic classes

of interest. We use the following standard construction in group cohomology, whose proof we sketch:

Lemma 2.5. If a group G acts on an exact complex C‚ supported in degrees r0, ns, then we have a natural map on cohomology

CG0 Ñ Hn´1pG,Cnq

inhomogeneous cocycle representatives of which can be constructed as follows: associated to e P CG0 , pick a lift ℓ1 of e to C1, and

consider the 1-cochain

γ ÞÑ pγ ´ 1qℓ1 P C1pG,C1q.

By exactness, this is the boundary of an element ℓ2 P C1pG,C2q; we take the chain coboundary Bℓ2 P C2pG,C2q which again lifts

to ℓ3 P C2pG,C3q, etc. The lift ℓn P Cn´1pG,Cnq is a cocycle representing the image of e in Hn´1pG,Cnq.

Proof. The map CG0 Ñ Hn´1pG,Cnq is the composition of connecting homomorphisms

C0 Ñ H1pG, ker B1q “ H1pG, imB2q(2.6)

Ñ H2pG, ker B2q “ H2pG, imB3q(2.7)

Ñ . . .(2.8)

Ñ Hn´1pG, ker Bnq “ Hn´1pG,Cnq.(2.9)

for the G-short exact sequences

ker Bi
Bi`1

ÝÝÝÑ Ci
Bi

ÝÑ imBi.

Unwinding the definition of each of these maps yields precisely the process of iterated lifting described in the lemma. □

We apply the lemma to the action of GLnpQq on Chainspnq, using the element e P Z in degree zero of each respective complex.

This affords us a cohomology class

ΘS
n´1

pnq P Hn´1pGLnpQq, Cpnqq.(2.10)

2.3.1. Explicit cocycle representatives. We can apply Lemma 2.5 to obtain cocycle representatives for ΘS
n´1

pnq.

To write down our explicit cocycle, it will be useful to specify an extension of the previous notation r∆pm1, . . . ,mkqs to any tuple

of rays pm1, . . . ,mkq, even tuples failing to be acyclic or independent. Thus, we define a ∆-extension E to be a collection of

classes4

r∆Epm1, . . . ,mkqs P Chainspnqk

for arbitrary tuples of rays pm1, . . . ,mkq satisfying the following properties:

4This is somewhat abusive notation, since we are not necessarily saying that r∆Epm1, . . . ,mkqs is actually the class of a particular geodesic simplex when the
tuple is not linearly independent.
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(1) If the tuple pm1, . . . ,mkq is independent, then

r∆Epm1, . . . ,mkqs “ r∆pm1, . . . ,mkqs

as we have previously defined it.

(2) γr∆Epm1, . . . ,mkqs “ r∆Epγm1, . . . , γmkqs for all γ P GLnpQq.

(3) The image of r∆Epm1, . . . ,mkqs under the face map is
ÿ

i

p´1qi´1r∆Epm1, . . . , m̂i, . . .mkqs.

(4) If pm1, . . .mkq is a dependent acyclic tuple, then r∆Epm1, . . . ,mkqs is zero.

We will call the data of such an extension a ∆-extension; all ∆-extensions by definition agree on linearly independent tuples.

Proposition 2.6. ∆-extensions exist.

Proof. We show how to construct such an E inductively on the corank of pm1, . . . ,mkq: that is, on the difference k ´ r between

the number of rays and the rank of their span. When k “ r, the definition of r∆Epm1, . . . ,mkqs is forced on us by (1); these

definitions certainly satisfy (2) and (3), and (4) is not applicable. This furnishes the base case.

We will now first complete the inductive step so as to fulfill (2), (3), then return to analyze how one fulfills (4) in different inductive

steps, as fulfilling (4) cannot be analyzed uniformly across all steps.

Indeed, to satisfy (2), all we need to do is construct ∆Epm1, . . . ,mkq for an arbitrary representative of each GLnpQq-orbit of

tuples and extend by group translation, since the conditions (3) and (4) are certainly translation-invariant. Thus, assume that we

have constructed ∆E for corank up to i´ 1, and we wish to construct it for tuples of corank i. Then the point is that

(2.11)
ÿ

i

p´1qi´1r∆Epm1, . . . , m̂i, . . .mkqs

has boundary zero, so by exactness of Chainspnq it is possible to pick some chain lifting it under the boundary map.

We claim that pm1, . . . ,mkq is acyclic, we can pick the extension so that (2.11) is identically zero. Indeed, in the first inductive

step i “ 1, (2.11) is precisely a stellar subdivision relation, so it vanishes and we can pick the lift to be zero. When i ą 1, then

inductively all the terms of (2.11) are acyclic dependent tuples, which by the inductive hypothesis are zero, and hence we can pick

zero as a lift under the boundary map. □

To any ∆-extension, there corresponds an explicit cocycle:

Theorem 2.7. For any pn´ 1q-tuple of matrices γ “ pγ1, . . . , γn´1q, write cipγq for

γ1γ2 . . . γie1

for i ě 0, where e1 “ p1, 0, . . . , 0q; this is equivalently the first column of the product matrix written above. Now fix any

∆-extension E; for such an extension, we define a pn´ 1q-cochain θS
n´1

E pnq by

(2.12) γ Ñ r∆Erγss :“ r∆Epcn´1pγq, cn´2pγq, . . . , c0pγqqs.

(In particular, this is the zero class if the simplex in question is degenerate.) Then θS
n´1

E pnq is a cocycle representative for

ΘS
n´1

pnq.
14
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Proof. This follows immediately from the properties of a ∆-extension and the lifting process of 2.5: we lift 1 P Z to e1, whose

group coboundary is the 1-cochain γ ÞÑ pγ ´ 1qe1 which lifts to

γ ÞÑ r∆Epc1pγq, c0pγqqs.

The group coboundary of this lifts to the 2-cochain

γ ÞÑ r∆Epc2pγ1, γ2q, c1pγ1, γ2q, c0pγ1, γ2qqs

and so on. □

Remark 2.8. The construction of Shintani cocycles (though not the motivic setting) by [Hill] (and used by [LP]) introduces a

lexicographical order on lines in order to make the cocycle property work. From our perspective, the data of this choice of order

is the same data one needs to specify a certain ∆-extension, though one must be careful: their construction is actually “dual” to

ours in the sense specified later in Section 4.2, so this is not quite precise. To be more exact, making free use of the language and

concepts of that (later) section, their lexicographic order is used to specify choices of lower-dimensional conical faces to include,

which does correspond under conical duality corresponds to the degenerate wedge classes chosen in a ∆-extension.

From the point of view of the cohomology class, the particular values of the cocycle (on non-acyclic tuples of group elements only)

resulting from these auxiliary choices are thus not of independent significance. We thank Jeehoon Park for pointing this out.

Remark 2.9. Observe that the ambiguities in the choices of ∆-extensions only matter for tuples such that the lines associated to

c0, . . . , cn´1 are dependent. In particular, if γ1, . . . , γn´1 are generators of an anisotropic torus of rank n´ 1 inside GLnpZq, then

the value of our cocycle on pγ1, . . . , γn´1q is independent of the ∆-extension.

2.3.2. Lifting the symbol-valued cocycles. The cohomology class ΘS
n´1

pnq is valued in Cpnq; in particular, we have quotiented

by the fundamental class of the sphere. As we will see in section 3.1, the realizations of these modules will live in a quotient of

motivic cohomology groups of Gnm by a rank-one submodule coming from the “orientation obstruction” of the fundamental class.

In [SV, §5], the authors show that their cocycle (which agrees with ours for the case SL2pZq) can be lifted over this obstruction

after inverting 6; in this section, we indicate how this generalizes. In particular, we will to lift our cocycles to be valued in C̃pnq,

i.e lift over the copy of the rank-1 free module Z corresponding to the fundamental class of Sn´1.

To begin, note that applying the lifting process of Lemma 2.5 to the length-pn` 2q exact complex of GLnpQq-modules

(2.13) Zpsgnq Ñ ČChainspnq‚

in the same way as we did with Chainspnq yields a cocycle εEn P CnpGLnpQq,Zpsgnqq.

Proposition 2.10. The cocycle εEn represents the Euler class for the standard representation of GLnpQq.

Proof. The complex ČChainspnq is the reduced homology complex of an ind-simplicial model of the pn ´ 1q-sphere; since this

is a closed manifold, we can view it also by Poincaré duality, as computing cohomology in the complementary degree. Then the

double complex C‚pGLnpQq, ČChainspnq‚q computes the equivariant cohomology of Sn´1. By Lemma 2.5, the sum of the lifts

associated to E

ℓ1 ` . . .` ℓn`1

(using the notation of the lemma) for the lifts of 1 P Z in the augmentation for this complex then is a representative for the Thom

class of the associated sphere bundle, since the Thom class is dual to the zero section. Pulling back to the base (i.e. a point with
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the trivial GLnpQq-action; equivalently, BGLnpQq) by the zero section kills all terms except εEn “ ℓn`1, which is therefore a

representative of the Euler class. □

Suppose now that Γ is an S-arithmetic subgroup of GLnpQq, where S is any subset of primes which has nonempty complement.

The following vanishing is a theorem of Sullivan [Sul]:

Theorem 2.11. The cocycle εn, restricted to Γ, is a coboundary after multiplying by the greatest common denominator dn,S of

mnpmn ´ 1q, as m ranges over all integers divisible only by primes not in S. For S empty, dn :“ dn,H is twice the denominator

of the nth Bernoulli number.

The short exact sequence

0 Ñ Zpsgnq Ñ C̃pnq Ñ Cpnq Ñ 0

yields a long exact sequence in cohomology

. . . Ñ Hn´1pΓ,Zpsgnqq Ñ Hn´1pΓ, C̃pnqq Ñ Hn´1pΓ, Cpnqq Ñ HnpΓ,Zpsgnqq Ñ . . .

After inverting dn,S , the image of ΘS
n´1

pnq (i.e. the Euler class) in the rightmost term vanishes, and hence it lifts non-uniquely to

be valued in C̃pnq, and the set of lifts of is a torsor under the image of d´1
n,S ¨Hn´1pΓ,Zpsgnqq. We thus find that:

Corollary 2.12. After inverting dn,S and restricting to Γ, representatives for these lifts are given by

γ ÞÑ r∆Epγqs ´ ϕpγq

where ϕpγq ranges over primitives of εEn .

Write θS
n´1

E,ϕ pnq for the cocycle corresponding to the pn´ 1q-cochain ϕ transgressing the Euler cocycle; the corresponding class is

(2.14) ΘS
n´1

ϕ pnq “ rθS
n´1

E,ϕ pnqs P d´1
n,S ¨Hn´1pΓ, C̃pnqq.

Notice that the difference of two such ϕ is a cocycle, so the space of possible lifts over the Euler class is a torsor under d´1
n,S ¨

Hn´1pGLnpQq,Zpsgnqq.

Remark 2.13. As mentioned earlier, this generalizes the construction in [SV, §5] of a canonical lift of the analogue to the cocycle

θS
n´1

p2q for Γ “ SL2pZq. (When n “ 2, the choice of E is immaterial, so we omit it from the notation.) In this case, H1pΓq “

H2pΓq “ 0 after inverting 6, so there is no ambiguity of lift, and the authors consequently find an explicit distinguished primitive

of the Euler class ε2 to give them a canonical lift. This raises the question whether there is some more canonical choice of lift in

general even when Hn´1pΓq does not vanish; we do not know the answer in general. However, when n is odd, one can obtain a

canonical lift up to 2-torsion by applying the projector r´1s˚ ` 1, which annihilates the Euler class but acts as the scalar 2 on our

cocycles.

2.3.3. The Steinberg quotient. We end this section by explaining how θS
n´1

E pnq can be modified into a parabolic cocycle if one

quotients out by extra relations; this will also remove the need for a choice of ∆-extension E in the lifting process. After defining

our realizations of these symbols, this will correspond to quotienting by certain elements in K-theory; see subsection 3.1.1 for

details. This quotient will also be relevant for the application to Sharifi’s conjectures.
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Let Stpnq be the Orlik-Solomon complex [OS] defined as follows: it is the graded-commutative algebra generated in degree 1 by

symbols rℓs for ℓ P Pn´1pQq, with relations generated multiplicatively by the dependence relations

Bprℓ1s ^ . . .^ rℓksq “ 0

for any lines ℓ1, . . . , ℓk spanning a space of rank strictly less than k. Here, the differential-graded structure is defined via Brℓs “ 1

and extended by the graded Leibniz rule. The relations generated as above are closed under the differential, and the resulting

differential-graded algebra is exact. (More generally, for any configuration of lines, not just the set of all rational ones, one can

define an Orlik-Solomon complex with the same properties; this will be used later in Section 4.3.)

Then we have a GLnpQq-equivariant map of complexes

(2.15) Chainspnqi ↠ OSpnqi

sending

∆pr1, . . . , rkq ÞÑ rQr1s ^ . . .^ rQrks.

This map (2.15) is well-defined, since the Orlik-Solomon complex obeys alternation in the vertices, and stellar subdivision relations

simply become dependence relations in the image.

In top degree, the map (2.15) corresponds to the GLnpQq-equivariant quotient of the top spherical chains

(2.16) RSt : Cpnq ↠ Stpnq :“ OSpnqn

where Stpnq is our notation for a GLnpQq-module often called the Steinberg representation. From the definition of the Orlik-

Solomon algebra, we see that it can be described as generated by symbols rℓ1s^ . . .^rℓns where ℓ1, . . . , ℓn P Pn´1pQq, quotiented

by the relations

(1) rℓ1s ^ . . .^ rℓns “ 0 if the lines do not span Qn, and

(2) For any ℓ0, . . . , ℓn, the dependence relation
n

ÿ

i“0

p´1qirℓ0s ^ . . .^ rℓ̂is ^ . . .^ rℓns “ 0.

From this description, one sees that the pushforward of θS
n´1

E pnq along (2.16) is therefore independent of the choice of E, since

all dependent tuples simply are sent to zero (as all independent tuples bound some acyclic simplex). Hence we get a cocycle

θStpnq :“ pRStq˚θ
Sn´1

E pnq, pγ1, . . . , γn´1q ÞÑ rcn´1pγqs ^ . . .^ rc0pγqs

independent of E, representing a class

ΘStpnq P Hn´1pGLnpQq,Stpnqq

which one can see from relation (1) is parabolic.5

We conclude this section with the following description of the kernel of (2.16), which will be useful when considering realizations:

Lemma 2.14. The kernel of the map (2.16) is generated by “wedge” classes of the form

∆pr1, . . . , rnq ´ ∆p´r1, r2, . . . , rnq

5After restricting to SLnpZq, this cocycle is in fact the universal parabolic cocycle coming from Bieri-Eckman duality, as the Steinberg module is the dualizing
module for SLnpZq.
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for independent tuples pr1, . . . , rnq.

Proof. The top-dimensional spherical chains are generated by acyclic simplices together with stellar subdivision relations, while

the Steinberg module is generated by independent tuples modulo dependence relations. If one imposes all the identification of

spherical simplices

∆pr1, . . . , rnq „ ∆p˘r1, . . . ,˘rnq,

for any combination of signs, then the relations resulting from the stellar subdivision relations are precisely the dependence rela-

tions. These identifications can be deduced, by (anti)symmetry, from the identifications

∆pr1, . . . , rnq „ ∆p´r1, r2, . . . , rnq

since we can then change one sign at a time and bootstrap to the general case. □

3. CONSTRUCTION AND APPLICATION OF THE MOTIVIC COCYCLES

To

3.1. Realization map for top-dimensional chains. We now turn to constructing the realization map associating classes in motivic

cohomology/Milnor K-theory to symbols. This section will be devoted to proving the following theorem:

Theorem 3.1. There exists a map of GLnpQq-modules

ρ̃ : ČChainspnqn Ñ Kn
M pkpGnmqqp0q.

defined on generators by6

(3.1) r∆pm1, . . . ,mnqs ÞÑ

´

m1 . . . mn

¯

˚
t1 ´ z1, . . . , 1 ´ znu P KM

n pkpGnmqqp0q

The image of the fundamental class in Z – Hnp ČChainspnqq Ă ČChainspnq is the class t´z1, . . . ,´znu, so ρ̃ descends to a map

ρ : Chainspnqn Ñ Kn
M pkpGnmqqp0q{t´z1, . . . ,´znu.

The hard part of the theorem is proving the relations, so we first view fk as a map from ZtTn`1u.

We note that replacing mi by a scalar multiple is immaterial because each 1 ´ zi is invariant under ras˚ : Gm Ñ Gm in the

corresponding coordinate, so pre-composing
´

m1 . . . mi

¯

˚
with these isogenies does not change the definition of ρ. The

GLnpQq-equivariance of the definition is then completely formal, from functoriality of pushforwards.

It remains to check that the relations in S‚ between the classes of simplices hold. By Proposition 2.4, it suffices to check the acyclic

stellar subdvision relations.

Proposition 3.2. For any integer 2 ď r ď n, each acyclic independent tuple m “ pm1, . . . ,mnq of rays and ray m lying on the

great circle corresponding to the face spanned by pm1, . . . ,mnq and sharing some hemisphere with all of them, the relation

(3.2) ρr∆pm1, . . . ,mkqs “

r
ÿ

i“1

ρr∆pm1, . . . , m̂i,m,mi`1, . . . ,mnqs

coming from (2.5) holds.

6Here, the matrix columns can be any non-zero vector in the ray; see discussion following the theorem statemnt for why this is well-defined.

18



XU SYMBOLS FOR TORIC EISENSTEIN COCYCLES

Proof. We may reduce to the case r “ n as follows: the claimed relation can be written as

´

m1 . . . mn

¯

˚
t1 ´ z1, . . . , 1 ´ znu “

r
ÿ

i“1

´

m1 . . . m̂i m . . . mk

¯

˚
t1 ´ z1, . . . , 1 ´ znu.

The left-hand side factors as the cup product
´

m1 . . . mr

¯

˚
t1 ´ z1, . . . , 1 ´ zru !

´

mr`1 . . . mn

¯

˚
t1 ´ zr`1, . . . , 1 ´ znu

and the right-hand side as
˜

r
ÿ

i“1

´

m1 . . . m̂i m . . . mr

¯

˚
t1 ´ z1, . . . , 1 ´ zru

¸

!

