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HIGHER REGULATORS OF MODULAR CURVES

A. A. Beilinson

Tn this paper I will show that the %k—groups of any curve,
uniformized by modular functions, contain a subgroup whose image
under the regulator map is exactly the subgroup predicted by the
conjectures of {1] §3 (e¢f. alse [2] §8) about the values of
L-functions.

T wish to thank Ju. I. Manin for his encouraging interest
in the subject.

In the Ffollowing I will use notations from the paper [27.
In particular if X 1is a scheme, then %%(X,Q(i}} is the sub-
space of Quillen’s group KQi-j(¥) ® § on which Adams operators
4¥ act by multiplication by p*.

1. THE STATEMENT OF MAIN RESULT.

1.1. Modular curves, preliminaries and notations. 1In the
following V denotes the two-dimensional space Afe over
finite adeles AT, G:0L,(AT) = GL(V).

1.1.1. Fix an integer N> 3. Then M(N} denctes the
moduli space over € of elliptic curves with level N struc-
ture, and H(N) the one of generalized :lliptii curves - the
smooth compactification of M(N); put M(N) t= M(N)"M{N) with
reduced scheme structure. get T N):X(Ng - M{N) be the univer-
sal curve and a(N):(Z/Nm) - X(N)(M(N) pe its level N
structure. The scheme W{N) is a smooth projective absolutely
irreducible curve over the cyclotomic field QECNI. One has
compatible left actions of the group GLE(Z/NZQ on the schemes
above; an element g € GLQ(ZZ/NEZ) acts on Q[¢y]l by
g*(cN) = Cget{g). One has also the action of {ZZ/NZi)2 on the
scheme X(N) by finite order point ftranslations along the fiber;
of T(yys SO in fact the semi-direct product GLE(ZZ/NZZ)K(ZZ/NZZ)

acts on X(N)'
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If N N

1 T2
ible natural wmorphisms Mﬁ - MN B XN > XN that commute
2

with GLE(E/NiZ}-and (%/Niz)2~action and afN

reduction map Z/le - E/NEZ. Put M := lim M(N)’

are integers ?.g. NelNl’ then there are compat-

X = 1§m X(N)' These are sihemes over the cyclotomic field
rield g[¢] =V Q[QN]: CNl Y2 = QNE. There is a canonical left

2

G- and G X V-action on them s.t. G{ﬁ} end % act via the

limits of actions on finite levels. -
More generally, we will need Kuga-Sato schemes XL ——£—> M
{+ 1is an integer Z'O). These are L-fold fiber preducts of X
1

over M: X~ = X x .M.x X; so XO = M, X = X. There is an action

L
cf GNXV on XL s.t. for any compact open subgroup
Kc G x VL the factor scheme K\X has finite type over Q

and XL = 1im K\XL. Sinee for any Kl e K2 the morphism

tA

Kl\x > KE\XL is finite, we have Hk(XL,Q(*))

= 1lim H,‘Y(K\X{',Q(*)); for small K's the space Hy(K xt,0())
-

K
coincides with the space of K-invariant vectors in H&(XL,Q(*)).

If H is any contravariant functor on schemes of finite type
over § we put by definition H(XL) := 1im H(K\XL); one has a
>

o0

natural action of O x V. on H(X ). Same notation for M.

1.1.2. Consider the action of ¢ on the component [M]l
of degree 1 of the motive of M. Let R he a complete set of
pairwise non-isomorphic weight 2 parabolic T-representations of

1 _ -
G. Then one has [M]~ = ;f&iv ® M, where M, := HomG(V,M}.
This decomposition induces the corresponding decomposition of

H (T) 2720 (M 2T ana B(W,0(1)) » T Let index v
denote the V- component of the representation; we have
Ql(ﬁ)v #e al (MV) and so on. The §-spaces ﬂl(Mv) and

Hé(MV,Q (1) are l-dimensional (multiplicity one theorem), and

one has L(MV,S) = L{V*,8). Here the right L-function is the

one of Hecke-Jacquet-Langlands of the representation v*  Gual

to V; these L-functions are holemorphic and satisfy the function-
al equation. Note, that this functional equation implies that
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L{V,S) have simple zercs at non-positive integers; for 1 ¢ Z,
140 put t(V,1) := = L(V,8)lg, ¢ (T2 R)*.

