POLYLOGARITHM AND CYCLOTOMIC ELEMENTS
A. A. BEILINSON

Department of Mathematics

“Massachusetts Institute of Technology -
Cambridge, Massachusetts 02139

We will show that a version of Deligne's story [D] gives a remarkably simple and
coherent construction of cyclotomic elements in ﬁigher {rational) K—groups of cycidtomic
fields; it also yields a proof of conjecture { ) [BK] thus filling the gap in proof of Kato's
theorem { ) [BK] on the values of Riemann (-function.

The paper starts with a short 1'evi-ew of Deligne's fundamental paper [D] {with the
most advanced 1*esu1ts-, such as the crystalline games and precise torsion computations,
skipped). It differs from [D] in two aspects. First, working modulo torsion, we describe
mixed sheaves in terms of a canonical "arithmetic" fiber functor to avoid categorical
generalities.  Second, we use a simple rigidity property of polylogarithm to avoid
computations.

Polylogarithm is a special mixed sheaf 11 on H’z\{O,I,m}; the rigidity property claims
that TI is completely determined by its most simple quotient—ordinary logarithm (the
classical polylogarithm function is just a display of the Hodge version of II, hence the
name). The polylogarithm splits into the sum of kwloga.riﬂnns 'Lii{(oz) at these
o€ ﬂ’l\{U,l,oo} which are roots of unity. N

This picture has absolute motivic counterpart described inn=35; the corresponding
Lik(af) are just the cyclotomic elements in rational K—groups. Morally, the rigidity
property tells that higher wclotbmic elements are completely determined by the usua.l}
éfil‘St% Oues ,

Appendix A contains a sketch of iterated integrals construction; as an application

we show that the category of lisse mixed sheaves on an algebraic variety X is very much

determined by the set of irreducible mixed sheaves and topological fundamental group of X



S

(for unipotent sheaves this fact is equivalent to [HZ]). Appendix B collects some basic

information about mixed Tate sheaves in Hodge version.

 The basic result of this paper was-found while I was visiting Princeton in December.. .. .

1988. I am grateful to Pierre Deligne for illuminating discussions, and to IAS for

hospitality. My special thanks to Anne Richard for careful typing of the manuscript.

1. Mixed Tate Sheaves. This section collects some notations and easy general remarks on
mixed sheaves.
1.1 Let F be our base field, S := Spec F; we will assume that either ¥ = € or I is a finite
extension of Q. Let X be a smooth scheme of finite type over F; denote by p : X = S the
structure map.

One has at hands the following avatars of a category of mixed lisse gheaves on X.

}L}[A(X) chere F = (, A is either §, R or ¢, and M%(X):z lisse Hodge sheaves on X =

admissible variations of mixed A—Hodge structures (see e.g. [K], or Appendix B)

}{QE(X) : here F is a number field, and J(%(X):: lisse mixed Qe—sheaves

Hp(X):  here F is a number field, Hp(X):= lisse systems of realizations, see
[D](1.21).
Below H#{(X) will denote either of these categories. So M(X) is artinian tensor -

category (A—category in case J{IA, ¢ gone in case J{QE and Q—one in case MR'). Objects of

H(X) (mixed sheaves) cairy a canonical increasing weight filtration W. strictly compatible
with any morphism. For a mixed sheaf 7, we put , = W7 7y = ?/Wi_l?,
.?[a,b] = W F Wy (5 Ty =Ty = GYF. * |

A morphism f : X - Y defines exact tensor "inverse image" functor f : M(Y) - H(X).
In particular we have p:k : M(S) + M(X); for G € H(S) put Gyi= p*G. We also have
"geometric” cohomology functor ’)l* := ROy 1 M(X) - H(S); the functors p* and ¥ = b* are

adjoint.
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The simplest mixed sheaves are Tate ones Q(i) (we write Q(i) instead A(i), or § L’(

for simplicity of notations), For 7 € #(X) put F(i) ;= Fe Q(i), H J{(? Hom(§ )X’ 7.