´

mr`1 . . . mn

¯

˚
t1 ´ zr`1, . . . , 1 ´ znu

so it suffices to prove that

´

m1 . . . mr

¯

˚
t1 ´ z1, . . . , 1 ´ zru “

r
ÿ

i“1

´

m1 . . . m̂i m . . . mr

¯

˚
t1 ´ z1, . . . , 1 ´ zru

But this is the pullback of a top-rank stellar relation from the quotient Gnm ↠ Gnm{G, for G the image of
´

mr`1 . . . mn

¯

: Grm Ñ Gnm.

We therefore henceforth assume that r “ n, and need to prove the relation

´

m1 . . . mn

¯

˚
t1 ´ z1, . . . , 1 ´ znu ´

n
ÿ

i“1

´

m1 . . . m̂i m . . . mn

¯

˚
t1 ´ z1, . . . , 1 ´ znu “ 0.

Taking the Bloch cycle description

KM
n pkpGnmqq ãÑ znpkpGnmq ˆ 2nq{Bzn`1pkpGnmq ˆ 2n`1q

we see that it suffices to show that

(3.3)
n`1
ÿ

i“1

p´1qi
´

m1 . . . m̂i . . . mn`1

¯

˚
Γp1 ´ z1, . . . , 1 ´ znq P Bzn`1pkpGnmq ˆ 2n`1q.

for all acyclic tuples of rays pm1, . . . ,mn`1q such that each sub-n-tuple is full rank. Formally, (3.3) is the image under the cubical

face maps of

(3.4)
´

m1 . . . mn`1

¯

˚
Γp1 ´ z1, . . . , 1 ´ zn`1q P Bzn`1pkpGnmq ˆ 2n`1q

where the matrix denotes the map

(3.5)
´

m1 . . . mn`1

¯

: Gn`1
m Ñ Gnm.

However, this seems not to use the acyclicity condition; what gives? The problem is that (3.5) is not a finite map, so the pushed

forward cycle may have improper intersection with the faces. Indeed, we claim that (3.4) intersects all faces properly exactly when

pm1, . . . ,mn`1q is acyclic. We will prove this on the level of cycles in

Gnm ˆ 2n`1

since this certainly implies it for the restriction to the generic point. Write M for the matrix pm1, . . . ,mn`1q, and define the

pn` 1q-variable monomials

pjpz1, . . . , zn`1q “

n`1
ź

i“1

z
Mj,i

i
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whose exponents are the jth row of M . Then in Gnm ˆ 2n`1, the cycle (3.4) can be described as the closure of the locus

pp1, p2, . . . , pn, 1 ´ z1, . . . , 1 ´ zn`1q.

Its intersection with a codimension-d cubical face is then indexed by a labelled subset I P t1, . . . , n ` 1u of cardinality d, with

each element i of the subset labelled by ℓIpiq P t0,8u; this face is given by the intersection of the cycle with the locus
č

iPI

t1 ´ zi “ ℓIpiqu

i.e. fixing each zi corresponding to the indexing set to be either 1 or 8. We wish to check, for each I , whether or not this intersection

has the correct codimension, i.e. codimension n ` |I|; the cycle (3.4) meets all faces properly if and only if all codimensions are

correct.

First consider the case where I has at least one label of 0; without loss of generality, we assume that it corresponds to 1 P I , i.e.

the relation 1 ´ z1 “ 1 ô z1 “ 0. The intersection of (3.4) with tz1 “ 0u is then the closure of the locus

(3.6) pp1pz1 “ 0q, . . . , pnpz1 “ 0q, 0, 1 ´ z2, . . . , 1 ´ znq.

where the notation indicates that we plug in 0 in the ith place. Write M 1 for the submatrix of M given by deleting the first column;

by assumption, it has full rank n. Viewing M 1 as associated to a map

Gnm ˆ 2n Ñ Gnm ˆ 2n`1

by its natural action on the toric part, and by inclusion 2n ãÑ 2n`1 in the last n coordinates, we see that the locus (3.6) is then the

finite pushforward

(3.7) M 1
˚Γp1 ´ z1, . . . , 1 ´ znq.

The intersection of (3.4) with a face corresponding to I is then the intersection of (3.7) with the face corresponding to the labelled set

Izt1u. But (3.7) is a finite pushforward of a cycle meeting all faces properly, so we conclude that (3.4) meets the face corresponding

to I properly as well. Thus, any face with at least one label of 0 always intersects (3.4) properly; it therefore suffices to check the

intersection with faces labelled only with 8s.

We claim that if pm1, . . . ,mn`1q is acyclic, this intersection is always empty, and thus trivially proper.7 Note that the property of

having empty intersection with the 8-labelled faces is invariant under left multiplication of M by elements of GLnpQq XMnpZq.

Via left multiplication by such a matrix, we can always turn the first n columns of the matrix into scalar multiples of the standard

basis. Thus, it suffices to check matrices of the form
¨

˚

˚

˚

˚

˝

x1 y1

x2 y2

. . . . . .

xn yn

˛

‹

‹

‹

‹

‚

where each of the xi and yi must be nonzero by the assumption that every n-by-n submatrix of M is full rank, and sgnpxiq “

sgnpyiq for at least one i by the acyclicity assumption.

7When pm1, . . . ,mn`1q fails to be acyclic, the corresponding stellar simplicial relation should not hold, and thus (3.4) must not meet all faces properly. The
simplest example of what happens in this case: if n “ 1,m1 “ 1, andm2 “ ´1, then the locus (3.4) is the closure of pz1z

´1
2 , 1´z1, 1´z2q. Its intersection with

the unique codimension-two face labelled with two 8s should therefore be codimension 3, i.e. zero-dimensional. However, the points of the curve parameterized
by pg,8,8q are in the closure for all g P Gm, since the point corresponding to each fixed g is in the closure (as t Ñ 8) of the curve z1 “ gt, z2 “ t with free
parameter t.
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In this case, suppose without loss of generality that I “ t1, 2, . . . , ku for some k ď n, with ℓpjq “ 8 for each j P I . Assume now

for the sake of contradiction that (3.4) intersects the face corresponding to I nontrivially; in particular, suppose it contains a point

with z1 “ z2 “ . . . “ zk “ 8 but

pi “ zxi
i z

yi
n`1 P Gmpkq

for sgnpxiq “ sgnpyiq. If i P t1, 2, . . . , ku, this is impossible, since at this point we must have zn`1 “ 0 ñ 1 ´ zn`1 “ 1, which

means our point fails to lie in the algebraic cube 2n`1. Otherwise, xj and yj have opposite signs for j “ 1, 2, . . . , k, meaning that

zn`1 “ 8 as well at this point. But then

pi “ zxi
i z

yi
n`1 P Gmpkq

implies that zi “ 0 ñ 1 ´ zi “ 1, again a contradiction. We conclude the intersection with the face corresponding to I is in fact

empty, as desired.

It remains only to show that the fundamental class of Sn´1 is sent to the generator

t´z1, . . . ,´znu.

Indeed, we can decompose the fundamental class as a sum of simplicial orthants

rSn´1s “
ÿ

IPt˘1un

r∆pIqs

where ∆pIq is the simplex corresponding to σpIqpI1 ¨e1, . . . , In ¨enq where σpIq is an arbitrary even permutation if pI1 ¨e1, . . . , In ¨

enq is positively oriented, is an arbitrary odd permutation otherwise. Under fn, this is sent to the sum

ÿ

IPt˘1un

σt1 ´ zI11 , . . . , 1 ´ zInn u “

"

1 ´ z1

1 ´ z´1
1

, . . .
1 ´ zn

1 ´ z´1
n

*

“ t´z1, . . . ,´znu.

□

With the realization map in hand, the proof of Theorem 1.1 is complete. In particular, we obtain the following classes:

Θpnq “ ρ˚Θ
Sn´1

pnq P Hn´1pGLnpQq, pKM
n pkpGnmqq{t´z1, . . . ,´znuqp0qq.

and, if Γ Ă GLnpQq is S-arithmetic for a co-nonempty set of primes S, for any transgression ϕ of εn a class

Θϕpnq “ ρ˚Θ
Sn´1

ϕ pnq P Hn´1pΓ,KM
n pkpGnmqqp0qqrd´1

n,Ss.

For any ∆-extension E, the cocycle representative θEpnq :“ ρ˚θ
Sn´1

E pnq for the former class is given by

pγ1, . . . , γn´1q ÞÑ

´

c1 . . . ck

¯

˚
t1 ´ z1, 1 ´ z2, . . . , 1 ´ znu P KM

n pkpGmqq{t´z1, . . . ,´znu

with ci “ γi . . . γ1e1 whenever these columns are independent; for any fixed ∆-extension E, one can equally in principle work out

the image of any tuple with non-independent such ci, though we do not currently see a systematic way to do this. Similarly, the

latter class is represented by θE,ϕpnq :“ ρ˚θ
Sn´1

E,ϕ pnq and under the same assumptions sends

(3.8) pγ1, . . . , γn´1q ÞÑ

´

c1 . . . ck

¯

˚
t1 ´ z1, 1 ´ z2, . . . , 1 ´ znu ´ ϕpγqt´z1, . . . ,´znu

in KM
n pkpGmqqrd´1

n,Ss.

3.1.1. Modular symbols from the Steinberg quotient. We now describe the realization of the parabolic, Steinberg module-valued,

cocycle of section 2.3.3. This amounts to determining the image of the kernel of (2.16) under the map f , which by Lemma 2.14, is
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generated by the GL2pQq-orbit of

t1 ´ z1, 1 ´ z2, . . . , 1 ´ znu ´ t1 ´ z´1
1 , 1 ´ z2, . . . , 1 ´ znu “ t´z1, 1 ´ z2, . . . , 1 ´ znu.

We thus see it suffices to quotient out by the degree-n part of the ideal I of the Milnor K-theory ring generated by the symbols

´zi P KM
1 pkpGmqq, whereupon we obtain a GL2pQq-equivariant map

ΘMSpnq : Stpnq Ñ pKM
n pkpGmqq{Iqp0q

sending

rℓ1s ^ . . .^ rℓns ÞÑ

´

ℓ1 . . . ℓk

¯

˚
rt1 ´ z1, 1 ´ z2, . . . , 1 ´ znus P KM

n pkpGmqq{I.

From this modular symbol, one can also deduce an explicit parabolic cocycle

Hn´1pGL2pQq, pKM
n pkpGmqq{Iqp0q

represented by

pγ1, . . . , γn´1q ÞÑ

´

c1 . . . ck

¯

˚
rt1 ´ z1, 1 ´ z2, . . . , 1 ´ znus P KM

n pkpGmqq{I

with ci “ γi . . . γ1e1. When we wish to use the Steinberg quotient, however, we will generally work directly with the modular

symbol, as it retains more information than the associated cohomology class or cocycle.

Remark 3.3. As suggested in [SV, §5], the cocycles of the form Θpnq come from equivariant motivic polylogarithms for the action

of GLnpZq on the group scheme Gnm. The argument of Sharifi-Venkatesh essentially proves this for n “ 2 by realizing their chain

complex in a Gersten complex computing motivic cohomology; our realization map could similarly be extended to map from the

whole spherical chain complex to a Gersten complex as well. However, for general n, the Gersten complex does not necessarily

compute motivic cohomology, so we would need instead a symbol complex with fewer relations, in order to map to the Bloch cycle

complex (which does compute motivic cohomology); such a complex can in fact be constructed using matroids. We omit these

arguments from this article due to their considerable length and technical overhead, and irrelevance to our main results; however,

we will use the matroid approach and prove the relationship with polylogarithms in the sequel to this article, in the elliptic setting

(which degenerates at the cusps to the setting of the present article). In that setting, having the formalism of equivariant motivic

polylogarithms is useful for comparison reasons.

However, for the regulator of the motivic cocycle, we have included the proof the comparison with an equivariant polylogarithm

class in de Rham/coherent cohomology, in Appendix A, as this requires less technical overhead. The flavor of the argument would

be exactly the same in motivic cohomology.

3.2. Specialization at torsion sections and Sharifi maps. For briefness, we have only been working over the generic point until

now, but to construct and analyze the properties of the maps in Theorem 1.2, we will need to consider specializations of our

cocycles to torsion points: let Γ Ă GLnpQq be any subgroup. The proof of Theorem 3.1 applies identically to show that the

realization map factors, as a Γ-map, through HnpUΓ,Zpnqqp0q, where UΓ is defined by

(3.9) UΓ :“ lim
ÝÑ
H

Gnm ´H

and the direct limit ranges over finite subarrangements of the hyperplane arrangement which is the Γ-orbit of

Gn´1
m Ă Gnm
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embedded as the kernel of 1 ´ zn. For n ě 3, the norm residue isomorphism theorem and cohomological dimension arguments

show that all pulled back cocycles by torsion points are trivial; thus, from here on, we work only in the case n “ 2. (For n “ 1, we

get classical cyclotomic N -units, for pullback by N -torsion.)

Remark 3.4. Though the torsion specializations for n ą 2 are not expected to be interesting, we expect that the pre-specializations

cocycles valued in cohomology of open subschemes of Gnm should still contain interesting information about L-values, following

the philosophy of the “Eisenstein symbol” approach to polylogarithm classes [Beil]. The non-properness of Gm makes these

considerations technically daunting, however; we will thus treat this kind of perspective in more depth in the sequel (on the elliptic

case). Nevertheless, we would be very interested in an approach using only the toric cocycle.

Suppose now that Γ “ Γ0pNq fixes the line generated by a torsion section sN : SpecQpµN q Ñ G2
m which is p1, ζN q in the

coordinates z1, z2.

While Γ0pNq does not fix sN , since it fixes the line generated by x, we can define a homomorphism

σ : Γ0pNq Ñ pZ{NZqˆ

by the rule γsN “ σpγqsN , with kernel the index-φpNq subgroup Γ1pNq fixing sN . We can then define an action of Γ0pNq on

QpµN q by

γ ÞÑ prσpγ´1qs : ζN ÞÑ ζ
σpγ´1

q

N q,

which yields also pullback maps on motivic cohomology. Now, the pullback

s˚
N : H2pUΓ,Zp2qqp0q Ñ H2pQpµN q,Zp2qq

is a priori only Γ1pNq-equivariant, but with our newly defined action of Γ0pNq on the right-hand side, one can check (cf. [SV,

§4]) that it is actually Γ0pNq-equivariant. We thus get a corresponding specialization of our Eisenstein cocycle

s˚
NΘp2q P H1pΓ0pNq, H2pQpµN q,Zp2qqq

In fact, the localization sequence (2.1) for
à

p∤N
ZrµN s{p ãÑ ZrµN , N

´1s

yields a left-exact sequence

H2pZrµn, N
´1s,Zp2qq ãÑ KM

2 pQpµN qq
B

ÝÑ
à

p∤N
KM

1 pZrµN s{pq

where the last arrow is are the tame symbols which vanish on integral-at-p elements. The injectivity is because the MilnorK-theory

of finite fields vanishes above degree 1, as one can always express 1 as the sum of quadratic residues. Taking the restriction of the

action via σ of Γ0pNq to the cohomology of ZrζN , N
´1s, we see that our pullbacks are actually valued in the integral-away-from-N

submodule, i.e. we actually have a cocycle

s˚
NΘp2q P H1pΓ0pNq, HnpZrζN , N

´1s,Zr 12 sp2qqq

This argument will be applied implicitly also to everything that follows, as well in the next subsection.

One can equally make a “Steinberg” version of this construction: if we let Stp2q˝ be the Γ0pNq-invariant submodule of Stp2q

generated by lines not reducing to r0 : 1s modulo N (i.e. cusps not in the Γ0pNq-orbit of r0 : 1s), then the argument of section
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3.1.1 affords us a map

ΘMSp2qpNq : Stp2q˝ Ñ lim
ÝÑ
H

H2pG2
m ´H,Zp2qq{IpNq

where IpNq is module of relations spanned by symbols in the orbit of

(3.10) t´z1, 1 ´ z2u

under matrices of the form L “

´

ℓ1 ℓ2

¯

, for ℓ1, ℓ2 cusps not in the Γ0pNq-orbit of r0 : 1s, as above. This affords us a modular

symbol

s˚
NΘMSp2qpNq : rℓ1s ^ rℓ2s ÞÑ s˚

N

´

ℓ1 ℓ2

¯

˚
t1 ´ z1, 1 ´ z2u P H2pZrµN , N

´1s,Zr 12 sp2qq{extra relations from IpNq

After pullback, the module of relations IpNq consists of elements of the form

t´ζiN ,´ζ
j
Nu, t´ζiN , 1 ´ ζjNu.

The former relations t´ζiN ,´ζ
j
Nu “ 0 are all true up to 2-torsion by alternation of the Steinberg symbol. The latter relations

vanish upon taking the projection onto the plus part

p‚q` : tx, yu ÞÑ
1

2
ptx, yu ` tx, yuq,

since, with 2 inverted, we have

2t´ζiN , 1 ´ ζjNu` “ tζ´i
N , 1 ´ ζ´j

N u ` tζiN , 1 ´ ζjNu “ tζiN ,´ζ
j
Nu “ 0.

If we restrict now to the subgroup Γ1pNq fixing sN :“ p1, ζN q, we thus obtain a specialization

pΠ˝
N q` :“ ps˚

NΘMSp2qpNqq` : Stp2q˝ Ñ H2pZrζN , N
´1s,Zr 12 sp2qq`

which is a Γ1pNq-invariant modular symbol with the trivial action on the target. However, if N “ pk, the relations t´ζiN , 1´ ζjNu

are zero before projection: the cyclotomic distribution relation

1 ´ ζpt
pk

“

p´1
ź

i“0

1 ´ ζt`p
k´1i

pk

means we can assume pj, pq “ 1, in which case

tζiN , 1 ´ ζjNu “ ktζjN , 1 ´ ζjNu “ 0

by the Steinberg relation tx, 1 ´ xu “ 0, where here kj ” i pmod pkq. Thus in this case, we have a map

Π˝
N :“ ps˚

NΘMSp2qpNqq : Stp2q˝ Ñ H2pZrζN , N
´1s,Zr 12 sp2qq

In the remainder of this section, for brevity of notation we will write everything without the ` projection, with the understanding

that we always mean the ` part except for when N “ ps.