1.2. Construction of the elements in Kf(M) For any
compact cpen subgroup W < VL the scheme W\X is smooth
proper cover M, so one has the Gysin map W” q#{W\x ,6(0))

L
> 5} 2’t(lvf,tjg(b—JL)). Clearly if Wy < W,, then w Ty coincldes

L
with |w1/w2|-ww* on q4(w2\x (b)) « %q( 1\X Q(b)) Let W

2
denote the l-dimensicnal G-module, dual to the one of @-valued

invariant measures on V; G acts on v by the character

fdet]. Clearly, we have a canonical VW _valued measure u on
VL. The above shows that we have canonical G-map
nﬁ:Ha Qb)) = 1% 2’(M,ag(b-a)) ® v' that coincides with

H(W)'WW* on Hg(W\X »0(b)).
Note that localization sequence together with the Borel
theorem and [1] (cf. [2} no 5) imply

Lemma 1.2.1. The restriction map ﬁi(ﬁ,@(&+2))
> H3(M,@(t+2)) is injective for & ) O. One has

Y (F,u{t42)) = Hy(W, q(142)),, if L> 0. |
parab t4l b
pefinition 1.2.2. Put Ha(M,Q{1+2)) := i ((HET(X",a())
m et n(e2)31) @ vl cleariy B30, 0 (242))PATY 55 g

(Af)—submodule of H%(M,Q(L+2)). The following theorem will
be proved in 2.4.1 for 4 » O and in 5.2 for & = 0. Fut
HE(E,Q(L+2))parab s = q%{m,a(c+2))parab n Hi(ﬁ,Q(L+2))

Theorem 1.2.3. If 1> O then H3(K,0{r+2))PRre®

= H5(H, 0(1+2))P2T8° - uB(W,g(1+2)), . If 1 =0 then

12 (7, ¢(2))P2720 o Hg (M, ul2)), -

1.3. The main theorem. Consider the subspace

. rx(gﬁ(ﬁ,a(4+2))parab L~ Hé(ﬁ,m(t+1))€ . This

Py
subspace is G(Af)-invariant, so one has P, = J3g~v ® P,
€

for some @ subspace P, HB(MV,R (L+1)) .
1
Thegrem 1.3. One has P, = ‘(V,—L)HB(MV,Q(L+1)). [
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Cleariy 1.2 and 1.1.3 imply that 1.3 is compatible with the
conjectures of [1] §3, [2] §8. The conjectures themselves for
the motives considered would be implied by 1.2, :1.3 and the
unknown statement about the ranks of ﬂk(MN,Q(*))-

The proof of 1.3 goes as follows. First, in §2, we will
see that the value of the regulator map r on an element wi({a,ﬁ})
of Ha(M,q(e+2))Parar
non-holomorphic Eisenstein series that correspond to residues
of «, B at parabolic points (ef. 2.4). Then, in §3, we will
prove that any reasonable function on parabolic points is the
residue of some element from Ejfl( L ,8{2+1)} (for & =0 this
is just Manin-Drinfeld theorem). The results of §§2,3 describe
explicitly the space PL' To find its V-components and their
periods one has to compute Petersson's scalar products of

is a product of certain holomorphic and

elements of PL with parabolic weight two eigenforms of Hecke
operators. This is what Rankin's method does (cf. §4). In
§§2-4 we will suppose that 4 > 0; some minor changes needed to
handle the case & = 0 are presented in §5 (this case was
treated in [1] §5; we present it here for completeness sake).

2. REGULATORS AND ETSENSTEIN SERIES.

We will use, throughout the text, the following notations.
If 7 4is an analytic manifeld over X, dim Z = N, then :Eé
Cé are complexes of R-valued (" -class forms and curremts
respectively; one has ‘!Z c ¢, ® R({-N)[-2N], 52 ® ¢ = &:Wi
. p+q—n
£, ®¢C= &, ® R(1) @z;"z @ R{i-1). Put £ (2, R(i})
= T(2,8; @ R(1)),...; for we & (2,€) let ot € & (Z,R(1)),

w(p,q) € 5?’q(z) denote its projecticns on corresponding spaces.

If w:2 -+ T 1s a smooth map of relative dimension 1, then
‘gé/T,... dencote the sheaves on 2 of relative forms along the
fibers; we have a restriction to the fibers arrow

*zgg’q eq£é?; ® #:Eg“L’q“L. If T is proper, then we have the
integration along the fibers map w,:C (Z,R(*}) - ¢ (T, R(*)),
(2, R(*))» &£ “2{(2, (*-~2}) that factors through #. TFor a
bundle S over 2 let & ., be the sheaf of its c®-class

sections; so Qnm ==£2‘0. If' ZQ is a scheme over §, put

c
£ (2) = "{z#& R),...
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2.1. Preliminaries. In this n® we will recall some basic
facts about residues and Lisenstein series. Let Wb s (wl)gL

vi(ﬂL(XL/M)) be the sheaf on M of weight 4 modular forms.