- A mixed sheaf ¥ is-mixed Tate one if 7o, ;.= 0.and Fo; is isomorphic to a direct

surn of (—i)'s for any i € Z. The category &7 (X) is a full tensor subcategory of H(X}; the
functor f* transforms (mixed) Tate sheaves to (mixed) Tate ones. Assume from pow on
that X/F is geometrically irreducible; then ?Op* = id US) p* is fully faithful and
Y(HI(X)) c HI(S). For F € HI(X) put Hiﬂ«(}') = Ext}{f(Q(o), F). We have canonical exact

sequence

0+ H (1) - HU(7) - HYH'P)
denote the image of the last arrow by H}g(}')g ("geometric part of H}U“).
1.2 The tensor category #T(X) has canonical ("arithmetic") fiber functor
$. = Py HI(X) - (graded vector spaces) ¢(F) = Hom(Q(—1),7y;) = H?g-( Fi),)
A usual Tannakian story says that qﬁ identifies M7 with category L{X).—mod of
graded finite—dimensional modules over a graded pronilpotent Lie algebra L(X).
("Fundamental mixed Tate Lie algebra of X".) Explicitly, L(X); coincides with the vector

ISpa,ce of degree i natural morphisms «.: ¢. - ¢ +i that satisfy Leibnitz property oy gr =
o 172
ay ® id¢(?2) + id¢(?l) ® afg' One has L(X), = 0 for i 2 0 and L(X)—l_ is dual to the

vector space H ,L(T( (Dx)-
For a morp}nsmf X - Y one has qSXf = qﬁY , 80 we get Lie algebras map f : L(X) ~

N 4 L(Y) such that ¢. identify f with f. change of Lie algebras: action functor. The map

p.:L{X). » L(8S). is surjective since p* is fully fajthful; put L{X)® := Ker p. ("geometrically
part of L(X)."} Clearly L(X)g1 is dual to the vector space H}U(Q(l)x)g. Note that any
point i : $ -+ X defines the splitting 1. : L{S). - L{X). of p. @
1.2.1 Lemma. Lie algebra L(X)8 is generated by degree —1 component.

Proof. It suffices to show that for any finite dimensional graded L(X).—module F. the

subspace of L(X)g—i'uvariam vectors coincides with the one of L(X)i—invariants. One has



L(X)%

. L(x)8 _ 1
F. = ¢.(F) for a mixed Tate sheaf 7, and FL(X )¢ _ 4 107 i, B = 08 o)

So we have to show that projection ? oi ™ ?[2} 0jo 2} induces isomorphism on d).7{0. This

follows ﬁom the exact sequence of cohomology functor %° that comes from the short exact

sequence 0 ~ ?S‘Zi—‘i - ?321 - ?[21,2i—2] - 0; note that 1 Q(a)X has weights —2a+1, —2a+42
only, hence 17 <94 has weights < 2i—2. o
For a m;xed sheaf F we will call its geometric data the graded vector space ¢.(7)
considered as L{X)®—module. According to above lemma the L(X)8—action is completely
determined by the map «F). : ¢.(F) - 96.—1(?) ® Hjﬂm(l)){)g'
1.2.2 FExample. Let ¥ be a line 1—dimensional F—vector space, V= V\{E}}. then
HiJ(Q(I)V)g = 0, and we have a canonical isomorphism Res : H}{T(Q(l)v)g — §. Denote
the dual map § — L(}'))g1 by a+— aN . Since L(P)%1 is one dimensional, 1.2.1 implies
that L(V)% = L(V)_, ¢ center of LY. . |
A point a € V(F) defines the splitting a. : L(S). - L(V)., hence the isomorphism &. :
L(S). x o, — L(V). We will always identify L(Gm) with L(S) x Q_; using 1; in
particular, we will identify mixed Tate sheaves that split at 1 (i.e. with fiber at 1 € Gm
isomorphic to direct sum of Tate modules) with graded N —modules greded vector

spaces with degree —1 linear operator No If X is any variety, p € —0 (X), then we have a

P
linear map L(X)_1 -2, L(Gm)__l 22, Q, i.e. an element c{yp) € Hiﬂ’Q(l)x)' This defines
canonical morphisms | ‘

0'(x) 9% HL(Q(1)y)

| 1
0" ()8 & @ L 1L (0(1)y )8

* % * &
where 0 (X)8:= 8 (X)/F . For g€ 0 (X) we will often write [¢]:= cf(p), [¢]B:= ().
1.3 Let X be a smooth curve, x € X(F); put t_:= tangent space to X at x, ji Xi= X\{x} =
¥. One has exact tensor functor ("specialization at x") sp, MX) - ,L((tx), which

transforms mixed Tate sheaves to mixed Tate ones and commutes with ¢. This defines a



canonical Lie algebras morphism e L(tx) -+ L(X). Put N_:= eX(NO). Note that a mixed

Tate sheal Fy on X comes from a (unique) sheaf 7¢ on X iff spx(TX) comes from a sheaf

o't or, equivalently, if N = U-on--qb-.(?x-)-. This means that j.. L(X). = L(X). identifies .