Consider now a unimodular symbol rℓ1s ^ rℓ2s, i.e. so that one for which the associated matrix formed from integer generators of

these lines satisfies

det
´

ℓ1 ℓ2

¯

P GL2pZq.

The map of [SV, §4] is defined in terms of these, writing all symbols as sums thereof via their “connecting sequences” (which we

avoid due to using pushforwards). To compare our map with theirs, we have that if ℓ1, ℓ2 ‰ r0 : 1s (meaning that that sN is not in
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the polar locus and the pullback is well-defined),

s˚
NΘMSp2qpNqprℓ1s ^ rℓ2sqq “

ˆ

´

ℓ1 ℓ2

¯´1

sN

˙˚

t1 ´ z1, 1 ´ z2u “ t1 ´ ζ´v
N , 1 ´ ζuNu P H2pZrζN , N

´1s,Zr 12 sp2qq

where pu, vq is the top row of the matrix
´

ℓ1 ℓ2

¯

. On symbols disjoint from r0 : 1s, therefore, up to sign and convention of basis,

our specialization coincides with the Eisenstein cocycle defined in [SV, §4], as they agree on unimodular generators. (In loc. cit.,

pu, vq is the bottom row of the analogous matrix; this corresponds to swapping the role of the standard basis lines e1 and e2.)

Remark 3.5. The above calculation shows that the relations of the form t´ζiN , 1´ζjNu, where ζiN and ζjN have orders divisible by

distinct primes, also do not appear if we omit symbols in the Steinberg module containing lines ra : bs with a divisible by primes

dividing N ; thus, the full (non-plus part) Π˝
N can also be constructed (and shown to be Hecke equivariant, etc., as below) if we are

willing to restrict our set of symbols: this corresponds to restricting the set of cusps to those not in the Γ0ppq-orbit of 8 for any

prime p|N (in the language of the following section; see below). This remark explains how the calculations of [SV, §4] result in a

parabolic cocycle while only inverting 2 in the coefficients, as they only work with homology of the closed curve.

3.2.1. Hecke operators and modular symbols. In this section, we define the Hecke operators and prove Theorem 1.2, for

pΠ˝
N q` :“ ps˚

NΘMSp2qpNqq` : Stp2q˝
Γ1pNq Ñ H2pZrµN , N

´1s,Zr 12 sq`

though as discussed previously, we will omit the ` signs for ease of notation, with the understanding that this is only actually

allowed if N “ ps (or by omitting cusps, as in the remark at the end of last section). Let us explain the notation (also used in

Theorem 1.2). Write X1pNq for the compactified modular curve of level Γ1pNq, and C1pNq for its set of cusps. Then there is a

natural identification between coinvariants of the Steinberg module and the Borel-Moore homology:

Stp2qΓ1pNq
„

ÝÑ H1pX1pNq, C1pNq,Zq

sending rℓ1s ^ rℓ2s to the image of the geodesic path usually denoted tℓ1, ℓ2u between the cusps corresponding to ℓ1, ℓ2 P P1pQq

under the uniformization of Y1pNq :“ X1pNq ´C1pNq by the complex upper half-plane; similarly, the co-invariants of Steinberg

symbols Stp2q˝
Γ1pNq

disjoint from Γ1pNqr0 : 1s can be identified with the homology relative to the restricted cusps C1pNq˝

disjoint from Γ0pNq ¨ 8 [AR]. Hence, modular symbols (respectively, modular symbols restricted away from 8, modular symbols

restricted to a single cusp) valued in a trivial Γ1pNq-module can be identified with maps from the homology of pX1pNq, C1pNqq

(respectively, pX1pNq, C1pNq˝q). More generally, we can take any Γ1pNq-invariant set of cusps, and obtain as coinvariants the

homology relative to only those cusps.

Now we define Hecke operators on such symbols. A useful notion will be the adjugate of an invertible matrix

adjpMq :“ pdetMqM´1.

Note that the adjugate of an integer matrix is an integer matrix, and that the scalar detM “ M ¨ adjpMq acts trivially on the

Steinberg module, and hence on the image of any modular symbol equivariant for a group containing these matrices: in other

words, M and its adjugate act as inverses on such elements.

Now, for any double coset

Γ1pNqαΓ1pNq P Γ1pNqzGL2pQq{Γ1pNq

with left coset decomposition

Γ1pNqαΓ1pNq “
ď

i

αiΓ1pNq,
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we can define an associated operator Tα on a modular symbol c : Stp2qΓ1pNq Ñ A (for an abelian group A) by

pTαcqprℓ1, ℓ2sq “
ÿ

i

cpα´1
i rℓ1, ℓ2sq.

One can check this is well-defined independent of the choice of left coset representatives, and corresponds to the classical Hecke

action by correspondences on (co)homology of modular curves (and thereby on modular forms, etc.).

First, if αd P Γ0pNq with σpαq “ d (i.e. the lower right entry is d modulo N ), then from previous discussion, the double coset Tα
depends only on d; we write Tα “ xdy and call it a diamond operator.

Next, for any prime p ∤ N , we have the double coset operator

Tp :“ Γ1pNq

˜

p

1

¸

Γ1pNq

and its dual

T˚
p :“ Γ1pNq

˜

1

p

¸

Γ1pNq

One computes the relation T˚
p “ xpyTp. We will consider the following set of coset representatives for T˚

p : by [SV, Theorem

4.3.7], there exists a set of representatives αi,p, 0 ď i ď p, given by

αi,p “

˜

1

i p

¸

for i ă p, and

αp,p “

˜

p

1

¸

αp.

Here, αp is the representative for the diamond operator xpy. Note that that considered as maps Q2{Z2 Ñ Q2{Z2, the kernel of

these p` 1 matrices are the p` 1 subgroups of order p, and that adjpαiq fixes p0, 1q modulo N .

For primes p|N , we similarly have

Up :“ Γ1pNq

˜

p

1

¸

Γ1pNq.

We will consider the left coset decomposition

Up “

p´1
ď

i“0

˜

p Ni

1

¸

Γ1pNq.

This operator also has a dual, which we ignore (since our symbol will have no simple corresponding equivariance property).

Proof of Theorem 1.2. From previous results, we find that

xdys˚
NΘMSp2qpNqprℓ1, ℓ2sq “ s˚

Nα
´1
˚ ΘMSp2qpNqprℓ1, ℓ2sq “ rds˚s˚

NΘMSp2qpNqprℓ1, ℓ2sq

since αsN “ rdssN .

We conclude that xdyΠ˝
N “ rds˚Π˝

N , as desired.
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For the operator T˚
p , p ∤ N , we have

T˚
p s

˚
NΘMSp2qpNqprℓ1, ℓ2sq “

p
ÿ

i“0

s˚
NΘMSp2qpNqpα´1

i,p rℓ1, ℓ2sq(3.11)

“

p
ÿ

i“0

s˚
N padjpαi,pqq˚Θ

MSp2qpNqprℓ1, ℓ2sq(3.12)

“

p
ÿ

i“0

s˚
N padjpαi,pqq˚padjpαi,pqq˚Θ

MSp2qpNqprℓ1, ℓ2sq(3.13)

Now observe that for matrix M : G2
m Ñ G2

m, the correspondence M˚M˚ is precisely consists of px, x ¨ kerMq where ¨ kerM

means translation by this subgroup. Thus, since the kernel of the various αi,p are precisely the p ` 1 lines of order p torsion, we

have the equality of correspondences
p

ÿ

i“0

α˚
i,ppαi,pq˚ “ px, px` x ¨ ker rpsq Ă G2

m

since the union of all p-torsion lines is precisely the p-torsion, except the identity is counted once per line. These correspondences

also all preserve the open set UΓ1pNq, and hence can be applied to the values of the spread-out cocycle ΘMSp2qpNq. Since

ΘMSp2qpNqprℓ1, ℓ2sq is rps˚-invariant, we finally obtain

T˚
p s

˚
NΘMSp2qpNqprℓ1, ℓ2sq “ s˚

N pp` rps˚qΘMSp2qpNqprℓ1, ℓ2sq(3.14)

“ ps˚
N xpys˚

NΘMSp2qpNqprℓ1, ℓ2sq(3.15)

so that T˚
p Π

˝
n “ pp` xpyqΠ˝

n, as desired.

Finally, for the operator Up, p|N , we write:

Ups
˚
NΘMSp2qpNqprℓ1, ℓ2sq “

p´1
ÿ

i“0

s˚
N

˜

1 ´Ni

p

¸

˚

ΘMSp2qpNqprℓ1, ℓ2sq(3.16)

“

p´1
ÿ

i“0

s˚
N

˜

1 ´N
p i

1

¸

˚

˜

1

p

¸

˚

ΘMSp2qpNqprℓ1, ℓ2sq(3.17)

“

p´1
ÿ

i“0

pζip, ζN q˚

˜

1

p

¸

˚

ΘMSp2qpNqprℓ1, ℓ2sq(3.18)

“ s˚
N

˜

p

p

¸

˚

ΘMSp2qpNqprℓ1, ℓ2sq(3.19)

“ s˚
NΘMSp2qpNqprℓ1, ℓ2sq(3.20)

from which Up “ 1 on Π˝
N follows. □

We also furnish a new proof of the N -integrality of Π˝
N (or pΠ˝

N q`, depending on N ) when restricted to the homology of the

compact curve (compare [SV, Lemma 4.2.7], [FK, Lemma 3.3.11]). For this, we make the observation that the homology of the

closed modular curve X1pNq is a submodule

H1pX1pNqq ãÑ H1pX1pNq, C1pNqq

described in terms of the Steinberg module as being generated by symbols of the form γ1r1 : 0s ^ γ2r1 : 0s for γ1, γ2 P Γ1pNq,

i.e. geodesic paths between cusps in the orbit of the zero cusp (or, equivalently, any given fixed cusp).
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Theorem 3.6. The restriction of Π˝
N (respectively pΠ˝

N q`, when N has distinct prime divisors) to H1pX1pNqq takes values in the

submodule

H2pZrµN s,Zr 12 sp2qq ãÑ H2pZrµN , N
´1s,Zr 12 sp2qq

(respectively with ` parts).

Proof. Again, we will write the proof without ` projections, for brevity. By Proposition 2.1, the H2pZrµN s,Zr 12 sp2qq is the

submodule of H2pQpµN q,Zr 12 sp2qq on which the various tame symbols

H2pQpµN q,Zr 12 sp2qq Ñ H1pZrµN s{p,Zr 12 sp2qq

vanish, for all primes p. Let

L “

´

ℓ1 ℓ2

¯

be the pushforward matrix associated to a Steinberg symbol in Stp2q˝. We have the following pullback/pushforward functoriality

of tame symbols [Lev2]:

(3.21)

H2pUΓ1pNq,Zr 12 sp2qq
À

D

H1pD,Zr 12 sp2qq

H2pUΓ1pNq,Zr 12 sp2qq
À

D

H1pD,Zr 12 sp2qq

H2pQpζN q,Zr 12 sp2qq
À

p
H1pZrζN s{p,Zr 12 sp2qq

L˚

B

L˚

s˚
N

B

s˚
N

B

where the direct sums range over irreducible components of the codimension-1 locus Gm´UΓ1pNq and closed points of SpecZrζN s

respectively, indexed by convention and familiarity by “D” for divisor (in G2
m) for the geometrically-flavored UΓ1pNq, and by the

associated prime ideal p for the cyclotomic number ring. In the lower right vertical arrow, s˚
N is zero by convention if sN fails to

properly intersect D.

Now, the value Π˝
N prℓ1s ^ rℓ2sq is the image in the bottom left group of t1 ´ z1, 1 ´ z2u in the top left group, whose tame symbol

is

t1 ´ z2uz1“0 ´ t1 ´ z1uz2“0.

Let the coordinates of (integral generators of) the lines ℓ1, ℓ2 be considered as maps pℓ1q, pℓ2q : Gm ÞÑ G2
m. Then commutativity

of the above diagram implies that

BΠ˝
N prℓ1s ^ rℓ2sq “ s˚

NL˚t1 ´ z2uz1“0 ´ t1 ´ z1uz2“0(3.22)

“ p1, ζN q˚rpℓ1q˚t1 ´ zu ´ pℓ2q˚t1 ´ zus(3.23)

which vanishes when ℓ1 “ γℓ2 for γ P Γ1pNq, as in that case pℓ1q “ γ ˝ pℓ2q as maps, and we have

p1, ζN q˚γ˚ “ pγ´1p1, ζN qq˚ “ p1, ζN q˚

as maps. □

Remark 3.7. A certain level compatibility for these Eisenstein cocycles was proven relative to more restrictive sets of cusps in

[LcW, Theorem 1.1], and asked whether a version existed relative to larger sets of cusps. We expect that the methods of that article
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applied in our formalism furnish a proof of this extended level compatibility. We do not go into the details as the main purpose of

the authors of that article was to prove Hecke equivariance results, which we have established by other means.

4. THE DE RHAM COCYCLES AND APPLICATIONS

In this section, we pass from our motivic/K-theory-valued class to one valued in differential forms, from which we will be able to

extract actual numbers (or distributions) related to L-values of totally real fields.

There is a regulator map [LW, §2.1.5]

pd logq^n : HnpX,Zpnqq Ñ ΩnX , tu1, . . . , unu ÞÑ d log u1 ^ . . .^ d log un

which exists for any scheme X , functorial for pullbacks and pushforwards, to turn our motivic-valued cocycles into differential

form-valued cocycles. We deduce from our motivic cocycle

pd logq^n
˚ Θpnq P Hn´1pGLnpQq, pΩnkpGn

mqqp0q{xpz1 . . . znq´1dz1 ^ . . .^ dznyq

which can be represented by a homogeneous cocycle which sends

pγ0, . . . , γn´1q ÞÑ

´

γ0e1 . . . γn´1e1

¯

˚

p´1qn

p1 ´ z1q . . . p1 ´ znq
dz1 ^ . . .^ dzn

whenever the first columns of γ0, . . . , γn´1 are independent (or an analogous condition if we replace e1 with any rational ray). If

we write zi “ expp2πitiq for 1 ď i ď n, then we have

dz1 ^ . . .^ dzn “ z1z2 . . . zndt1 ^ . . .^ dtn.

The n-form dt1 ^ . . .^ dtn transforms by the character det under pullback by GLnpQq, so

ω ÞÑ
ω

dt1 ^ . . .^ dtn

furnishes a GLnpQq-equivariant isomorphism

ιt : Ω
n
kpGn

mq{xdz1 ^ . . .^ dzny Ñ pMGn
m

{x1yqp´detq

by the push-pull formula

γ˚pf dt1 ^ . . .^ dtnq “
1

det γ
γ˚pf γ˚dt1 ^ . . .^ dtnq “

1

det γ
γ˚pfq dt1 ^ . . .^ dtn

Here, MGn
m

p´ detq denotes the meromorphic functions with their pushforward action twisted by the character det´1. We then

define our differential Eisenstein cocycle as

ΘdRpnq :“ pιtq˚ ˝ pd logq^n
˚ Θpnq P Hn´1pGLnpQq, pMGn

m
{x1yp´detqqp0qq

which can be represented by a homogeneous cocycle sending

pγ0, . . . , γn´1q ÞÑ pdetMq´1M˚

z1z2 . . . zn
pz1 ´ 1q . . . pzn ´ 1q

for

M “

´

γ0e1 . . . γn´1e1

¯

whenever the first columns of γ0, . . . , γn´1 are independent. Here, the superscript p0q means trace-fixed with the determinant twist;

i.e. ras˚f “ anf for a P N.
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In fact, if we restrict to GLnpZrS´1sq for some set of primes S, Corollary 2.11 and (2.14) tell us that associated to a lift ϕ of the

Euler class we obtain

ΘdR,ϕpnq P d´1
n,S ¨Hn´1pGLnpZrS´1sq,MGn

m
p´detqp0qq.

For our application to L-values of totally real fields, we will be interested in the case S “ H, for which dn is the denominator of

the halved Bernoulli number Bn

2 . For this reason, we will also restrict to the subgroup GLnpZq in all that follows, though many of

the same statements also hold with essentially the same proofs for S-arithmetic groups.

It will be useful to introduce the shorthand

r̃ :“ ιt ˝ d log^n
˝ρ̃ : C̃pnq Ñ MGn

m
p´ detqp0q

for the realization map from rational spherical chains to meromorphic functions.

4.1. Some transforms of the cocycle.

4.1.1. Stabilizations. To obtain relations to totally real L-values, we will need certain combinations of torsion-section translates

of our de Rham cocycles. In this section, we introduce the requisite notation, and make some basic observations about the resulting

stabilizations when some degree-zero properties are satisfied.

Over Q, the torsion of Gnm is the nth power of the roots of unity µn8; given x P µn8, we will write

tx : Gnm ÞÑ Gnm

for the translation map which is multplication by the inverse x´1. More generally, via the complex uniformization Gnm – Cn{Zn,

we can identify torsion sections with elements of Qn{Zn. Then to any Schwartz function φ P SpQn{Znq with period Zn (in other

words, finitely supported functions on Qn{Zn), we define an associated pullback operator on MGn
m

p´detq by

t˚φ :“
ÿ

xPQn{Zn

φpxq ¨ t˚x.

The group GLnpZq acts on Qn{Zn by the standard left action, and for this action, we have the equivariance property

γ˚t
˚
φf “ t˚φ˝γ´1γ˚f

for any f P MGn
m

.

We observe that if φ is Γ-invariant, for an arithmetic subgroup Γ Ă GLnpZq, then t˚φΘ
dRpnq is a cohomology class for Γ; this

applies to all variants of this construction we have seen as well, and to the cocycle representatives we have written down. In

particular, associated to a ∆-extension E and an Euler class lift ϕ, we have a cocycle representative

t˚φθ
dR
E,ϕpnq

If φ sums to zero, t˚φ annihilates the Euler class, so ϕ can be taken to be zero and omitted from the notation. Furthermore, we

recall that the ambiguity in the choice of a ∆-extension is only on degenerate “wedge”-like simplices ∆Epr1, . . . , rnq with a linear

dependence among the rays. For such a simplex, suppose its rays span a proper subspace V Ă Qn. Notice that the realization of

the standard wedge Qe1 ‘ . . .‘ Qek ‘ Q`ek`1 ‘ . . .Q`en is

zk`1 . . . zk
pzk`1 ´ 1q . . . pzn ´ 1q

,
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which is unaffected by translation by elements in V , meaning its φ-weighted sum over any V -coset is just the total mass of φ on

that coset. By GLnpQq-equivariance, this implies that in general, if φ sums to zero considered as a function on pQn{Znq{V pQ{Zq,

then t˚φr̃˚∆
Epr1, . . . , rnq “ 0 as well regardless of the choice of ∆-extension.