L(X). with a quotient of L(X}. modulo the ideal generated by N .

1.31 Examples. (i) Assume that X = V is one—dimensional vector space, X = V. The

obvious identification t = X identifies sp, HT(X) - HT(% O) with identity functor,

(ii) Assume that X = tPl\{xO,...,xn}, x; € [Pl(F). Then N_ generate L(X)%1 with the only
i

relation N~ = 0. The iterated integrals stuff (see e.g. appendix A} or Deligne's
i

arguments {D] show that L(X)® is free Lie algebra generated by L(X)%l.

Remark. Below we will use also mixed Tate sheaves with finiteness condition dropped;

these are just arbitrary graded L(X).—modules (possibly infinite dimensional).

*
2. Polylogarithm. Let X be B’l\{o,l,w), Ti= Gm = [Pl\{U,ao} and t € 0 (T) be standard
parameter.

21 Lemma—definition. There exists a unique mixed Tate sheaf I on X with geometric

| Q i <0 [1-t]8 1 = 0
data Py= ¢(7); = { , ) = { . We will call TI {classical)
0 i>0 [t 1 <0
polyloga,rlthm sheaf. |~ e : - |
ProgEWe have to show that L(X)g—action on the module P. = §_ @ Q_; @ Q_, ® ..., given
g 1 < 0 | _
by formula No(ei) = {0 o ; Nl(eo) =e_y, Nl(ei) =0fori<0(heree, =16€ &)

extends to L{X).—action in a unique way.

92.1.1 Unicity. Assume we have two such actions al,az : L(X). » End P. Consider the

difference 5 := ot — o L(X). — End P. Note that 5 maps L(X). to End g P. (since

L(X)8
S factors through L(X). b, L(S). = End P. one has S(L(X).) = Se (L( o)) for each x = 0,

1, w; but aieX(L(tx)),' hence SeX(L(tx)), commute with aiNx = « NX). It is easy to see



that End )g P. = Q-idP . Since L{X). supported in negative degrees, one has § = 0, i.e.
L(X)S '

O’E = 062.

919 Bxistence (¢f. [D]) Consider L(X)8 as L(X)-miodule via adjoint action.  We will =~

construct P. as its subquotient. Namely note that N_, N, € L(X)%1 generate L(X)® as free
Lie algebra (see 1.3.1); one has [L(X X)8, L(X X)8] = L(X)%_2 Put B. := {-N_ @ L(X)%mg,
C.= [I{X )< _o L(X)<_2] + [Ny, L(X)%_Q]. Clearly B. 0 C. are L(X).wsubmodule; of
L(X)5. Put €= NO-, €= ——aaﬁi(Ni)_for i < —1. Then B ,/C, ; = Qg and P. =
B _/C _; is desired L{X).—module. O
2.1.1 Remark. Actually the proof of unicity shows that if 7 is any mixed Tate sheaf on X
and @ : ¢.(?>2-}) — $.(Il,q;} is an isomorphism of geometric data, then « defines an
isomorphism J—fﬂi 4o II;gi 49 of mixed Tate sheaves. n)
Let R b; mixed Tatg sheaf on T with geometric data R, = qbi(R) =Qifi<0,R, =0

fori > 0, A(R); = [t]%, and such that R splits at t = 1 (in notations of 1.2.2 R corresponds
N

to the graded N O—module QO 9, Q—-l 2, 0_2 — .., N 0= 1). Clearly one may

. . . . i
identify RZ_2i with symmetric power sym R>_2.

9.2 Lemma. (i) The obvious isomorphism of geometric data ¢.(11, ) 5 ¢ (RX(l))

comes from an isomorphism of mixed Tate sheaves I, o = RX( ).

(i) Spy(IT) = Q(O) ® 5p,(R(1))-

Proof. (i) We have to show that H _g extends to T and has spht fiber at 1 € T. The first

fact is clear, since Ny acts trivially on P ,_,. It remains to show that L(S). acts trivially

on its fiber at 1, or that L(t,) acts trivial]y P._; Note thaf L(i,) killse_j: for L€ L(ty)

one has le_; = {N,e = Nt =0, since L’leo_e Ps—ﬂl and NIPgwl = 0. Now L(S).—action
-i-1

on P, commutes with N _—action (see 1.2.2), hence L(S)e, = L(S).N, ey =

-1~1 _
N, "L(S.)e_; =0.