For instance, if φ sums to zero on every subspace spanned by Γ-orbits of e1, then t˚φθ
dR,Epnq is also independent of E (which can

thus be omitted from the notation in this case), and simply vanishes on all linearly dependent tuples of rays arising from tuples of

matrices in Γ. This phemomenon, wherein realizations of “wedge” classes disappear upon stabilization, will be important in our

application to Shintani domains/L-values of totally real fields. It also arises in the following comparison:

Example 4.1. The analytic “cocycle multiplicatif” of [BCG2] is a homogeneous pn´ 1q-cocycle

S˚
multrφf s : Γn Ñ MGn

m
,

for the right pullback action on the coefficients, where φ P SpQn{Znq is Γ-invariant for some arithmetic subgroup Γ Ă SLnpZq,

and sums to zero on any subspace containing the line corresponding to the first standard basis element e1.

In [BCG2, Proposition 8.8], the value of S˚
multrφs on a tuple pγ0, . . . , γn´1q is computed as

ÿ

vPQn{Zn

φpvq
ÿ

ξPQn
{Zn

hξ”v pmod Zn
q

dℓ1 ^ . . .^ dℓn
pe2πipℓ1´ξ1q ´ 1q . . . pe2πipℓn´ξnq ´ 1q

whenever

h :“
´

γ´1
0 e1 . . . γ´1

n´1e1

¯

has linearly independent columns and h˚ℓj “ e_
j . We find that upon restriction of our cocycle to Γ, we have

(4.1) S˚
multrφspγ´1

0 , . . . , γ´1
n´1q “ t˚φf

θdRpnqpγ0, . . . , γn´1q

where here we use
1

x´ 1
“

x

x´ 1
´ 1

and then the degree-zero property of φ to see that the contributions of the constants ´1 cancel out. As remarked above, our cocycle

representative t˚φθ
dRpnqpγ0, . . . , γn´1q equals zero independently of a choice of ∆-extension when h is not full rank. Note that the

presence of inverses makes sense, since our cocycle is a left cocycle while theirs is a right cocycle. This reflects their systematic use

of pullback actions rather than pushforwards; since we are working with subgroups of SLnpZq, the pushforward coincides with the

pullback of the inverse. In fact, this comparison holds in more generality without need for such stringent degree-zero assumptions:

[BCG2, Theorem 1.7] identifies S˚
multrφf s with the image under an edge map of a certain equivariant polylogarithm class for Gnm,

up to some controlled ambiguity; we prove the same for our cocycle in Appendix A.

4.1.2. p-power distributions. We now discuss the specializations of elements of MGn
m

p´detqp0q at torsion points of Gnm, and in

particular specializations to distributions over all p-power torsion at once (which will furnish the link to p-adic L-functions).

A general meromorphic function cannot be specialized at arbitrary torsion points, since there may be poles, so we will need

to stabilize. For simplicity, we will from this point on fix one prime p, and will focus on specializations at Np8-torsion. Let

Ap ãÑ MGn
m

be the meromorphic functions on Gm which are regular on the open p-adic disc around the identity. Note now that

only the matrices in MnpZq of determinant invertible in Zr1{ps may act by pushforward on this space: in analogy with preceding

notation, we write App´ detqp0q for the rps˚-fixed vectors in the corresponding representation of GLnpZq, noting that rps˚ is the

only remaining trace allowed, and the determinant is only a sign.
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Example 4.2. As an example, for any torsion point x of order c ą 1 prime to p with all n coordinates nonzero,

t˚x
z1 . . . zn

p1 ´ z1q . . . p1 ´ znq
P Ap.

More generally, if M P MnpZq is a matrix, and every torsion section in M´1x has all coordinates nonzero, then

t˚xM˚

z1 . . . zn
p1 ´ z1q . . . p1 ´ znq

P Ap.

Elements in Ap can be pulled back by all p-power torsion by definition. Moreover, we have the following formalism in terms of

Schwartz functions on Qnp :

Proposition 4.3. There is a unique map

κ : Ap
„

ÝÑ DppZnp q_,Zpq

such that
ż

pZn
p q_

e2πiT pxq dκpfqpT q “ fpxq

for any f P Ap and x P Gnmrp8s “ Qnp {Znp (using our fixed identification of Zn and the cocharacter lattice of Gnm, as GLn-

representations).

Proof. This is essentially [Katz, Theorem 1] in slightly different language, except for the minor caveat that Katz’s statement

involves measures, i.e. the continuous dual of continuous functions: since locally constant functions on Znp are dense in continuous

ones, there is a canonical isomorphism

DpZnp ,Zpq – MeasurespZnp ,Zpq

given by approximating by Riemann sums; here it is important that we take p-complete coefficients, but otherwise this is an

immaterial change of notation.8 □

We observe the following equivariance properties for the map κ: for γ P GLnpZr1{psq XMnpZq and f P App´ detqp0q, κ restricts

to a map

App´ detqp0q Ñ Dp0qppZnp q_,Zpq “ Dp0qppQnp q_,Zpq

of distributions which are fixed by rps˚, in the sense that U and rpsU have the same measure for all opens U Ă pZnp q_ (where

these are extended to pQnp q_ by this property). Indeed, this follows from the calculation that
ż

pZn
p q_

e2πiT pxq dκprps˚fqpT q “
ÿ

px1“x

ż

pZn
p q_

e2πiT px1
q dκpfqpT q

“ pn
ż

p¨pZn
p q_

e2πiprps
˚T qpxq dκpfqpT q

“ pn
ż

p¨pZn
p q_

e2πiT pxq dprps˚κpfqqpT q

where the middle equality comes from the corresponding distribution relation on characters.

8We are mostly interested in p-adic integration to obtain p-adic L-functions, so for convenience of exposition, we will use p-adic coefficients in all distributions
going forward, though many of our classes (for example, cΘdR

Dp
pnq below) are actually Z-valued when considered only as distributions (i.e. against locally constant

test functions). Using the Z-valued distributions would be necessary to imitate the “multiplicative” construction of [RX2], as mentioned in the introduction, for
example.
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Also, we have the pullback functoriality

(4.2) κpγ˚fq “ rγ˚s˚κpfq

for any γ P GLnpZq XMnpQq of determinant prime to p, following from the computation
ż

pZn
p q_

e2πiT pxq dκpγ˚fqpT q “

ż

pZn
p q_

e2πipγ
˚T qpxq dκpfqpT q “

ż

pZn
p q_

e2πiT pxq dprγ˚s˚κspfqpT q

noting that γ˚ preserves the lattice pZnp q_ by the determinant condition. Here, γ˚ : pZnq_ Ñ pZnq_ is the usual pullback, and

rγ˚s˚ :“ DppZnp q_,´q Ñ DppZnp q_,´q the induced pushforward on measures.

Observe that the pullback functoriality leads also to pushforward functoriality on GLnpZq, as then γ˚γ˚ is the identity on Ap. The

map κ, when restricted to p0q-parts, also has a pushforward functoriality for GLnpZr1{psq, but we ignore it as unneeded in this

paper, besides the case of pZ given above. Note that one does not expect pushforward functoriality for matrices with determinant

divisible by primes besides p, since Cartier duality does not “see” the prime-to-p torsion.

Going forward, when we only care about the SLnpZq-action, we will also sometimes write Apnq
p instead of App´ detqp0q, to still

indicate that we are considering the functions on which rps˚ acts as pn (but no longer care about the action of matrices for which

the determinant twist is relevant).

4.2. Shintani generating functions. We review the method of Shintani for obtaining zeta values of a totally real field F of

absolute degree n [Shin], though we formulate things more in the style of [Katz] (with some modernizations of notation); this

method is how we will prove interpolation properties connecting our cocycles to L-values.

Let U :“ Oˆ
F , and let U` be the totally positive units, i.e. units positive at every real place. We will also write F`, O`

F , etc. for

analogous constructions.

A Shintani decomposition of F b R is a collection S of relatively open9 rational simplicial cones (of various dimensions), each

bounded by linearly independent F -rational totally positive rays, such that the U`-orbit of these cones in S yield a disjoint

partition of pF b Rq`: in other words, the union of the cones in such a decomposition constitutes a fundamental (“Shintani”)

domain for U` acting on this orthant.

If I Ă F is any fractional ideal, viewed as a lattice inside F b R, we will be interested in coordinatizations

α : F b R – Rn

which restricts to an identification of lattices α : I
„

ÝÑ Zn. Given a cone (as above) C with bounding rays generated by integral

points x1, x2, . . . , xk, write

RC : Zn X tc1x1 ` . . .` ckxk,@i, ci P Q, 0 ă ci ď 1u

for the lattice points in the “unit cube” spanned by the xi. We also write zx for the monomial zx1
1 . . . zxn

n , for any x P I – Zn.

Then if ψ : I Ñ Qˆ
is any finite order additive character (which we will identify via α with a character of Zn), identified with a

character of Zn, associated to this data we have a rational “Shintani generating function”

(4.3) fS pψqpz1, . . . , znq :“
ÿ

CPS

fCpψqpz1, . . . , znq :“
ÿ

CPS

ÿ

yPRC

ψpyqzy
ś

xp1 ´ ψpxqzxq

9Meaning, excluding its lower-dimensional conical faces.
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where the product in the denominator is over integral generators for the rays bounding the cone C. Note that here, ψ can be

identified with a torsion point in Gnm; namely, the section pζ1, . . . , ζnq if ψpx1, . . . , xnq “ ζx1
1 . . . ζxn

n . We will also write simply

fC for fCp1q.

The rational function fCpψq is a way to make sense of the naive infinite sum

(4.4)
ÿ

xPC

ψpxqzx

whose meaning is otherwise ambiguous. Note that if x P Gnmrcs is a torsion point, then

t˚xfCpξq “ fCpψx ¨ ξq

for the character ψx : Zn Ñ Qˆ
given by pi1, . . . , inq ÞÑ px´i1

1 , . . . , x´in
n q, i.e. we are implicitly identifying Zn with the character

lattice of Gnm.

On these Shintani functions, we also define the differential operator sending

DN : zx ÞÑ Npxqzx

for any x P I , where we write N for the field norm of F . The main result of Shintani’s approach to L-functions is then the

following:

Theorem 4.4. ([Shin, Prop. 1], formulation from [Katz, Theorem 2]) One can define a meromorphic function by analytically

continuing the Dirichlet series

ζIpψ, sq :“
ÿ

rλsPI`{U`

ψpλqNpλq´s.

Then for all k ě 0,

ζIpψ,´kq “ Dk
NpfS pψqqp1, . . . , 1q

for any character ψ nontrivial on each ray bounding any C P S .

The proof of this theorem is an analytic trick generalizing the proof the functional equation of the Riemann zeta function using an

integral representation; what it actually shows is that

Dk
NpfCpψqqp1, . . . , 1q “

ÿ

λPC

ψpλqNpλq´s,

so that the fact that the union of S is a fundamental domain for I`{U` implies the result.

We also note the following relation to p-adic integration of the differential operator Dk
N, noted by Katz [Katz, Theorem 1], which

will be useful later:

Proposition 4.5. If ψ : I`{U` Ñ Qp
ˆ

is any additive character, we identify ψ with a function ψ̃ on Zp via ψ “ ψ̃ ˝ N ˝ α´1.

Then for any k ě 0, and any f P Ap, we have
ż

Ip

ψptqNptqk dκpfqptq “ pDk
Nfqpψq

where we here identify ψ, as before, with a p-power torsion point of Gnm, and Ip :“ I b Zp.
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Note that replacing ψ in all of the above by any locally constant function in the p-adic topology, we obtain an analogous result by

taking the associated linear combination of additive characters corresponding to the Fourier transform of that function. We will use

this more general version without comment.

4.2.1. Conical duality. Observe that the functions fCpψq lie in the image of ΘdRpnq when ψ “ 1; for general ψ, they are linear

combinations of torsion translates of functions in the image. The data of a top-dimensional rational simplicial cone in Rn is

equivalent to a the data of its simplex of intersection with Sn´1, i.e. the generators of C̃pnq. One may naively then expect that for

an acyclic simplex qua cone C, our de Rham realization of rCs as a spherical chain10 is the Shintani generating function for C;

i.e., that rrprCsq “ fCp1q P MGn
m

.

However, this is not the case: rather, if C “ ∆pr1, . . . , rnq is an acyclic, positively oriented simplex, then

fCp1q “ adj
´

r1 . . . rn

¯T

˚

z1 . . . zn
p1 ´ z1q . . . p1 ´ znq

,

where adj γ :“ |det γ|γ´1 is the adjugate matrix of γ, while we recall that

rrprCsq “ p´1qn
„

adj
´

r1 . . . rn

¯´1
ȷ

˚

z1 . . . zn
p1 ´ z1q . . . p1 ´ znq

,

and we compute that this expression in fact equal to the Shintani generating function fC_ p1q of the dual cone C_, whose bounding

rays are r_
1 , . . . , r

_
n , defined by

xr_
i , rjy “

$

&

%

R`, i “ j

0, i ‰ j
.

More intrinsically, the dual C_ of any cone C can be defined as the locus pairing positively with C under x´,´y; for simplicial

cones, one can check this coincides with the definition in terms of bounding rays.

Remark 4.6. This “conical duality” between the two constructions is observed also in the following phenomenon: as we have

seen previously, the realization of a wedge, as defined in Lemma 2.14, is generally nonzero under rr, while it is easy to compute

that fC “ 0 for any wedge C, since

fRpzq “ fR`
pzq ` fRď0pzq “

z

1 ´ z
`

1

1 ´ z´1
“ 0,

cf. [SH]). Conversely, by construction, rr ignores any kind of degenerate lower-dimensional simplex, while fC makes sense and

is generally nonzero for lower-dimensional cones C. Indeed, the roles played by “wedge” and “lower-dimensional cone” are

swapped; they are precisely the conical duals to each other. For a concrete example, observe that

R` ‘ R Ă R2

has realization z1{p1 ´ z1q, which is the same as the Shintani generating function for its conical dual R` ‘ t0u Ă R. Note also

that under this duality, the fundamental class rSn´1s corresponds to the degenerate cone t0u; the realization rr, respectively the

association of the Shintani generating function, send these to the constant function 1.

Remark 4.7. A consequence of the previous remark is in the additivity of rr, as opposed to the Shintani generating functions: when

we have a decomposition of top-dimensional simplices/cones

rC1s ` rC2s “ rC3s,

10To be strict, here we should write rC X Sn´1s sinceC is a relatively open cone and we want a closed spherical chain; however, since the open/closed distinction
does not exist within the chain complex, and the cone/simplex identification is very simple, for convenience we simply write rCs.
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we have proven previously that rrprC1sq ` rrprC2sq “ rrprC3sq. However, it is not quite the case that

fC1
` fC2

“ fC3
.

Indeed, from the “naive” generating function definition (4.4), one sees that this almost is obvious from definition, except that

the terms coming from lower-dimensional cones in the intersection C1 X C2 will appear on the right-hand side, but not on the

left-hand side: thus, this “obvious” additivity needs to be corrected by the intervention of lower-dimensional conical faces. This

phenomenon poses a delicate problem in the construction of “true” Shintani domains; see discussion further below. Meanwhile,

the additivity coming from rr is less obvious on the level of expanding out infinite monomial sums (though it can be deduced by

canceling out generating functions of wedges), but holds on the nose. In the terminology of [GP], the latter is “N -additivity,”

as opposed to the naive “M -additivity” needing correction from lower-dimensional faces. The duality between these types of

additivity is well-known in convexity theory and linear programming; see, for example, [Bv, Chapter 1, Problem 3].

The above two remarks can be viewed more structurally in the following way: let KQ be the module of functions on Rn generated

by indicator functions of relatively open rational simplicial cones, and let and LQ be those generated by indicator functions of

(relatively open) wedges, as in [SH] and [CDG]. Notice then that the Shintani generating function can be viewed as an association11

f‚ : KQ{LQ Ñ MGn
m
, 1C ÞÑ fC

since the Shintani generating function of a wedge is zero; from this viewpoint, a Shintani decomposition S is simply the corre-

sponding linear combination of indicator functions of its cones. This association satisfies the GLnpQq-equivariance property

fψ˝γ´1 “ padj γT q˚fψ

for ψ P KQ{LQ. We then have:

Proposition 4.8. The association

r∆s ÞÑ 1pR`∆q_ ,

on a positively-oriented simplex ∆, defines a map

δ : rCpnq Ñ KQ{LQ, r∆s ÞÑ 1pR`∆q_

satisfying the equivariance property

δpγr∆sq “ δpr∆sq ˝ γT

for γ P GLnpQq. Furthermore, rrp‚q “ fδp‚qp1q.

Proof. This is a direct consequence of the convex cone duality of [Bv, IV, Theorem 1.6], once one notes that the duals of lower-

dimensional cones are precisely wedges (and identifies the “polar” as the negative of the dual). The GLn-equivariance property is an

immediate consequence of the definition of dual cone, and the asserted equality of “realization maps” is then a direct consequence

of the formulas. □

Now, associated to the coordinatization α of F b R is an embedding

ια : U Ñ GLnpZq.

11This is just a restricted version of the Solomon-Hu pairing defined in [SH].
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It was an observation of Colmez, generalized in [CDG] (and independently by Diaz y Diaz–Friedman), that the value of θS
n´1

on a set of generators for U`, when antisymmetrized, gives a fundamental Shintani domain “up to boundaries,” i.e. up to the

lower-dimensional conical faces. In particular, it follows from [CDG, Theorem 1.5]:

Proposition 4.9. If u1, . . . , un´1 is set of generators of U`, then the set of pn´ 1q! simplices

∆˝pv, uτp1qv, . . . , uτp1q . . . uτpn´1qvq,

for any v P I`, as τ ranges over Sn´1, contains a unique U`-translate of any x P pF bRq`{Rˆ
` not in the orbit of their boundary

faces. Equivalently, the associated open cone contains a unique U` translate of any x P pF b Rq` not in a boundary orbit.