(i) We have to show that L(ﬁ )—action kills e . Since L4 )e C P< p and N acts

injectively on P_, it suffices to show that N L(t Je, = 0. But N lies in center of L(t ),



hence N L(’é Je, = L(t o) Ny = 0 Another proof. Look at construction 2.1.2: one has

e, =N, and adjoint action of L{{ ) kills N 0

2.2.1 Corollary. The class of II_o; _o; ) ID Extm(ﬂ() Q(i+1) ) is It fori=0and

[t] for 1 > 0, so conditions 2.1 on 4(I1) hold also on "arithmetic" level.
2.3 Definition. Polylogarithm is the class in Hig(Q(O), RX(l)) of our sheaf IL
Note that this class determines IT up to a canonical isomorphism, so we will denote it by

the same letter IL

3. Formulas. Let us describe II in explicit terms.

3.1 The §-Hodge avatar of IT is as follows. Its holomorphic data is graded vector bundle

- dt : _ dt
1620 Oy e, with connection V : V(e,) = = & for i < -1, V(eo) =374 (as usually, see
appendix B, the Hodge filtration is F' = & OXeJ and weight one WQ. is ® OXe) The
. j<i
§—structure on IIV may be found from (2.2): it is formed by Q-linear combinations of

ky k
s 3 . —"1 }.0 t : .
multivalued sections e, + 1{21 Lip (t)-e_y, (2my=1) k§0 _ e 1 (i > 1); here

. 7
Li, (£)= X is classical k—logarithm.
k n>0 ;E

3.2 Let us spell R—Hodge version of II in language of appendix B2. Our II is graded vector

space P. = @ ( e equipped with real structure PiR = & (2mn/1 R e The
<0 i<0

k .
C®—function T : X -+ Aut P. is given by formula T{e;) = I:IIZ)* loglf;lzei_k fori<—1
k>0 )

b2
and T(e ) = ¢, + 5 (Liy(t) - (0¥ n I (1) REJHD ) Note that T = expN,
0 k>1 o a,b>0 -
a+b=k
where N(e;) = —10g|t|2ei;1 for i < -1 and N{e ) = % D, ( Je - where ZJD
21 int
- - i 21 7 Sy g Kyt K : TR : ;

[% L, (t)? (Z Li BOR: @ Xy )}(Z/_g_,f fogltl'q )’.Thls D, Is just single valued version of

“‘ 1' k¥l Kl

Rl—( Q"u‘. B%‘\C’“F&. wuwwbers



polylogarithm found by Bloch and Wiegner in case j = 2, and by Ramakrishnan and Zagier
in general case [R}, [Z].

3.3 To describe § ~version of polylogarithm (cf. [D]) we need to fix some notations.

- 3.3.1- Bet K -be a finite set; A be an abelian group.-Put A{K] = Ak

as the group of A—valued measures on K. Notation: a = L a4 € AlK].
keK

Let gA,K be an A—torsor over K: so we have surjective map of sets 7 : gAK + K

with simple transitive A-—action along the fibers & AK(k):: vrml(k) of m.  Denote by
(Es"AK) the set of sections of ; this is A[K]—torsor with respect to A[K]-action defined by
formula (a-7)(k) = a,y(k). The functor T' : (A—torsors over K) - (A[K]-torsors) is

equivalence of categories.

Let f: K2 5 Kl be a mapping of sets, &, ¢ be torsors over K.. An f—morphism f : -
i

Eag 7 8 AK, is, by definition, a collection of maps (k) : I, g AKZ(kE) -

2 ko f (k)
= cr =L N
é’AKl(k), k; € K, such that one has T(kl) (Hakzekz) = 1II akz f(kl)(ﬂekz) (£ “(ky) is
empty, then f(kl) fixes a point in &, 1 (kl))' Equivalently, we have direct image functor

‘ 1 7

fy (A—torsors over K,) - (A—torsors over K) defined by formula (f;& AKQ)(kl) =
i II’_i gAK (kz),'_ Whéi’é FII' i3 prbduqt' of A%toré'ofs, and f—morphism f is just a
morphzsm fg g AK = g, AK Note that f defines "intégration along the fibers" map f.:

AlKo] - AlK ], LB akz kz) %y Sf(kz), and f & AK - & AK defines f.—morphism of

A[K ]—mtorsors INEHE I‘(é’AK ) = P(é’AK ).

Assume we have a projective system of sets... = K3 &, Ko B, Ki and corresponding

projective system of A—torsors ... 2 & AK A AK —fia 3 AK. Then we have projective
3

limits: K = lim K, A[[K]] = lim A[K] = A-valued measures on K, and A[[K]]—torsor
L f— 1

D(8 )= Lm T(8,y ).
1

. we will consider A[K] . .
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All these constructions are obviously compatible with change of coefficients by

morphisms A - A”.

-.3.3.2. Let .us apply. this general stuff to.our situation. Fix.a prime £ For a point e T =.

Gm and n > 1 consider a set KH o= {6 ﬁgn = o} of #—roots of . These K, o form a

compatible system of E/En(l)wtorsors with respect to maps u : Kn,a - Knml o wp) = ﬁg,

hence we have a I{1)—torsor K ;= lim Kn o Now for m > 1, (assuming that « # 1)

consider Z/£*(1)—torsors 3I(<m) over K o With fibers ESI(( m) (B):= {v: 7Bm =1-pf} =
n,o n,o

K_ . . We have a system of g—morphisms i: & (m) - (m) #(ﬁ)( Vg =

Iyse 51({11?31 a(ﬁ) (here f € Kn—l,a’ beu (ﬁ) C Kn @ TsE é"I(< )a (6). These define

I/ DK )] = T/£PK J)(1)~torsor r(gi({ ). Note that a’( Ky form compatible
o

system of 7/¢™(1)—torsors (with respect to maps £ glm—1) R 7‘6) hence we get a
 projective limit r(sta) = lim (8} a)) which is Z[K J}(1)~torsor (here Z[KJ]
bim 2/£7K ). -

Recall that K is Zlf(l)—torsor, hence R = ZZ[f Ka] is a free rank 1 module over
(completed) group ring (Iwa,sawa, algebra) I := Zg[ ?Z f(l) = algebra of Z fva,iued measures
on Zlg(l) Tet 1 ¢ Ibe a,ugmenta.tzon ideal; 7-is compléte with respect to I-adic filtration:

Iﬂ+1, 0 s (u——l) , U E

7= lim T/ One has canomcal isomorphisms Z/n) —~+I /

Zlg(l), so the graded ring gryl = ® I /In+1 is just a polynomlal ring ?Zf[u uE€ ZZK(I) If we

extend coefficients to ¢, , then we get a canonical isomorphism ¢ g[[ ujj = 0, = ¢, 87 =
_ ¢

n

(1-6,)

= ; the inverse isomorphism

lim ¢, ® 7/I", defined by formula u s log 6, = — 3

IQ — Q/{[u]] is moment map p — X (

! ' n>0 éf(l

n
u ) %T (here u € IQE is a Qg valued

measure on Eg(l € = ldﬂf(l so u P s Zlg—valued function on Zg(l Consider how

I—adic filtration on Ra‘ Since RQ/I = ZZF’ one has a canonical isomorphism
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"R ,/IH_HR = In), and R, is free rank 1 module over QE““”' For a = 1, we have a
@ @ GQB |

canonical identification of R with I (since K- = I{1)).

show that corresponding § [sheaf RQ is canonically isomorphic to same noted sheaf from

{
2.2(1). Same way, I'(& ) are fibers of R(1)—torsor I‘(§K) over X, which gives rise to an
o

RQE(l)—torsor T(E’K)%. But RQE(I)—torsor is the same thing as extension 0 - Rqﬂ(l) -

- § E(O) -+ 0. An easy computation shows that this % satisfies 2.1, hence coincides with

¢ g-version of polylogarithm sheaf.

4. Cyclotomic elements. Let o € F be a degree in toot of unity: o™ = 1. Consider the
point t = a of T. The sheaf R splits over & (since R, o does,and R, . = SymiR>_2), 50
we have a canonical decomposition of fiber R a(l) = ;:;R(l) = Q(1)g e_a Q(2)S o ... .hDenote
by pr,, ¢ R (1) + Q(k)g the n'" projection. Let Liy (a):= pry o(Tl,) € Hi (Q(k)g be the k"
component of polylogarithm at a: this is the desired cyclotomic element.

4.1 As follows from 3.1 the Hodge version of Li, (a) «—— € ¢/ 2r/—)".Q = H}JW(Q(H))

is just the value of a at classical k—logarithm function. In ngversion the projections

Py o qu (1) = Qn) are given by formula pry S = I'{%' f 6111{1'”’ where u € ng A1) s

Q/(1)—valued measure on K , and € : K = lg(l) transforms § = lim § to &_(f) =

Lim ﬁ?;. To get cyclotomic units one should push out the class-of R a(l)—torsor gKa to

) g(k)-—torsor by means of prk&: these are just the Galois cohomology classes in Hl(GaI
F/F, Q(k)) defined by Soulé [S] and Deligne [D}.