Fix any ray v in pF b Rq`
α
Ă Rn, and choose an ordering of basis u1, . . . , un´1 of U` such that ∆˝pv, u1v, . . . , u1 . . . un´1vq

is positively oriented with respect to the standard orientation of Rn (given by the ordered standard basis e1, . . . , en). Note that

detpv, u1v, . . . , u1 . . . un´1vq is nowhere vanishing in pF b Rq`; thus, by continuity, we may define:

Definition 4.10. We define a choice of fundamental class cαU` P Hn´1pU`,Zq corresponding to the orientation such that

∆˝pv, u1v, . . . , u1 . . . un´1vq is positively oriented for any v P pF b Rq`. (Note that the dependence on α is only up to sign.)

Remark 4.11. More generally, there are 2n orthants in F b R corresponding to possible combinations of signs at real places

of F ; their disjoint union is the complement of the zero locus of v ÞÑ detpv, u1v, . . . , u1 . . . un´1vq, so the orientation of

∆˝pv, u1v, . . . , u1 . . . un´1vq is constant on each of them. This will be `1 on all the orthants with an even number of neg-

ative signs, and ´1 otherwise: this is clear if one simultaneously diagonalizes u1, . . . , un´1, and notices that the matrices

diagp˘1, . . . ,˘1q (which is orientation-preserving exactly when the number of ´1s is even) in the resulting eigenbasis transi-

tively permute the simplices along with their corresponding orthants.

Now take a cocycle like θS
n´1

pnq|U` , but lifting to some general ∆pvq P Sn´1pQq instead of r∆pe1qs from 1 P Chainspnq0,

representing the class ΘS
n´1

pnq|U` P Hn´1pU`, Cpnqq. Then the cap product

(4.5) θS
n´1

pnq " cαU` “
ÿ

σPSn´1

p´1qsgnσr∆pv, uτp1qv, . . . , uτp1q . . . uτpn´1qvqs P H0pU`, Cpnqq

is a formal sum of simplices whose R`-span is a Shintani domain, up to lower-dimensional cones.

Previous cohomological approaches, such as [Hill] or [CDG], used auxiliary data (a lexicographic order, respectively a “Colmez”

perturbation vector) to find the lower-dimensional cones which correct the top-dimensional term corresponding to the “fake Shin-

tani domain” fCpξq, for

C “ R`∆
˝pv, uτp1qv, . . . , uτpn´1q . . . uτp1qvq,

and thus obtain totally real L-values; for example, [CDG, Theorem 2.1] shows that

D “ (linear combination of indicators of lower dim. cones) `
ÿ

τPSn´1

1pR`∆
˝pv, uτp1qv, . . . , uτpn´1q . . . uτp1qvq P KRn

is a “signed Shintani domain,” which is to say formally satisfies the requirements of Theorem 4.4 if we view f‚ as a function on

KQ{LQ. However, our cocycle has values which look like

rrpr∆pv, uτp1qv, . . . , uτpn´1q . . . uτp1qvqsq,
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which as we have seen, are actually not the generating functions considered in those articles. Thus, even ignoring the issue of lower-

dimensional faces, it is not immediately clear how Shintani’s result Theorem 4.4 can be used to relate our cocycle to L-values of

totally real fields; we are a “conical duality” away.

The solution lies in the following observation: the target KQ{LQ of the duality morphism δ is very similar in nature to rCpnq;

as remarked previously, the difference is that the latter “cares about” wedges, while the former “cares about” lower-dimensional

cones. If we could define the realization map rr on the former module instead of the latter, then rr ˝ δ would carry the class of our

“fake fundamental domain” to the “main” (top-dimensional) term contributing to a Shintani function for a totally real field F . But

rr does care about wedges, and ignores lower-dimensional cones, so this strategy does not quite make sense, as written.

The work-around is that if we introduce certain stabilizations of our symbol complexes by torsion sections, then we can remove

all the above obstructions: the classes of wedges and lower-dimensional cones alike are annihilated, so that δ becomes a kind of

auto-duality, whereupon a realization extending rr makes sense on the target. This stabilization will also remove the contribution of

all lower-dimensional terms in associated Shintani generating functions, effectively making our fake fundamental domain as good

as a real one. The resulting stabilized cocycle can then be directly related to a (stabilized) Shintani function for a totally real field

F , and therefore to L-values.

4.3. Stabilized duality and p-adicL-functions. We introduce stabilizations at auxiliary integers, necessary to realize the previously-

stated strategy for constructing and proving interpolation properties for our p-adic L-functions. Because δ is a duality map, there

will be two dual notions of stabilization, which we will call avoiding and smoothing. Broadly speaking, “avoiding” corresponds

to ensuring the poles of the values of ΘdRpnq avoid zero, while “smoothing” enforces a degree-zero condition killing off lower-

dimensional conical faces.

Remark 4.12. The Euler factors that appear corresponding to these two types of stabilization are precisely those corresponding to

the two kinds of sets of places often labelled S and T in literature on Stark-type conjectures; e.g., in [DK].

4.3.1. c-avoiding. Let c ą 1 be an integer prime to p; though it is not necessary, for later convenience we may as well take it to be

prime. We first describe a “c-avoiding” modification of our symbol complex, as well as the resulting stabilization of ΘdRpnq; this

latter class has the upside is that it is valued in functions holomorphic in a p-adic neighborhood of the identity.

Write

c
ČChains1

pnqi “
à

λPPn´1pZ{cq

λ
ČChainspnqi

where the definition of λ ČChainspnq‚r´1s needs to be explained: roughly, it is the augmented simplicial chain complex for the ind-

triangulation of Sn´1 consisting of simplices whose ă pn´ 1q-dimensional faces do not contain any line reducing to λ modulo c.

We will call a triangulation of Sn´1 satisfying this property “λ-avoiding”.

The existence of λ-avoiding triangulations is clear from the density of points reducing to any given ray in pZ{cqn in any open set of

Sn´1. The existence of a direct limit over all such triangulations (analogous to (2.2)) is slightly less obvious, but follows from just

a slight refinement in the proof of Proposition 2.3: we need two λ-avoiding triangulations T1 and T2 to have a λ-avoiding common

refinement. In that argument, when superimposing two λ-avoiding triangulations, all the resulting polyhedral faces of dimension

ă pn´1q will automatically already avoid λ modulo c by assumption. To ensure all faces avoid λ, we pick the point of barycentric

subdivision such that all the resulting new faces also avoid λ, rather than picking an arbitrary rational point, which again is clearly

possible by density.
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Thus, as in (2.2), we can define λ
ČChainspnq‚r´1s as the direct limit over all chain complexes of x-avoiding triangulations, as

before; it is naturally a subcomplex of ČChainspnq‚, and the inclusion is a quasi-isomorphism.

Clearly, pushforward by γ P GLnpZpcqq carries λ-avoiding triangulations to γλ-avoiding triangulations, for the natural left action

on lines. Then the complex c
ČChains1

pnqi carries a natural GLnpZq action, which permutes the summands

λ
ČChainspnqi Ñ γλ

ČChainspnqi

given simply by the pushforward γ˚ : Sn´1 Ñ Sn´1 on the level of chains. As representations of this group, we can identify

c
ČChains1

pnq0 – ZtPn´1pZ{cqu.

Similarly,

Hnpc ČChainspnq‚q – ZtPn´1pZ{cqupsgnq

with the same action twisted by the sign character, since there is one fundamental class of the sphere for λ P Pn´1pZ{cq. If we

write H0 Ă ZtPn´1pZ{cqu for the submodule of degree-zero elements in ZtPn´1pZ{cqupsgnq, we can define

c
ČChainspnq‚ :“ c

ČChains1
pnq‚{H0(4.6)

cChainspnq‚ :“ c
ČChains1

pnq‚{Hnpc ČChainspnq‚q,(4.7)

and the latter complex is exact. The same argument in the proof of Theorem 3.1 (but skipping the motivic realization to pass

directly to the d log regulator) shows that there is a GLnpZq-equivariant realization map

cr̃ : c ČChainspnqn Ñ MGn
m

p´ detqp0q

given on acyclic simplicial generators by

(4.8) r∆pr1, . . . , rnqsλ ÞÑ
ÿ

xPλ´t0u

1

detM
t˚xM˚

p´1qnz1 . . . zn
p1 ´ z1q . . . p1 ´ znq

where we here use the identification µnc “ Gnmrcs – pZ{cqn coming from considering Zn as the homology lattice of Gnm, as we

have been doing, to consider the various x as torsion points in Gnm, and

M “

´

r1 . . . rn

¯

.

(Here, one has to be careful that the p0q condition needs also to exclude the trace rcs˚; this applies going forward.) This realization

quotients down to a map

cr : cChainspnqn Ñ MGn
m

psgnqp0q{constants.

By the λ-avoiding condition, the image of cr lands in the intersection of Apnq
p for all p prime to c. Fixing some such p, we obtain

by lifting the fixed class
ÿ

λPPn´1pZ{cq

λ P c
ČChainspnq0

a cocycle

cΘ
dRpnq P Hn´1pGLnpZq, Apnq

p psgnq{Zpq

which, via Cartier duality (as discussed previously), yields a cocycle

cΘ
dR
Dp

pnq P Hn´1pGLnpZq,Dp0qppZnp q_,Zpqpsgnq{xδ0yq

where δ0 is the atomic (“Dirac delta”) measure at zero.
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Remark 4.13. There is a simple relation between cΘ
dRpnq, viewed as valued in MGn

m
psgnqp0q, and ΘdRpnq: we can view both

“spherical chain complexes” GLnpZq-equivariantly inside
À

xPµn
c
Chainspnq‚, by including cChainspnq by embedding its λ-

summand into all the nonzero x contained in λ, and inclusion at the identity section for Chainspnq. The class ΘdRpnq is obtained

by lifting t1u P Chainspnq0, while cΘ
dRpnq is obtained by lifting prcs˚ ´ 1qt1u; then by functoriality under rcs˚ of the lifting

process in group cohomology, we find

pcnrcs˚ ´ 1qΘdRpnq “ cΘ
dRpnq

after noting that cr ˝ rcs˚ “ cnrcs˚ ˝ cr.12

4.3.2. Restriction to a nonsplit torus. We now restrict to a nonsplit torus corresponding to a totally real field F of degree n: as

before, we pick a fractional ideal I of F , but instead of identifying it with Zn as in the original Shintani method, we will fix instead

an isomorphism

α : I
„

ÝÑ pZnq_

to the dual, which is equivariant for U Ă GLnpZq for the usual unit multiplication on the source and the standard dual represen-

tation on the target. The definition of the orientation cαU` P Hn´1pU`,Zq is as in Definition 4.10, with respect to the standard

orientation on pRnq_; i.e., corresponding to the ordering e_
1 , . . . , e

_
n .

We write ια : U ãÑ GLnpZq for the resulting inclusion; remark that any scaling α ˝ rˆas for a P F is U -equivariant for the same

inclusion ια. Conversely, ια can be recovered from the data of α by writing out the matrix action of U on I , then taking the inverse

transpose, so each ια is uniquely associated to an “isogeny class” of coordinatizations α.

Then α induces a U -equivariant identification

(4.9) Dp0qppQnp q_,Zpq
„

ÝÑ Dp0qpFp,Zpq, µ ÞÑ pφ ÞÑ µpφ ˝ α´1qq

via which we view cΘ
dR
Dp

pnq|U` as living inside Hn´1pU`,DpFp,Zpqp0q{xδ0yqq.

4.3.3. Stabilizing at ideals of F . We record some transformations of our cocycle, and properties thereof, which only make sense

after restriction via some ια : U ãÑ GLnpZq associated to a dual coordinatization α as in the previous section. Via considering

the rationalization of α, we see that ια extends uniquely to an algebra embedding F Ñ M2pQq which we continue to denote ια.

Then for any integral ideal a Ă OF , it makes sense to speak of the a-torsion Gnmras, as the torsion points annihilated by the action

of all elements a via ια; this torsion group has size Na. Notice that I is here identified with the character lattice of Gnm, so that

Gnmras “ homOF
pI,OF {aq “ I_ bOF

OF {a for example. The natural multiplication action of OF on I can be thought of a

pullback action in this optic.

This has the following upshot: if we first restrict to the image of Fˆ ια
ÝÑ GLnpQq, then we may define the Fˆ-equivariant complex

cChainspαq‚ for any prime ideal c of F (which we choose prime to p):

Definition 4.14. The U -module cChainspαq‚ is defined similarly to cChainspnq‚, except the direct sum is taken over only the lines

λ P Pn´1pZ{cq contained in the subspace of pZ{cqn corresponding to Gnmrcs (for the action of Fˆ on Gm given by ια).

The subspace of pZ{cqn indicated can also be described as the dual of the kernel of the natural projection I{c Ñ I{c, recalling that

I is identified with pZnq_.

12The extra scalar cn comes from the det-twist in the contraction from n-forms to functions: in general, we have γ˚pf dt1 ^ . . .^ dtnq “ pdet γqpγ˚fq dt1 ^

. . . ^ dtn.
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Then the corresponding cycle Gnmrcs ´ t1u P cChainspαq‚ is ιαpUq-fixed, and we have a realization map

cr : cChainspαqn Ñ MGn
m

psgnqp0q{constants.

defined exactly analogously to cr via a sum of translates (4.8). We therefore can define de Rham classes

cΘ
dRpιαq P Hn´1pU,Apnq

p {constantsq

as in the case of c-stabilization, but only after restricting to U along ια.

Since U` preserves the angular domain pF b Rq` Ă Rn (along with all other orthants coming from combinations of signs at

places of F , all lifted chains in any ∆-extension always are contained in such an orthant and never contain any full line. Thus, the

Euler cocycle εn|U` is identically zero regardless of ∆-extension chosen, and we can canonically lift cΘdRpιαq over the orientation

obstruction, allowing us to view these classes (following the convention of Section 4.3.3)

(4.10) cΘ
dRpιαq P Hn´1pU,Apnq

p q, cΘ
dR
Dp

pαq “ pα´1q˚κ˚cΘ
dRpαq P Hn´1pU,DpFp,Zpqp0qq

without quotienting by the images of the orientation obstruction. Another way to view this Euler obstruction vanishing is that we

have exact U -equivariant subcomplexes

cChainspαq‚ Ă cChainspαq‚

consisting of chains contained entirely in the (contractible) totally positive orthant of the sphere, and we define the above classes

by lifting in these complexes.

If c is principal and generated by an element of positive norm, say β P O`
F , then we also have ppNcqrβs˚ ´ 1qΘdRpnq|U “

cΘ
dRpιαq, if one uses the totally positive orthant to lift the restriction of ΘdRpnq over the Euler class in the same way, where here

we use that the determinant of the action of β is its norm as an element of F .

4.3.4. p-adic L-functions. We now define cζ
I,α
p to be the image of cΘ

dR
Dp

pαq under the composition

(4.11) Hn´1pU`,DpFp,Zpqp0qq
"cα

U`

ÝÝÝÝÑ H0pU`,DpFp,Zpqp0qqq Ñ DpFp{U`,Zpqp0q

Here, the last map is the natural map

H0pU`,DpFp,Zpqp0qq Ñ H0pU`,DpFp,Zpqqp0q ↠ DpFp{U`,Zpqp0q.

Explicitly, if φ is a U -invariant compactly supported continuous function on Fp, which we view as a function on pQnp q_ via

pQnp q_ α´1

ÝÝÑ Fp
φ

ÝÑ Qp,

we have

(4.12)
ż

Fp{U`

φpsq dcζ
I,α
p psq “

ż

pQn
p q_

φpα´1ptqq dpcΘ
dR
Dp

pnq|U` " cαU` q.

For c “ pcq an ideal of Z, these zeta elements are specializations of the “global” cocycle cΘdRpnq (up to the orientation ambiguity);

otherwise, it is only a specialization of cΘ
dRpιαq.

Recall now that the coordinatization α determines ια, but not vice versa; scaling α by elements of F (and therefore identifying

the lattice pZnq_ with different ideals in the same class) does not change the latter. We consider the dependence of cΘdRpαq, and

cζ
I,α
p on α (instead of merely ια).
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In particular, if we start with some fixed identification α : I Ñ pZnq_, we can consider also the scaling

α ˝ rt´1s : ptqI Ñ pZnq_

for any t P Fˆ; as noted, this is equivariant for the same ια : U ãÑ GLnpZq. As with cαU` , the dependence of the p-adic L-function

on α is quite weak; rescaling by t results in the same information up to a flip of sign:

Proposition 4.15. We have the relation

(4.13) psgnNtqrts˚cζ
I,α
p “ cζ

ptqI,α˝rt´1
s

p .

for the map

rts˚ : DpFp{U`,Zpqp0q Ñ DpFp{U`,Zpqp0q, µ ÞÑ pφ ÞÑ µpφ ˝ rtsqq.

Proof. Starting from the fact that cΘ
dRpιαq only depends on ια, we obtain immediately that

rts˚cΘ
dR
Dp

pαq “ cΘ
dR
Dp

pα ˝ rt´1sq.

Then from the functoriality under rts˚ of the sequence of maps (4.11), this amounts to showing that cα˝rt´1
s

U` “ psgnNtqcαU` ,

which follows from Remark 4.11. □

This provides a strong sense in which the information in our p-adic L-functions only depends on the narrow ideal class of I , and

in fact only on the wide ideal class “up to sign”. This will be used later in Section 4.4.3 to build p-adic L-functions for ray class

characters, and prove 2-adic congruences.

We have thus defined certain “p-adic L-function” elements, but have not justified the name; we need an interpolation theorem:

Theorem 4.16. Let ψ : I`{U` Ñ Zˆ
p be any locally constant function and k ě 0 any integer. Then we have the specialization

property

p´1qn´1

ż

Fp{U`

ψptqNptqk dcζ
I,α
p ptq “ ζIpψ,´kq ´ NckζcIpψ,´kq.

Note that Theorem 1.3 from the introduction is an immediate corollary. Most of the remainder of this article will be dedicated to

proving this interpolation theorem, by finding a duality reconciling the (stabilized) values of ΘdRpnq to the (stabilized) classical

Shintani method for F .