4.2 Remark. One may describe a canonical splitting R  ~ @ Q(n)S in another way. For an
integer a consider morphism By T T, ,u&(t) = 12 The sheaf '“:,R splits at t = 1, and

, . . w ¥ W o,
with respect to canonical isomorphisms Gr2 n‘“a,R = uaGrz R = Q(_n)X the classes of
*

* 2 . ) * .
”aR[~2n,—Bn—2] are p [t] = [t7] (see 2.2.1). These properties determine g (R) uniquely,



1

*
hence one has (unique) morphism jry : R p, R such that Giv_gn(ﬁa) is multiplication by a®.
Now choose a € I such that a = 1 mod m. Then ’U’a( @) = @, hence [ ,, ACts on the fiber Ra‘

Ma#1then Q(n)g C R, is just the eigenspace of i, with eigenvalue a™ |

5. Motivic Story. Though up to now we do not know what mixed motives are, we may
rephrase the above constructions in the language of absolute motivic cohomology
Hﬁ(?’Q(*)) defined by means of algebraic K—theory (see e.g. [B]). More precisely, the
group Hiﬂ(X,RX(E)), where polylogarithm II lives, is actually an absolute cohomology
group with "constant" coefficients of certain simplicial scheme Y. We may consider
instead the corresponding absolute motivic cohomology of Y., and find there a canonical
element II_ {motivic polylogarithm) whose various realizations (or regulators) are § In
and Hodge versions of polylogarithm from §2. The values of I o at roots of unity are
cyclotomic elements in absolute motivic cohomology.
To define R in geometric ("motivic") way one may use iterated integrals. The
construction goes as follows (for a general construction see Appendix A).
5.1. Let us define for n > 1 the augmented simplicial T—scheme Y(n). Let T°FL be
n+1—dimensional torus with coordinate functions X oo X Denote by Yo ¥p the new
coordinate functions i = Xi/xi+1 fori#mn,y, =X, s0x = Yi¥ig1 o Yy For a subset
\A ¢ {0,....,n}, A # {0,...,n}, let Ylgn) ¢ T2 pe the subscheme defined by equations y; =1
foric A, A= {io,...,j&}, i, < ... <1y, we put A(j) = A\{i}-} and denote By aj : Ylgn) -
ngl(lg) an obvious embedding. ' '
(

For an integer i > —1 define a T—scheme YS?B] d) to be disjoint union of Y An) LA C

{0,..n}, 1A| =i+ 1 -1 <i<mnifi2nthen Yi(l(l1)1d) = {J; the structure map Y(?I)}d) -

0
simplicial T—scheme Y(n) as the one obtained by a standard universal construction from

T is t = x_. We may consider 8}- as boundary maps, and will define our augmented
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its variety of non—degenerate simplices YFnI)l d)’ For any T-scheme t : U - T (so t €
0" (V) put YW= U . i), 50 v {1 = U T, ete.
. 5.2 We are going to compute H.#(Y.{(Jf?,_l)(.*.))-. R
Remark. Below Hﬁ(?’ §(*)) denote the absolute motivic cohomology constructed by means
of Quillen's K—groups. While computing the cohomology we will consider any augmented
simplicial scheme Y. as space Y_; modulo subspace Y, i.e. we put degrees in cohomology
in a way that one has exact sequence ... » H'(Y.) = H‘({’_l) - H‘(Y>0) SR
| The following notation will be convenient. | )

For any n > 1 denote by S (—n). the following augmented simplicial S—scheme. Let
T" be n—dimensional torus with coordinates YireYg for A ¢ {1,...,n} let S(—n)A be
subscheme of T defined by equations yy=11¢€ A; let 83‘ i S(-n) A S{—n) A-( i) be obvious
embeddings. Let S(_n)i(nd) be disjoint union of S(—n},, [A] = i+1; then 83. is a system of
boundary maps, and we define S(-m). as simplicial scheme obtained from its
non—degenerate simplices S(—n) (nd) by universal construction. For any scheme U put

U(~n):= U x S(—n). Assume from now on that U is regular. Then, according to Quillen,
S

one has a canonical isomorphism H;‘J,(U’Q(*) —t H‘i&"’n(U(—n), Q(*+n)) defined by formula

ar— aUy U.Uy, where ¥i are coordinate functions considered as elements of

H:L(U(wn), Q(1)) (and U is cup—product on absolute motivic cohomology). This explains

the notation.