4.3.5. c-smoothing. We now describe the “c-smoothed” modification of ČChainspnq: in fact, this modification will set all wedge

classes to zero, so it is actually rather a “Orlik-Solomon”-flavored complex (as in Section 2.3.3), moreso than a “spherical chains”

flavored one. As with c-avoiding, after describing the case of smoothing at an integer resulting in a GLnpZq-cocycle, we will also

indicate a generalization to smoothing at an arbitrary ideal c Ă F ; this yields only a U -cocycle when c is not a rational ideal.

Again, we emphasize smoothing at integers more for expository purposes, as working with GLn-actions makes the underlying

linear algebraic structure conceptually clearer.

We write qP to mean the dual projective space (parameterizing hyperplanes) and qG for the Pontryagin dual of a group G. Then we

define the c-smoothed complex
cOSpnqi “

à

ηPqPn´1pZ{cq

ξOSpnqi

where ηOSpnq‚ is defined as the Orlik-Solomon complex for the lines ℓ P Pn´1pQq “ Pn´1pZq not contained in η modulo c.

Each summand is exact as a complex by the usual Orlik-Solomon formalism, so the whole complex is as well. In top degree, we
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will also Stpnq instead of OSpnqn, continuing earlier “Steinberg representation” notation. We define the GLnpZq-action on this

complex by
ηOSpnqi Ñ γηOSpnqi, prℓ1s ^ . . .^ rℓisqη ÞÑ rprγℓ1s ^ . . .^ rpγℓisqγη.

Proposition 4.17. There is a GLnpZq-equivariant realization map

cr : cStpnq Ñ pMGn
m

psgnqqp0q

given by

(4.14) prℓ1s ^ . . .^ rℓnsqη ÞÑ
ÿ

ξP|µc
n

ker ξ“η

ÿ

xPµn
c

ξpxqt˚xpdetMq´1M˚

p´1qnz1 . . . zn
p1 ´ z1q . . . p1 ´ znq

where M “

´

ℓ1 . . . ℓn

¯

; here, the notation as usual means we pick any integral generator of the line (or in fact, any integral

point, by the usual trace-fixedness argument).

Proof. We saw previously, in Section 2.3.3, that the Orlik-Solomon relations are generated by the spherical chain relations together

with the “wedge” relations, where the latter amount to checking that the formula (4.14) is independent of replacing a column in M

with its negative: our previous trace-fixedness arguments show that the formula is independent of scaling the generators by ras for

a P N, but not for scaling by r´1s.

The proof that the stellar subdivision relations hold in the image of cr is identical to the argument for Theorem 1.1, so it suffices to

check latter wedge relations. Indeed, if we identify ℓ1, . . . , ℓn with a set of integral generators, let

M 1 :“
´

´ℓ1 . . . ℓn

¯

be the matrix for the same set of integral generators, with one sign flipped. Then we compute that the difference between the

expression (4.14) for M and M 1 is

ÿ

ξP|µc
n

ker ξ“η

ÿ

xPµn
c

ξpxqt˚xpdetMq´1M˚

ˆ

p´1qnz1 . . . zn
p1 ´ z1q . . . p1 ´ znq

`
p´1qnz´1

1 . . . zn

p1 ´ z´1
1 q . . . p1 ´ znq

˙

“ pdetMq´1
ÿ

ξP|µc
n

ker ξ“η

ÿ

xPµn
c

ξpxqt˚xM˚

p´1qn´1z2 . . . zn
p1 ´ z2q . . . p1 ´ znq

.

If we split this sum over x into cosets for the order-c subgroup pℓ1q˚µc Ă µnc , then one computes that

t˚xM˚

p´1qn´1z2 . . . zn
p1 ´ z2q . . . p1 ´ znq

is constant on each coset, and ξ has sum zero over each coset since it is a nontrivial character on pℓ1q˚µc. The result follows. □

Inside cOSpnq0 – ZtqPn´1pZ{cqu, we have the GLnpZq-fixed element

´
ÿ

ηPqPn´1pZ{cq

η,

which, if viewed as a function on µnc , via considering η as the sum over all characters with kernel η and then as a formal linear

combination of elements thereof in the usual way where the values of the functions become the coefficients, corresponds to the

torsion cycle prcs˚ ´ cnqt1u.
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As usual, lifting this element and taking the realization cr then affords us a cocycle

cΘdRpnq P Hn´1pGLnpZq,MGn
m

psgnqp0qq

which, by the same argument used in Remark 4.13, satisfies pcnrcs˚ ´ cnqΘdRpnq “ cΘdRpnq.

Now if we first restrict to U ια
ÝÑ GLnpZq, we can likewise define a c-smoothed complex with U -action

cOSpαqi “ ηcOSpαqi

where η is the hyperplane which is the kernel of projecting Gmrcs Ñ Gmrcs, and an ιαpUq-equivariant realization map cr :
cStpαq Ñ pMGn

m
psgnqqp0q, where as usual the Steinberg notation means the top degree module in the Orlik–Solomon complex.

Then the ιαpUq-fixed element
ÿ

ξP ­Gn
mrcs´t1u

´ξ

(viewing these characters as being inflated via the natural projection Gnmrcs Ñ Gnmrcs) affords us a cocycle

cΘdRpαq P Hn´1pU, pMGn
m

psgnqqp0qq.

Again, if c “ pβq generated by a positive-norm element, we have Ncprβs˚ ´ 1qΘdRpnq|U “ cΘdRpαq, generalizing the case of

c “ pcq.

4.3.6. Stabilized duality. We now let b and c be distinct rational primes, which are also distinct from p. With identical arguments,

we can combine the stabilizations of the preceding two sections to be simultaneously b-avoiding and c-smooth, resulting in an exact

homological complex
c
bOSpnq‚ “

à

ηPqPn´1pZ{cq

à

λPPn´1pZ{cq

η
λOSpnq‚

where the summands consisting of symbols whose ď pn ´ 1q-dimensional spans avoid λ, and whose lines modulo d are not

contained in η. The GLnpZq-invariant class

´
ÿ

λPPn´1pZ{cq

ÿ

ηPqPn´1pZ{cq

1η,λ

yields a class cbΘ
Stpnq P Hn´1pGLnpZq, cbStpnqq. The GLnpZq-equivariant realization map

c
br :

c
bStpnq Ñ Appsgnqpnq

results in
c
bΘ

dRpnq :“ c
br˚

c
bΘ

Stpnq P Hn´1pGLnpZq, Appsgnqpnqq

such that

pcnrcs˚ ´ cnqpbnrbs˚ ´ 1qΘdRpnq “ pcnrcs˚ ´ cnqbΘ
dRpnq “ pbnrbs˚ ´ 1qcΘdRpnq “ c

bΘ
dRpnq.

Analogously, for b and c distinct primes of F not dividing p, we have a doubly stabilized complex c
bOSpαq‚, with top-degree

module c
bStpαq and ιαpUq-equivariant realization map c

br :
c
bStpαq Ñ Appsgnqpnq, resulting in classes

c
bΘ

Stpαq P Hn´1pU, cbStpαqq; c
bΘ

dRpαq “ c
br˚

c
bΘ

Stpαq P Hn´1pU,Appsgnqpnqq

such that

(4.15) pNcrϵs˚ ´ NcqpNbrβs˚ ´ 1qΘdRpnq|U “ pNcrϵs˚ ´ NcqbΘ
dRpαq “ pNbrβs˚ ´ 1qcΘdRpnq “ c

bΘ
dRpnq

if c “ pϵq, b “ pβq are generated by positive-norm elements.
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We are now ready to define the stabilized conical duality map and prove its properties. For convenience, let us denote the inverse

transpose involution on GLnpQq by ‹. Then p‹˚qbcStpnq carries the action

prℓ1s ^ . . .^ rℓnsqη,λ ÞÑ prpγT q´1ℓ1s ^ . . .^ rpγT q´1ℓnsqpγT q´1η,pγT q´1λ.

Specializing this, we also write p‹˚qbcStpαq for the ‹U -module with the same underlying space as b
cStpαq, on which γ P ‹U acts

by the action of ‹γ P U on b
cStpnq.

Proposition 4.18. There is a GLnpZq-equivariant map

c
bδ :

c
bStpnq Ñ p‹˚qbcStpnq

given by sending

pprℓ1s ^ . . .^ rℓnsqqη,λ ÞÑ prℓ_
1 s ^ . . .^ rℓ_

n sqλK,ηK .

The same formula yields a U -equivariant map
c
bδ :

c
bStpαq Ñ b

cStpα
‹q

when b, c are ideals in F , where

α‹ : d´1I´1 „
ÝÑ pZnq_

is the p‹ιαqpUq-equivariant map

d´1I´1 „
ÝÑ I_ pα´1

q
_

ÝÝÝÝÝÑ Zn v ÞÑxv,´y
ÝÝÝÝÝÝÑ pZnq_

where the first arrow is from the trace pairing on F . Note that here, the U -action on the lines in the source is defined via ια as

before, whereas the action on the lines in the target is via ια‹ “ ‹ια.13

Proof. The proof in the U -equivariant case is formally identical to the general linear case, so we treat just the latter.

If the formulas are well-defined, then GLnpZq- (respectively U -)equivariance are clear. We have already seen previously that the

Steinberg module is the quotient of ČChainspnqn by wedges, and the latter quotient

KQ{LQ Ñ Stpnq

is given on top-dimensional generators as

1R`∆˝pr1,...,rnq ÞÑ rℓ1s ^ . . .^ rℓns.

This is well-defined by the earlier discussion of “M -additivity” (along with the evident fact that there can be no relations between

a top-dimensional cone indicator function and any combination of lower-dimensional ones). One then needs only to note that the

“local” conditions with respect to a c-torsion line λ and a d-hyperplane η are dual to each other under the standard inner product,

and hence under δ: indeed, if rℓ1s ^ . . . ^ rℓns avoids λ, then the line of c-torsion characters given by taking the standard inner

product with λ precisely have kernels λK, and are hence nontrivial on each of ℓ_
1 , . . . , ℓ

_
n : the former condition says none of the

pn´ 1q-hyperplanes spanned by these pass through λ, which is the same as saying that the line λ is not in the kernel of the any of

the dual linear forms xℓ_
‚ ,´y, which is to say that none of these lines were contained in λK to begin with. The η conditions are

symmetric. □

13In particular, the definitions of the modules in question only depend on the algebra embedding ια : F Ñ MnpQq and not the actual coordinatization α; the map
we denote α‹ is just a particular canonical-looking such coordinatization whose corresponding algebra embedding is ‹ιαpF q-equivariant. For the purposes of this
proposition, however, it is not any better or worse than any other coordinatization in its F -isogeny class.
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We consider now the classes

c
bδ˚

c
bΘ

Stpnq P Hn´1pGLnpZq, p‹˚qbcStpnqq, c
bδ˚

c
bΘ

Stpαq P Hn´1pU, bcStpα
‹qq

whose realizations under bcr˚ and b
c r˚ we notate respectively as

(4.16) b
cΘ

Shinpnq P Hn´1pGLnpZq, p‹˚qAppsgnqpnqq, b
cΘ

Shinpαq P Hn´1pU,Appsgnqpnq
‹ιαq,

where we have put a subscript to record the action of U on Ap.

To prove Theorem 4.16, we will first need a statement to the effect that cbδ “acts trivially” on cohomology: we note that ‹ induces

a kind of tautological action on GLnpZq-cohomology

‹˚ : HipGLnpZq,Mq Ñ HipGLnpZq, p‹˚qMq

by acting on cochains as cpγ1, . . . , γiq ÞÑ pc ˝ ‹iqpγ1, . . . , γiq.

Then the main part of the result we need is a considerable technical digression which we defer to the appendix:

Proposition 4.19. The class bcΘ
Shinpnq is equal to p‹˚qbcΘ

dRpnq, and correspondingly, b
cΘ

Shinpαq is equal to b
cΘ

dRpα‹q.

Proof. Using a duality of (restricted) Tits buildings giving rise to (restricted) Steinberg representations in their top reduced ho-

mology, we prove in Appendix B that cbδ˚
c
bΘ

Stpnq is equal to b
cΘ

Stpnq, which implies the proposition by taking realizations. The

statement for b and c follows similarly from the equality of c
bδ˚

c
bΘ

Stpαq and b
cΘ

Stpα‹q, proved in the same way. □

4.4. Results on L-values.

4.4.1. Interpolation property for smoothed/avoiding cocycles. We now compute the values of b
cΘ

Shinpα‹q using the Shintani

method. The notation in the following proposition is as in Section 4.3.4.

Proposition 4.20. Let b and c be ideals as previously. We identify κ˚
b
cΘ

Shinpα‹q with a class in Hn´1pU`,DpFp,Zpqp0qq via

the map (4.9). (Note that the natural action of U on the space Fp, identified via α with pZnq_, in the distributions is via ια, by

preceding discussion.)

Then the image of this class under the chain of arrows (4.11) (which we will also denote b
c ζ
I,α
p , in analogy with cζ

I,α
p ), when

evaluated against the function

Fp{U` Ñ Qp
ˆ
, t ÞÑ ψptqNptqk

for any Schwartz function ψ : Ip{U` Ñ Qp
ˆ

, is

p´1qn´1NbpζIpψb ´ ψ,´kq ´ NcζcIpψb ´ ψ,´kqq

where ψb : I{U` Ñ Qp
ˆ

is the function t ÞÑ 1bIptqψptq on I . (Note that this cannot be defined on Ip{U`.)

Proof. We recall the definition of b
cΘ

Shinpα‹q is

(4.17) pbc rq˚pcbδq˚
c
bΘ

Stpα‹q.

Let Upb, cq` Ă U` be the congruence subgroup reducing to the identity modulo b and c. This is a finite-index subgroup of the

rank-pn ´ 1q free abelian group U`; let cαb,c be the positively-oriented fundamental class of Upb, cq`, so that cαb,c pushes forward
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to rU` : Upb, cq`scαU` under the subgroup inclusion. Then we compute (4.17) as

(4.18)
1

rU` : Upb, cq`s
coresU

`

Upb,cq` resU
`

Upb,cq` pbc rq˚pcbδq˚
c
bΘ

Stpα‹q.

We spell out the inside symbol Ξ :“ resU
`

Upb,cq` pbc rq˚pcbδq˚
c
bΘ

Stp‹α‹q. Let u1, . . . , un´1 be a basis of Upb, cq`, which we will

implicitly view via ‹ια inside GLnpZq. We write T1 for Gnm considered with the ια-action, and T2 for Gnm considered with the

‹ια-action; the map of Proposition 4.18 then U -equivariantly identifies the torsion of T1 with the Pontryagin dual of torsion of T2
of the same order, and vice versa.

We compute

Ξpu1, . . . , un´1q “ b
c r˚

¨

˝´
ÿ

λ1PPpT2rcsq

ÿ

λ2PPpT2rbsq

ru1 . . . un´1ℓλ1,λK
2
, . . . , ℓλ1,λK

2
s

˛

‚

“ ´
ÿ

ξP­T2rcs´t1u

ÿ

yPT2rbs´t1u

ÿ

χP­T2rbs

χpyqfCpZ{c¨ξK,pZ{b¨yqKqpξ´1 ¨ χq P Ap

where ℓλ,η is any choice of ray satisfying suitable avoidance conditions for λ and η, and Cpλ, ηq the associated cone bounded by

the U -translates indicated.14 From (4.5), Theorem 4.4, and Proposition 4.5, we then find that the realization under rκ of Ξ satisfies

ż

pZpq_

ψpα´1ptqqNpα´1ptqqk dκpΞ " cαb,cqptq “ p´1qn
ÿ

λPI`
p {Upb,cq`

ÿ

ξP­T2rcs´t1u

ÿ

yPT2rbs´t1u

ÿ

χP ­T2rbs

χpyqχpλqξ´1pλqNλk

(4.19)

“ p´1qn´1rU` : Upb, cq`sNbpζIpψb ´ ψ,´kq ´ NcζcIpψb ´ ψ,´kqq(4.20)

The last equality follows from Shintani’s Theorem 4.4 because all the terms corresponding to any lower-dimensional conical face

C 1 vanish from the b-stabilization in the sum: there exists a line in the dual space (uniformizing T1) annihilating the subspace

Q ¨ C 1 Ă Rn (uniformizing T2); taken modulo b, this means there is a line of χ P T1rbs for which fC1 “ fC1 pχq. The terms

fC1 pξ´1 ¨ χq thus are all equal on cosets for this line in the sum over χ. Then y, considered as a character on these χ, is nontrivial

on this line, due to our initial assumption that (in the dual formulation) y is not contained in any of the implicated lines modulo b

(cf. the discussion before Example 4.1). Thus, the coefficients in the total sum on each coset of these lines sums to zero, whence

all the terms corresponding to generating functions of C 1 vanish.

The result then follows from the commutative diagram in group (co)homology

(4.21)

Hn´1pUpb, cq`,DpFp,Zpqp0qq H0pUpb, cq`,DpFp,Zpqp0qq DpFp{Upb, cq`,Zpqp0q

Hn´1pU`,DpFp,Zpqp0qq H0pU`,DpFp,Zpqp0qq DpFp{U`,Zpqp0q

cores

"cαb,c

cores projection

"cα
U`

□

Remark 4.21. We note that working with the GLnpZq-version of the duality statement was not logically necessary for the proof

of this theorem: only the U -restricted duality, with the more general stabilizations at ideals b, c Ă F , is strictly required. However,

14In the simpler case when b and c have residual degree 1, so that the corresponding torsion subgroups are actually lines, one can actually find one line ℓ which
works across the board; i.e. we can compute Ξ simply as b

c r˚

´

´rpu1 . . . un´1ℓq_, . . . , pu1ℓq_, ℓ_sλK
c ,λb

¯

for some appropriate line ℓ. This is the kind of
stabilization usually considered in the literature (e.g. in [CDG]), since it results in simpler-to-compute formulas whose existence can be deduced without the
symbolic cohomological considerations of the present article.
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we find the duality statement (and the geometry behind its proof in Appendix B) much clearer to understand from the GLnpZq-

equivariant perspective, because of the essential intervention of its involution ‹ (which simply “switches the embedding” when

acting on U , in a potentially confusing way if one is not keeping track of the ambient group). Thus, we emphasized its role in the

exposition.

4.4.2. Assembling the partial zeta functions. To deduce Theorem 4.16 from our above calculations, and in particular, to remove

all b-smoothing, we need to assemble the various different partial zeta functions into one framework. Recall the formalism of

L-functions associated to the narrow Hilbert class group of F : following [Katz], given an integral ideal N Ă F , we write MN for

the monoid (under multiplication) of integral ideals of F , modulo the equivalence relation I „ J whenever IJ´1 is generated by

a totally positive element in 1 ` NJ´1. We consider also the inverse limit

Mp8 :“ lim
ÐÝ
k

Mpk .

As noted previously, we will omit consideration of the more general construction with tame level MNpp8q considered in [Katz];

however, the same results should follow from identical arguments.

Let Gpk be the pk-ray class group of F , and Gp8 :“ lim
ÐÝ

Gpk ; it acts on Mp8 by level-wise multiplication. Write also Σ for the

subgroup of Gp8 generated by towers of principal ideals generated by elements 1 pmod pkq; writing S8 for the set of infinite

places of F , we have a canonical isomorphism Σ – t˘1uS8 , the generator at the place ν given by a tower of principal ideals

which are negative at precisely ν and positive at all the other places. We also have a norm map N : Σ Ñ t˘1u by taking the

product over all places. We say the a function φ : Mp8 Ñ Qp has sign sgnpφq P t˘1uS8 if φ ˝ σ “ sgnpφq ¨ φ for all σ P Σ; if

sgnpφq consists of all ´1s, we call φ totally odd, and if sgnpφq is all 1s, we call it totally even.

From [DR, §2], for any k ě 0, the finite-level ideal class monoidMpk can canonically be decomposed as a disjoint union of “cells”

which are ray class groups of conductors dividing pk, via the Σ-equivariant isomorphism

Dk :
ğ

d|ppkq

Gppkqd´1
„

ÝÑ Mpk , rJsppkqd´1 ÞÑ rd ¨ Jsppkq

One can compute that the monoid multiplication between two “cells” corresponding to ppkqd´1
1 and ppkqd´1

2 lands in the “cell”

corresponding to their GCD, and is given by usual ideal multiplication on representatives. All of this can be extended to infinite

level Mp8 in the obvious way by taking inverse limits everywhere, yielding

D8 : G1 \
ğ

d|pp8q

Gp8{d
„

ÝÑ Mp8

where each Gp8{d is abstractly just a copy of the p8-ray class group, with the different labels just serving to distinguish them.

Note that the copy of G1 is, however, not open: in the case F “ Q, this is the decomposition (up to ˘1)

Zp “ t0u \

8
ğ

j“0

pjZˆ
p .

Choose now integral representatives I1, . . . , Ih for the narrow Hilbert ideal classes of F . For each 1 ď i ď h, fix an isomorphism

αi : Ii
„

ÝÑ pZnq_

and a corresponding embedding ιαi , along with the fundamental class cαi

U` satisfying the condition of Definition 4.10.
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We have the identification

f :
h

ğ

i“1

`

lim
ÐÝ

Ii{p
kIi

˘

{U` „
ÝÑ Mp8 , pxkqk ÞÑ ppxkq ¨ I´1

i qk, for pxkqk P lim
ÐÝ

Ii{p
kIi

from loc. cit. The norm function on ideals extends to a continuous map N :Mp8 Ñ Zp, and we have the relation

pN ˝ fqpxq “ NI´1
i ¨ Nx

for x P Ii b Zp. Given a locally constant function ψ : Mp8 Ñ C, we have the associated complex L-function analytically

continuing the Dirichlet series

ζF pψ, sq :“
ÿ

J

ψprJsq

pNJqs

where the sum ranges over all integral ideals of F . From ψ, for each class rIis, we also get an associated locally constant function

ψi : pIiqp Ñ Qp, t ÞÑ ψpfptqq.

for which we can form ζIipψi, sq as previously; then we have, from the identification coefficient-wise of the associated Dirichlet

series, that

ζF pψ, sq :“
h

ÿ

i“1

pNIiq
sζIipψi, sq.

For any 1 ď i ď h, write also Ti for Gnm with the action corresponding to αi under the embedding ιi, i.e. so that the character

lattice of Ti is identified with Ii under αi, as U -representations where U is viewed as a subgroup of GLnpZq via ιi. As U -spaces,

we have Ti “ hompIi,Gmq.

We note also that if ψ : Gp8 Ñ C is locally constant, and we consider it as a function on Gp8{d, then pD´1
8 q˚ψ is a function on

Mp8 , and one can check that

ζF pψ, sq “ NdsζF ppD´1
8 q˚ψ, sq.

One can also express this relation at each finite level pk.

Suppose we have any relatively prime ideals b, c both prime to p, and that rIibs “ rIjs for some 1 ď i, j ď h; thus, we can write

ϖOF “ IibI
´1
j for some totally positive ϖ P Fˆ

` . Fix also a positive integer t P N for which ε :“ tϖ P O`
F . For a judicious

choice of representatives I‚, we can always ensure that the resulting t can be chosen prime to p and c, for any b prime to p and c.

Then there is a canonical U -equivariant identification

Tj{Tjrεs – Ti{Tirtbs

dual to the identification ptqIib “ εIj of character lattices. We notate below several related U -equivariant maps:

(4.22) Tj
rεs

ÐÝÝ Tj{Tjrεs “ Ti{Tirtbs
rts

ÝÑ Ti{Tirbs
qb

ÐÝ Ti,

these maps all being isomorphisms except for qb, of degree Nb. The dual maps of character lattices are

Ij
ˆε

ÝÝÑ Ijpεq “ Iiptqb
ˆt

ÐÝ Iib ãÑ Ii.

Now write cζ
i
p :“ cζ

Ii,αi
p for 1 ď i ď h, and analogously for the b-smoothed versions. Similarly, write cΘ

dR
i :“ cΘ

dRpαiq and

analogously for the b-smoothed versions. Then we have:

Proposition 4.22. We have the relation
b
c ζ
i
p “ Nbprϖs˚cζ

j
p ´ cζ

i
pq
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where we write rϖs˚ for the map

DppIjqp,Zpqp0q Ñ DppIiqp,Zpqp0q, µ ÞÑ pφ ÞÑ µpφ ˝ rϖsqq.

Proof. It suffices to prove that

(4.23) b
cΘ

i
p “ Nbpq˚

b prts˚q´1rεs˚
cΘ

j
p ´ cΘ

i
pq P Hn´1pU,Apnq

p pTiqq

since by the pullback functoriality (4.2), the action of (e.g.) rεs˚ on meromorphic functions is rεs˚ on distributions, recalling that

the pullback action on pZnq_ becomes the natural action of F on Fp. Note that here, we decorate Ap with the space on which it is

considered, since this is no longer simply implicit. Observe also that when b is principal and generated by an element of positive

norm, this is consistent with our earlier stabilization statements.

We have a U -equivariant map of complexes which we denote with the notation

tϖu : cChainspnq
αj ,`
‚ Ñ

à

ρPPpTirbsq

cChainspnqαi,`
‚

defined by sending ∆pr1, . . . , rkqλ (for λ P PpTjrcsq) to
ÿ

ρPPpTirbsq

rpαiα
´1
j q˚∆pr1, . . . , rkqsλ1,ρ

where λ1 P PpTircsq is the image of λ coming from the series of maps

(4.24) Tjrcs – homOF
pIj ,OF {cq

rεs
´1

ÐÝÝÝ homOF
pεIj ,OF {cq “ homOF

pbptqIi,OF {cq
rts

ÝÑ homOF
pIi,OF {cq “ Tircs

attached to (4.22).

In top degree, we claim this leads to a commutative diagram

(4.25)
cChainspnq

αj ,`
n

À

yPTirbs cChainspnqαi,`
n

AppTjq
pnq AppTiq

pnq

tϖu

cr b
c r

Nb¨q˚
b ˝prts´1

q
˚

˝rεs
˚

where here we reuse the notation b
c r to denote sending ∆pr1, . . . , rnqλ,ρ to

ÿ

xPλ´t1u

ÿ

yPρ´t1u

t˚y`x

´

r1 . . . rn

¯

˚

z1 . . . zn
pz1 ´ 1q . . . pzn ´ 1q

.

(One checks this compatibly extends the earlier definition of b
c r on the submodule b

cChainspnq‚
n, considering characters on Tirbs

as formal sums over these torsion points.)

To verify the commutativity, by continuity it suffices to verify it after specialization (of AppTiq
pnq) at any torsion point

z P Tirp
8s – lim

ÝÑ
hompIi, µpkq

(In other words, the bottom vertical arrows are injective, and one can identify distributions by evaluating against finite-order

characters of lattices.) Indeed, via the top right chain of arrows composed with the specialization, the image of ∆pr1, . . . , rnqx is

z˚b
c rrpαiα

´1
j q˚∆pr1, . . . , rnqxs “ Nb

ÿ

yPTirbs

pz1 ´ x1 ´ yq˚ z1 . . . zn
pz1 ´ 1q . . . pzn ´ 1q
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(where we are writing additively the group law on Ti), where z1 is the image of z along the map on p8-torsion analogous to (4.24);

this agrees with the image along the bottom chain. Note the factor Nb “ degpqb ˝ rts´1 ˝ rεsq comes from the determinant twist

resulting from contracting away the form dt1 ^ . . .^ dtn, as previously.

Let t1uc,‚ :“ T‚rcs ´ t1u P ZtT‚rcsu, for ‚ P t1, 2, . . . , hu. Since b
cΘ

dR
i pαq can be obtained via lifting the class

tϖut1uc,i ´ Nb ¨ t1uc,j P ZtTirbcsu

in degree zero of the complex
À

yPTirbs cChainspnq
αi,`
‚ , (4.23) follows. □

Now, the map f induces a pushforward on distributions, which preserves the rps-invariance property; i.e. yields

f˚ :
h

à

i“1

DpIp{U`,Zpqp0q Ñ DpMp8 ,Zpqp0q

where, analogously to before, the superscript p0q on distributions on the monoid means that µpUq “ µpppq ¨ Uq for any open

compact U . Note that under the cell decomposition, multiplication by ppq maps Gp8{d Ñ Gp8{ppqd.

Accordingly, we now define p-adic L-elements

(4.26) DpMp8 ,Zpqp0q Q cζ
F
p :“

h
ÿ

i“1

f˚cζ
Ii,αi
p , DpMp8 ,Zpqp0q Q b

c ζ
F
p :“

h
ÿ

i“1

f˚
b
c ζ
Ii,αi
p

Now, applying Pontryagin duality to each cell of the cell decomposition of Mp8 given by D8 implies that Schwartz functions on

Mp8 are spanned by orbits under multiplication-by-ppq of the following two forms of functions:

(1) ramified finite-order characters of Gp8 (included as any cell), meaning which do not factor through Gp8 Ñ G1, and

(2) unramified characters, i.e. those factoring through the projection Mp8 Ñ M1 “ G1.

For any character of either form above ψ :Mp8 Ñ Q, Proposition 4.20 then implies the interpolation property

ż

Mp8

ψpJqNJk dbc ζ
F
p pJq “

h
ÿ

i“1

NI´k
i

ż

pIiqp{U`

ψiptqNt
k dbc ζ

F
p ptq(4.27)

“ p´1qn´1Nb
h

ÿ

i“1

NI´k
i pζIipψi ´ pψiqb,´kq ´ NcζcIippψiqb ´ ψi,´kqq(4.28)

“ p´1qn´1Nbp1 ´ ψprcsqNc1`kqζF pψb ´ ψ,´kq(4.29)

This suffices to determine the interpolation properties for all Schwartz functions on Mp8 , since our zeta distributions are invariant

under multiplication by ppq. Note that the multiplicativity of ψ is only needed at the last line; we could have also have written the

interpolation property for a general Schwartz function, but for these spanning characters, it has a more compact form thanks to this

factorization.

Proof of Theorem 4.16. We have, for any ideal b in F prime to p and c, that b
cΘ

dRpαq “ b
cΘ

Shinpα‹q. From Proposition 4.20,

recall that the value of this cocycle at u1, . . . , un´1, after applying (4.11), satisfies
ż

pZn
p q_

ψpα´1ptqqNpα´1ptqqk dκpbcΘ
dRpαq " cαU` qptq “ p´1qn´1NbpζIpψb ´ ψ,´kq ´ Nc ¨ ζcIpψb ´ ψ,´kqq
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for any locally constant ψ as previously. Then it results from Proposition 4.22 that for any b, i, j,ϖ as in the proposition statement,

we have

(4.30) cζ
Ii,αi
p pψ ¨ Nkq ´ rϖs˚

cζ
Ij ,αj
p pψ ¨ Nkq “ p´1qn´1NbpζIpψb ´ ψ,´kq ´ NcζcIpψb ´ ψ,´kqq

for any locally constant ψ, and any integer k ě 0.

From the earlier discussion on characters of Mp8 , the fact that cζ
F
p satisfies the p0q property implies that it suffices to check the

interpolation property for the functions ψ ¨ Nk as ψ ranges across characters of of Gp8 (included as any cell) and characters of G1

(considered as functions on Mp8 by inflation). Given a fixed b and two indices i, j for which Iib “ pϖqIj as before, observe that

we have a commutative diagram

(4.31)

pIjqp pIiqp

Mp8 Mp8

ˆϖ

fj fi

ˆb

where we write, e.g., fi for the restriction of f to the rIis-component. Thus, assembling (4.30) across ideal classes yields

(4.32) pψprbsqNbk ´ 1qcζ
F
p pψ ¨ Nkq “ p´1qn´1pψprbsqNbk ´ 1qpζF pψ,´kq ´ Nc1`k ¨ ζF pψ,´kqq,

the right-hand side factorization following formally from factoring Dirichlet series, and the left-hand side factorization following

from the fact that ψ is a character, allowing us to factor out a ψpbq from the ˆb-shifted terms coming from Proposition 4.22.

Then the only case in which we cannot find b such that the Euler factor is nonzero is the subcase of (2) when ψ “ 1 is the trivial

character and k “ 0; in all other cases, canceling the nonzero Euler factor yields the desired interpolation. But in this exceptional

case, ζF p1, 0q “ 0 as well: indeed, (4.13) implies that the terms coming from pairing rIis and rIi ¨ as in the sum (4.26) cancel, for

any fixed principal ideal a generated by an element having negative norm. The result follows. □

As noted previously, Theorem 1.3 from the introduction is an immediate corollary.

4.4.3. Extra 2-adic congruences of Deligne-Ribet. As an application of our formalism, we recover the exceptional 2-adic congru-

ences for totally odd functions proven in [DR, Theorems 8.11, 8.12]. We state here the theorem in the same maximum generality

as loc. cit.; sadly, however, there are some delicate edge cases for which we have no cohomolgical account, and can only rely on

the original automorphic arguments. We specify exactly what the missing piece is at the end of the proof below.

Theorem 4.23 (Theorem 1.4). Let ψ :M28 Ñ Q2 be a totally odd continuous function of compact support. Then
ż

Mp28q

ψpJq dcζ
F
2 pJq ” 0 pmod 2n´1q.

Furthermore, we even have the stronger congruence
ż

Mp28q

ψpJq dcζ
F
2 pJq ” 0 pmod 2nq

except in the following case:

‚ the invariant

δpψq :“
ÿ

xPG1{Σ

ψpxq pmod 2q
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equals 1 P Z{2, where here we view G1 ãÑ G28 via the earlier-discussed inclusion,15 and

‚ all units have positive norm and all combinations of signs with positive norm occur (F is exceptional, in the terminology

of Deligne–Ribet), and

‚ the prime c is inert in the extension M{F given by adjoining square roots of all totally positive units.

Note in particular that the second condition means that the stronger congruence is satisfied for any totally odd character ψ except

possibly if it is totally unramified, i.e. factors through the narrow Hilbert class group.

Proof. By continuity, we may assume ψ is locally constant; thus, we can represent the elements in Σ by actual principal ideals at

some fixed level 2k for some sufficiently large integer k, and we may consider integrals of totally odd functions ψ onMp2kq against

the image of cζ2 considered in DpMp2kq,Z2q.

Note that if ψ is totally odd, then D˚ψ is totally odd on the “cell” Gp2kqd´1 for each k (noting that the cell decomposition is

Σ-equivariant). Thus, it suffices to prove the theorem separately for odd functions supported on each of these open cells, together

with functions inflated from the unramified quotient Mp28q Ñ M1 – G1, by a similar argument as before.

In the former case, note that we always want divisibility by 2n, as remarked in the theorem statement. We consider D´1
˚ cζ2 P

DpGp2kqd´1 ,Z2q for some d|p2kq. The exponent k can be chosen to be any sufficiently large integer for ψ to be well-defined, so

without loss of generality, we may consider k sufficiently large so that Σ acts freely on Gp2kqd´1 . Then, by Proposition 4.15, for

σ P Σ – t˘1uS8 , we have rσs˚cζ2 “ Nσ ¨ cζ2. This means cζ2 lies in the invariant submodule pDpG2kd´1 ,Z2qpNqqΣ (where we

have written a norm twist on the Σ-action), since multiplication by a generator (in G2kd´1 ) of σ is orientation preserving exactly

when Nσ “ `1 by definition; the same is then true for D´1
˚ cζ2 by Σ-equivariance of D. We then have the exact sequence in Tate

cohomology

DpG2kd´1 ,Z2qpNq
NΣ

ÝÝÑ pDpG2kd´1 ,Z2qpNqqΣ Ñ H0
T pΣ,DpG2kd´1 ,Z2qpNqq “ 0.

Here,

NΣ “
ÿ

σPΣ

σ

is the norm map for Σ, and the vanishing is by Shapiro’s lemma for Tate cohomology, since Σ acts freely on DpG2kd´1 ,Z2qpNq.

We thus have proven that the image of cζ2 in DpG2kd´1 ,Z2qpNq is divisible by
ř

σPΣ σ, and [Gro, Lemma 5.3] implies that the

evaluation against any totally odd ψ on G2kd´1 is divisible by 2n.

Finally, we consider the more delicate case, in which ψ is inflated fromM1. We fix a rank-pn´1q subgroupUf Ă U containingU`

such thatU – Ufˆt˘1u; let rUf : U`s “ 2s. We fix a fundamental class cUf such that the corestriction of coresU
f

U` cU` “ 2scUf .