i ,
5.3. Consider the maps Yéltl_l) I, Yélt]) of agumented simplicial U-schemes defined on

1—simplices by formulas in(xo";',’xn—l) = (yil,...,yﬂ), where y; = x._,, jn(yl,.:.,yn) =

(x ,...,xn), where x_ = t, X, = I yj for i > 1, and such that in transforms the component

0 0 j>i :
Y](BHMI)) B C {0,-.-,11—1}) to U(—H)BM B = {O.’-l—]. : O.’EB} C {1"“’11}’ and j]l transtorms
U=n) 4 to Y.
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As follows directly from definitions j identifies Y{(j?) with Cone(i_}. Hence one

i
gets exact cohomology sequence ... - H M(YU‘L’ (x) = HJ{(U(mn), Q) =
J{ (U Q(*ﬁﬂn) I, H){(Y (n 1), Q(*)) IR Walkmg downwards by n we get the

spectral sequence with terms Ellj’q = Hﬁ)fq(U, ¢(*+p)), p = 0,...,n, that converges to

HI;{+Q+H(Y{(J§), Q(*++n)). The differential d, : Elf’q - E11)+1’q is just U t. (Proof: d; is
*

just the composition Hi{(U,Q(*)) - Hj (U(=p), Q(*+p)) —EP—— Hj, (U(—p+1),

*4+1 . S
Q(*+p)) = H, (U, Q(*+1)); since 1 Ope¥p) = (& ylz---ypwl,---,yn), and

y U-Uy = (yq-- Ypi ) U vy Vo Py v Up—l’ we are done).

p—1
Here are basic properties of this spectral sequence.
5.3.1. Compatibility with localization. U be a curve, x : S" = U be a point; put V =
U\x(S). We have exact localization sequence .. = Hj{+p(Y6n% Q(*+n)) -
: T
.+ ~A4n—1 n . .
H), n(Y\(f?%’Q(*-i—n)) - B (Yé %(x) Q(*+n—1)) - ... together with corresponding
exact sequence of Ep A for r = 1 this coincides with a usual localization sequence ... -

Res
Hj(UQ()) + HifV,Q() —2 Hj ™ (S4(1)) -
5.3.2. Change of t. For a € Z consider a morphism of augmented simplicial U—schemes

ﬂgn) : Y[(J-I,lt); - [(I 2 defined by formula ,u( n) ( X Il) = (xg‘,...,xg) (so #‘gn) transforms
Y }gn) to Y[gn), see 5.1). One has the corresponding morphism of spectral sequences; on

EII) 4= H%ﬂl (U, Q(*+p)) it is just multiplication by a™ P (this follows directly from
construction of spectral sequence). -

5.3.3. Degeneration of roots of unity. If t is root of unity, then the spectral éequence
degenerates at El' To see this just choose a # 1 such that (& = t; then “z(a,n) acts on our
spectral sequence with eigenvalues a™ P on Eg’q. Hence dr = 0 for r > 1. Moreover,

decomposition of Hj{"'n(Y{(In% Q(*-+n)) by eigenspaces of pén) determines a canonical
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isomorphism H‘+H(Y(u) Q(*+n)) = & HJ((S Q(*+1)) (since ,u(n)‘s comrnute, this
A U.t, 0<i<n a

decomposition does not depend on the choice of a).

~Now let us consider the case when our. U iS.X::..Pl.\.{.O,l,oo}. =+ T. Assume also that. .. .

our base field is number field. The following basic lemma is an analog of 2.1.

X

ap p
54 Lemma (i) The sequence 0 - H}((S,Q(n+l)) SRL ?{+1(Y}§(t)’ Q(n+1)) ~En
H}‘(X, Q(1)) is exact. Here w,,0 are edge homomorphisms of above spectral sequence.
*
(i) The image of § is subspace of H}{(X, (1)) = 0 (X) ® § generated by t and 1.
*
Proof. According to Borel and Quillen for i > 2 one has isomorphisms p :Hi{(S,Q(i)) —
1 . 1 . 1 . 2 . ' *
(X, (1)), a : Hy(S, Q(i-1)) ® H(S, Q1) — H(X, Q(i)), where a(f,by):=P () U
* *
t+ P (52) U (1~t) (and t, 1-t € 0 (X) ® @ = H}((X, ¢(1)); the cohomology groups
H}{(x, Q1)) for j # 1,2, 1 # 0 vanish. Note that the inverse map & = : H}(X, Q(i
1 . 1 . . —1 '
H (S, Q1)) @ Hy(S, Q(i-1)) is a {m) = (Resy(m), Res, (m)}.
This implies that the only non—zero terms of the spectral sequence, that computes