Then for Σ1 the image of Σ in G1, we have |Σ1| “ 2n´s´1.

If we now define cθ
i
2, for 1 ď i ď h, to be the image of

cΘ
dRpαiq X cαi

Uf

in DpIi2{U`,Z2qpNqUf {U` , and similarly

cθ
F
2 :“

h
ÿ

i“1

f˚cθ
i
2 P DpM28 ,Z2qpNqUf {U` ,

15Note that the sum here is over the wide class group, and that this is well-defined for odd ψ only because of the reduction modulo 2.
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then we can identify 2scθ
F
2 with the image of cζ

F
2 under the natural quotient

DpM28 ,Z2qpNq ↠ DpM28 ,Z2qpNqUf {U` .

Note that because ψ is unramified, it factors through it factors through the quotient to DpG1,Z2qpNq, which factors through the

quotient above. Write cθr1sF2 for the image of cθ
F
2 in DpG1,Z2qpNq; Proposition 4.15 implies it is Σ1-invariant, as in the ramified

case. Then also as before, we have the sequence in Tate cohomology

DpG1,Z2qpNq
NΣ1

ÝÝÝÑ pDpG1,Z2qpNqqΣ1 Ñ H0
T pΣ1,DpG1,Z2qpNqq “ 0,

from which it follows (as in the ramified case) using [Gro, Lemma 5.3] that |Σ1| “ 2n´s´1 divides cθr1sF2 pψq, and thus cζ
F
2 pψq is

always divisible by 2n´1.

If F contains a unit of negative norm, then all the unramified totally odd L-values are zero, so improving this divisibility to 2n

becomes a trivial statement. To understand the extra divisibility when δpψq “ 0 as in the theorem statement, then following [Gro],

we can explicate the preceding cohomological calculation as follows: there then exists a lift (under NΣ) of cθr1sF2 to some element

c
Ąθr1s

F

2 P DpG1,Z2q, such that we have a commutative diagram

(4.33)

DpG1,Z2qpNq Z2pψq

DpG1,Z2qpNq Z2pψq

NΣ

ψ

ˆ2n´s´1

ψ

for any totally odd ψ. Thus, to get an extra divisibility by 2 of cθr1sF2 pψq, it would suffice to show that c
Ąθr1s

F

2 pψq is divisible by 2.

But observe that reduced modulo 2, NΣ actually factors through the quotient

DpG1,Z{2qpNqΣ1
↠ DpG1{Σ1,Z{2q.

In this quotient, the image of the reduction of c
Ąθr1s

F

2 modulo 2 is simply given by the formula for the map δ from the theorem

statement. Then the condition that the evaluation of this at ψ exactly becomes δpψq “ 0, as desired.

Observe now that the quantity
cζ
F
2 pψq

2n´1
pmod 2q

is actually independent of the choice of totally odd function ψ with δpψq ” 1, since the difference of two such functions has image

under δ equal to zero. In this case, one can calculate directly from the Dirichlet series that as a function of c, the above expression

actually gives a homomorphism G28 Ñ Z{2 (see [DR, (8.11)]).16

Deligne–Ribet are able to prove that this homomorphism is nontrivial if and only if F is exceptional, and that in this case, it is the

Artin reciprocity map for the Kummer extension M{F (as in the theorem statement). From this, the theorem’s characterization of

the remaining cases in which we have divisibility by 2n in the unramified case follow. A purely cohomological account for these

class field-theoretic interpretations eludes us, but we would be very interested to learn one. □

APPENDIX A. COMPARISON WITH A CYCLOTOMIC EQUIVARIANT POLYLOGARITHM

In this appendix, working over the complex numbers, we argue that our de Rham left cohomology class

ΘdRpnq P Hn´1pSLnpZq,MGn
m

{xd log z1 ^ . . . d log znyq

16Note that this would correspond to a stabilization identity similar to Proposition 4.22 in our setting, but since we already have proven the interpolation property,
it also follows more simply from the identity of complex L-values.
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coincides with the right cohomology class

Smultrt1us P Hn´1pSLnpZq,MGn
m

q

of [BCG2, Théorème 1.7], under the anti-involution γ ÞÑ γ´1 of SLnpZq. This latter class is only well-defined up to the ambiguity

Hn´1pSLnpZq,Cq, so what we really mean by this is that Smultrt1us coincides with the Hn´1pSLnpZq,Cq-torsor of lifts of

ΘdRpnq defined from transgressions of the Euler class.

To briefly recall the definition of Smultrt1us, it is obtained from an equivariant (“polylogarithm”) cohomology class

Zn P H2n´1
Γ pGnm ´ t1u,Cqp0q

which is characterized (up to ambiguity H2n´1
Γ pGnm,Cqp0q) by having image a positive generator of t1u P H2n

Γ pt1uq under the

residue map, along with its trace-invariance. Then if H Ă Gm is a suitable set of hyperplanes through zero, the image of Zn under

the edge map

H2n´1
Γ pGnm ´H,Cqp0q Ñ Hn´1pΓ, HnpGnm ´Hqp0qq

together with a “formality” isomorphism

HnpGnm ´Hqp0q – pΩnGn
m´Hqp0q

yields Smultr0s, up to the earlier-specified ambiguity.17

Let

D0 Ñ . . . Ñ . . .D2n

be the distributional de Rham complex computing the de Rham cohomology of Gnm; then the equivariant cohomology can be

computed by the double complex of inhomogeneous cochains C‚pSLnpZq,D‚q; see [RX2] or the author’s thesis [X].

Fix a ∆-extension E and an Euler transgression ϕ P Cn´1pSLnpZq,Cq; then one computes by the Poincaré-Lelong formula that

the map

r∆Epr1, . . . , rkqs ÞÑ

´

r1 . . . rk

¯

˚
pd logq^kt1 ´ z1, . . . , 1 ´ zku

is a SLnpZq-equivariant map ČChainspnq‚ Ñ D2n´‚. Then the sum of the lifts from Lemma 2.5

ℓ1 ` ℓ2 ` . . .` ℓn ´ ϕ ¨ pd logq^nt´z1, . . . ,´zku

is a trace-fixed class which has total coboundary t1u, and hence represents Zn. Its image under the Hochschild-Serre edge map

is pd logq^kθE,ϕpnq, valued in trace-invariant holomorphic forms, and which therefore is identified with Smultrt1us under the

formality isomorphism up to the specified ambiguity.

By the same argument, using a stabilized equivariant class cZn, the class cΘdRpnq coincides with Smultrµnc ´ t1us, where now the

hyperplanes H can be taken to avoid lines through µnp8 (and thus the resulting cohomology class extends holomorphically over all

p-power torsion). (If one does this with c-smoothing rather than c-avoiding, one also can eliminate the ambiguity coming from the

orientation obstruction.)

APPENDIX B. DUALITY IN RESTRICTED TITS BUILDINGS

In this appendix, we prove that cbδ˚
c
bΘ

Stpnq and p‹˚qbcΘ
Stpnq yield the same class in Hn´1pGLnpZq, p‹˚qbcStpnqq. To give the

idea of the argument, we first treat the unstabilized version: observe that the unstabilized duality map δ of Proposition 4.8 descends

17Using instead the approach of Kings-Sprang [KS] and starting with a polylogarithm class in coherent cohomology instead, the formality isomorphism can be
avoided.
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to a GLnpQq-equivariant map

δ : Stpnq Ñ p‹˚qStpnq, rℓ1s ^ . . .^ rℓns Ñ rℓ_
1 s ^ . . .^ rℓ_

n s

by the same argument in Proposition 4.18. It is indeed also the case that18

(B.1) δ˚Θ
Stpnq “ ´p‹˚qΘStpnq P Hn´1pGLnpQq, p‹˚qStpnqq.

To see this, let Tn be the Tits building for GLnpQq: the pn´ 2q-dimensional simplicial complex whose i-simplices are proper flags

of length i in Qn, i.e. chains of proper inclusions of proper nonzero subspaces of Qn

V1 Ă . . . Ă Vi

The Solomon-Tits theorem says that Tn has the homotopy type of a wedge of pn´2q-spheres. The group GLnpQq acts on Tn via its

standard action on Qn, and the only nontrivial reduced homology group rHn´2pTnq is then a model for the Steinberg representation

Stpnq.

To describe the identification

Stpnq
„

ÝÑ rHn´2pTnq,

we note that given the standard set on rns elements t1, 2, . . . , nu, we can form the standard pn ´ 1q-simplex ∆n´1 whose i-faces

correspond to the pi`1q-subsets of rns, and inclusion of sets corresponds to the face relation. Then its first barycentric subdivision

sd∆n´1 is also a contractible pn´ 1q-simplicial complex whose i-simplices are flags of non-empty subsets (i.e. chains of subsets

of rns under proper inclusion).Then, as shown in [AR], the generator rℓ1s ^ . . . ^ rℓns (in our previous Orlik-Solomon-based

notation) is identified with the image of the fundamental class (for the orientation corresponding to the usual order on rns) under

the simplex map

(B.2) Bsd∆n´1 ãÑ Tn

corresponding to the set ℓ1, . . . , ℓn, where we identify for example the flag of subsets r1s Ă r1, 3s Ă r1, 3, 4s with the flag of

subspaces xℓ1y Ă xℓ1, ℓ3y Ă xℓ1, ℓ3, ℓ4y.

Then the point is that using the lifting process in Lemma 2.5, one straightforwardly computes that the class θStpnq arises by

lifting the GLnpQq-fixed element 1 P Z along the map H0pGLnpQq,Zq Ñ Hn´1pGLnpQq, rHn´2pTnqq coming from the exact

doubly-augmented homology complex

(B.3) CpTnq‚ :“ rHn´2pTnq Ñ Cn´2pTnq Ñ . . . Ñ C0pTnq Ñ Z,

in the same way as we previously did with the Orlik-Solomon complex.

The Tits building admits an automorphism δT : Tn Ñ Tn sending a vertex corresponding to a subspace V Ă Qn to its orthogonal

complement V K under the standard inner product, and similarly on the simplices corresponding to flags (where K reverses the

inclusion chains). Further, one checks that this automorphism sends the top-degree homology class corresponding to the symbol

rℓ1s ^ . . .^ rℓns to ´rℓ_
1 s ^ . . .^ rℓ_

n s; hence, it induces the automorphism δ on Stpnq.

As with the duality map δ, the map δT is not GLnpQq-equivariant, but it is GLnpQq-equivariant for the ‹-twisted action on the

target, so induces an equivariant automorphism of homology complexes

pδT q˚ : CpTnq‚
„

ÝÑ p‹˚qCpTnq‚

18See following footnote.
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which evidently fixes the class of 1 P Z, and hence the corresponding derived classes in top homology. From this, the duality

relation (B.1) follows immediately.19

To attack the stabilized case, let pbq “ b X Z, pcq “ c X Z, and fix a c-torsion line λ and a b-torsion line µ such that neither is

the reduction of the basis vector e1; let Γ Ă GLnpZq be the congruence subgroup fixing λK and µ, so that ‹Γ Ă GLnpZq is the

subgroup fixing λ and µK. Then write λ
K

µ θStpnq for the Γ-cocycle

pγ1, . . . , γn´1q ÞÑ rγ1 . . . γn´1e1s ^ . . .^ rγ1e1s ^ re1s P λK

µ Stpnq

ad λK

µ ΘStpnq for its corresponding class in Hn´1pΓ, λ
K

µ Stpnqq; switching the roles of c and b, we can analogously produce

r
µK

λ θStpnqs “
µK

λ ΘStpnq P Hn´1p‹Γ, µ
K

λ Stpnqq.

Then Shapiro’s lemma reduces Proposition 4.19 to proving that20

(B.4) pcbδq˚
λK

m uΘStpnq “ ´p‹˚q
µK

λ ΘStpnq P Hn´1pΓ, p‹˚q
µK

λ Stpnqq

where we we are restricting c
dδ to the summand λK

µ Stpnq, which it precisely maps to the summand µK

λ Stpnq.

Let λ
K

µ Tn be the restricted Tits building consisting of the induced subcomplex of Tn on the vertices corresponding to subspaces

which do not contain the line µ modulo d, and are not contained in λK modulo c; let µλTn be similar, but switching the role of λ

and µ, c and b.

We write Cpλ
K

µ Tnq‚ and Cp
µK

λ Tnq‚ for the respective doubly-augmented homology complexes of the form (B.3). Then the auto-

morphism δT of Tn restricts to a map λK

µ Tn Ñ
µK

λ Tn, and hence a Γ-equivariant map

pδT q˚ : Cpλ
K

µ Tnq‚ Ñ p‹˚qCp
µK

λ Tnq‚.

It remains only to prove that λ
K

µ Tn and µK

λ Tn have reduced homology concentrated only in top degree, such that that we have an

identification λK

µ Stpnq
„

ÝÑ rHn´2pλ
K

µ Tnq fitting in a Γ-equivariant commutative diagram

(B.5)

λK

µ Stpnq rHn´2pλ
K

µ Tnq

Stpnq rHn´2pTnq

„

„

and similarly for µ
K

λ Tn and ‹Γ. The conclusion would then follow by the same argument as the unstabilized case.

Since the two cases are symmetric in swapping λ and µ, c and d, we may as well focus only on the former case. Indeed, we note

that the conditions defining λK

µ Stpnq precisely state that it is generated by symbols

rℓ1s ^ . . .^ rℓns

19If we take de Rham realizations of Stpnq directly using this duality, we obtain that p‹˚qΘdRpnq agrees with

pγ1, . . . , γn´1q ÞÑ
`

e γ1e . . . γ1 . . . γn´1e
˘ p´1qnz1 . . . zn

p1 ´ z1q . . . p1 ´ znq

if taken to be valued in MGn
m

p´ detqp0q modulo the GLnpQq-orbit of classes of the form

pd logq^nt´z1, . . . ,´zi, 1 ´ zi`1, . . . , 1 ´ znu,

i.e. the image of all wedges (or, dually and equivalently, the Shintani generating functions of all lower-dimensional cones). The latter class is precisely the “naive
Shintani cocycle” which [LP] proves is a cocycle modulo precisely these same relations.
20The appearance of the extra sign here, as well as in the unstabilized version (B.1), is explained by the fact that avoiding comes from lifting the sum over nontrivial
torsion sections, smoothing comes from negative the sum over the nontrivial characters.
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for which no line is contained in the λK modulo c, and no ď pn ´ 1q-subtuple span contains µ modulo b. Thus, the simplex map

(B.2) exists and makes sense when restricted to subspaces for the vertices of λ
K

µ Tn, satisfying all the Steinberg relations by the

same arguments in [AR]. This definition for the top arrow evidently is Γ-equivariant and makes the diagram above commute, so

the only thing that remains to prove is that it is an isomorphism.

Let us write Stpn,Fcq, Stpn,Fbq for the Steinberg representation for lines modulo c, b respectively, and λK

Stpn,Fcq, µStpn,Fbq
for the same with the corresponding local conditions from the definition of λ

K

µ Stpnq.21 Then by definition, we have a Cartesian

square

(B.6)

λK

µ Stpnq Stpnq

λK

Stpn,Fcq ‘ µStpn,Fbq Stpn,Fcq ‘ Stpn,Fbq

Likewise, let TnpFcq, TnpFbq be the Tits buildings built from subspaces of Fnc , Fnb , and λK

TnpFcq, µTnpFbq the induced subcom-

plexes on subspaces not contained in λK, respectively not containing µ. Then we have a Cartesian square of simplicial complexes

(B.7)

λK

µ Tn Tn

λK

TnpFcq ‘ µTnpFbq TnpFcq ‘ TnpFbq

which leads to a Cartesian square also of the corresponding doubly-augmented homology complexes, and hence of the top-degree
rHn´2 groups, by the Künneth theorem. The left column of (B.6) is isomorphic to the rHn´2 of the left column of (B.7) via the

simplex maps (B.2); thus, if the same simplex map also induces isomorphisms

(B.8) λK

Stpn,Fcq
„

ÝÑ rHn´2pλ
K

TnpFcqq, µStpn,Fbq
„

ÝÑ rHn´2pµTnpFbqq

then we also have our desired identification λK

µ Stpnq
„

ÝÑ rHn´2pλ
K

µ Tnq. The maps (B.8) are symmetric to one another under the

automorphism V ÞÑ V K (and replacing c by b, etc.) so it suffices to prove the former. Indeed, this identification follows by the

identification of the algebras A and B in [OS]: in particular, see the remark on p. 3 relating the Orlik-Solomon complex (A ) to

the construction of Steinberg modules from simplicial complexes in [L] (agreeing with the construction of B in top degree); in the

notation of loc. cit., our restricted Tits building is denoted T pFnc , λKq, labeled case (b) on p. 551.
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Rendus de l’Académie des sciences de Paris. 281 (1975).

[Tot] Burt Totaro. “Milnor K-theory is the simplest part of algebraic K-theory”. In: K-Theory. 6 (1992), pp. 177–189.

[V] Vladimir Voevodsky. “Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic.” In:

International Mathematical Research Notices. 7 (2002).

[X] Peter Xu. “Arithmetic Eisenstein theta lifts.” PhD thesis. McGill University, 2023.

60

https://arxiv.org/abs/1909.03450
https://arxiv.org/abs/1909.03450
http://math.bu.edu/people/ghs/preprints/Circular-KThry-11-07.pdf
http://math.bu.edu/people/ghs/preprints/Circular-KThry-11-07.pdf

	1. Introduction
	1.1. Relation to existing work
	1.2. Structure of the paper
	1.3. Summary of methods and results
	1.4. Future work
	1.5. Acknowledgements

	2. Preliminaries
	2.1. Motivic cohomology
	2.2. Symbols from spherical chain complexes
	2.3. Combinatorial cohomology classes for GLn

	3. Construction and application of the motivic cocycles
	3.1. Realization map for top-dimensional chains
	3.2. Specialization at torsion sections and Sharifi maps

	4. The de Rham cocycles and applications
	4.1. Some transforms of the cocycle
	4.2. Shintani generating functions
	4.3. Stabilized duality and p-adic L-functions
	4.4. Results on L-values

	Appendix A. Comparison with a cyclotomic equivariant polylogarithm
	Appendix B. Duality in restricted Tits buildings
	References