(Y (), Q1)) are ERIP = HY(X, Qp+1)), BDPP = HYX, Q(p+1)), p = 0,
*
the differential d; : Ep,l—-p -+ Ezf+1’1_p is .U t. The composition H}{(S,Q(IH—I) P,

d R
Ep’1 21 Ep+1 I-p_"0, o HJ((S,Q(p—H)) is identity map (for p = 0,...,n—1), and
Resld1 = 0. Since p ig isomorphism for p = 1,...,0—1, the above isomorphism aﬂl shows

that for these p we have short exact sequénce

‘ d Res
0 - E?’l_p 4, EIIH_I’IHP 1, H}{(S,Q(p%—'l)) -0

For p =0, d; is not injective, and we have exact sequence

0,1
d;’ Res -
L Bp! — HYSA(p+D) 0

0,1

By

* *
with Ker dy C E?l = ¢ (X) ® § equal to subspace ¢ generated by t, 1-t € 0 (X) (clearly
¥ *
¢ C Ker d; by Steinberg identity; since 0 (X) ® Q = ¢ @ 0 (5) ® @ and Res d, is identity

on second term, we get Ker d; = ¢).
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This means that the only non—zero ER Qs are En’l_Il H S, Q{n+1)) 0’1 =
2 2 2 ’

Res

and Eg,pr _Nl_, H}((S, ¢(p)), p = 1,...,n. This implies 5.5(1). To prove 5.5(ii) one has to

~.show that our spectral sequence degenerates at E,, i.e. that all higher differentials d_:

1,2—T W21
r

E?’l —i K vanish for r > 2. Using induction by r we may assume that Res1 : B
H}((S ¢(r)) is isomorphism. But ResidI = dgl)Res, where dl(,l) is the differential of spectral
sequence for H' +D(Y( ) Q(*+n)) (see 5.3.1). Since the last spectral sequence degenerates
at By by 5.3.3, one has dg ) = 0, hence d . = 0, and we are done. O
5.5. Define motivic polylogarithm IL . € H?{+1(Y>({n), Q(n+l))/H}((S, Q(n+1)) to be a
unique element that maps to 1t € HI(X, Q(1)) by 8, (see 5.4).

Remark. One may identify canonically Hi+1(Y}({n),Q(n+2)) /H}{(S, Q(n+2)) with

Ij{_l_l(Y)((n),Q(n—l—l); then we may define Lii ot € ?{_H, Q(n+1)) to be a unique element

that comes from Hz+2(Y)((n+1),Q(n+2)) and maps to 1—t by 8 . For our aims this more
precise definition is not necessary.

Let us compute the image of Hmot by regulator maps. To do this note that in

situation 1.1 we may compute the absolute cohomology of -Y)((n) using Leray spectral

sequence for projection 7 : Y}((n) - X, We may compute Ry Q(n) (n) using the spectral
: Y
sequence constructed as in 5.3. One gets immediately that Ra‘w*Q(n) (n) = 0 for a # n,
‘ T
and Rn;rr*Q(n)Y(n) is mixed sheaf with Gr' R my Q(H)Y(n) = Q(0)p © ... ® Q(n)p. The
T T
differential d1 in spectral sequence, just as in 5.3, equals to .multiplication by {t] €

H}J(X,Q(l)), and our sheaf splits over roots of unity (in particular, over 1) due to
symmetries #gn) (see 5.3(ii), (iii)). Hence RmQ(n) (n) is just the sheaf R,_,, from 2.2.
Y Z
T

So the image of II by regulator map lies in Hiﬂ(}(, R(1)xs_op +2). It coincides with

mot
corresponding II from 2.1, 2.3, since it satisfies conditions of 2.1 (see 2.1.1)

.
5.6. Nowlet @ € F = T(F), @ # 1, be a root of unity. According to 5.3.3, we have a
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, o n+1l.,(n) _ 1 ) .
canonical decomposition Hﬂ (Ya , §(n+1)) = 1<kE?D+1Hk(S,Q(k)). Let L]k(a)mot €
[ — * '
Hi(S, Q()), i = L...n, be components of IL .. = oIl .. Call them motivic

cyclotomic elements. = According to 4.2, the regulator map transforms Li(a). . to

element Liy (a). This implies the conjecture () from [BK].