il

2.1.0. Traces. Define the direct image map vﬁuﬁ‘(XL,IM*))
_ 2 P R(* 1)) vE, .o, to b w(W)rh on & (WY, R
same definition for currents and cohomology clagses; these are
well-defined G-maps. We have a canonical G-isomorphism
wzm ® Ezw 3 CE” ® vL, oy = r (#a7F). Define trace maps

52('171,18(1))+IR,H§(EQ{1)) - § to be uw'(K)-times integration

over the fundamental cycle of K\M {here ¢' is an invariant
f-valued measure on G) for sufficiently small compact open sub-
group K c G. These are also well-defined G-maps; they define
G-pairings: Petersson's scalar product
{,)ﬁhom)®£hoﬁ)+m,mﬁ)=Traﬁﬁ and Poincaré duality
HL (W, ®(1)) © Hy(F,e(1-1)) ~ &

2.1.1. Cusps. Recall the standard parametrization of
M”. Let % bea group scheme over M obtained by adding to X
the neutral components of fibers of Neron model over M®. More
precisely, for a compact open subgrour W < V, one has the group
gcheme Wﬁ of finite type over M s.t. for sufficiently small
Kc GW'X coincides with inverse image of the scheme wa over
K\M, where KWX is KWi\X with added neutral componenté of
fibers of Neron model. When W varies the schemes wx form
an obvious projective system; put 5= lim WX. Clearly the
G-action on X prolongs to the one on ﬁ

et x ¢ ¥ ©be a point. Note that the fiver of any wxx
over x 1is isomorphic to a multiplicative group G , SO wWe may
consider the fiber ﬁx as a group up to 1sogeny, 1somorph1c to
Gm. Call & parameter on X an isomorphism G —~—> X where
Gm is Gm in the*category of groupi up to isogeny, clearly
parameters form § ~torsor, since € = Aut(Gm). Now note that
the group F*/Bi (F = field of rational functions on M,
Ox = local ring of X e ﬁl ii a l-dimensional Q-space, So %the
elements of 6\[Ol/ﬁk c F /6 - call them parameters at x - form
Q*+—torsor. Define an enhanced point to be a triple (x,t,q)
where x 1s a parabolic point, t 1is a paramster on Yx and
g 1is a parameter at x. Clearly the space M of enhanced
points is a right ¥ x ¢ T-torsor over M°; it is also obviously



A. A. BEILINSCN

supplied with left G-action. The standard Tate curve defines
the enhanced point x, € Mm(Q{;}) The stabilizator of this
point in G 1is Uﬁﬂf) where (l 0)} © GL,. The elements
{a,B) € @ x @'t and v € Aut Q{g] = 2% act on Xy by right
multipiication by matrices (?f g) and (é 8) respectively.
Since G acts on ¥ transitively this describes M- and M°
completely. In particular the underlying space |[M”| of M
15 /[B(&) O-U) WF), where B - 10 D)% B =1l DI

2ri

Fixing the C point of @Q[g]: Cy = e N , one has M (T) = G/B(Q)+

wnere B(Q)' := (g e B(Q):det g O}.

2.1.2. PResidues. Let A =§ or R. Define a G-morphism

Res®: "“*1(}( AfL4L)) = H%(ﬁ“’,A) as follows. Consider the
G-scheme X'L =%x...x% {£-fold fiber product). For compact
M
cpen W« VL and sufficiently small K < G one has the residue
. LA
map  Res’ = T mestiHpTMnut, a(r41)) - h 2T Ay
Ki xeK\M"‘-‘ BIKW

= 7T HB(Xx,A( 1)  the boundary map in exact sequence of
xeK ™

L 't’oc ol . .
pairs LKWAXT)  here = A X* is fiber of X
(o K™ e X KW
over X\M. This map depends on the choice of K in the follow-

ing way: 1if K' c K, x ¢ K'\M” and e 4is the ramificaticn

4

i /aVar] W _* L
index of wm:K'/¥M » K\M at x, then one has e WKWRSSW(X)

= K,wResi T . For aquﬁnhanced point ¥ = {x,t,q) define
e(x

*4 K _ . * ¥ .
Keﬁf) e q by g = in in F Aﬁx, where K 18 .
natural parameter at x € K\M. Then the arrows Ke(x)kaesx
for different K's are compatible, so one has the map

L
o1 4 L+l 4, L,aL .
Resgy™ := 11m e(”)KwRes (Xx",a{441)) = HB(XK,A{L)). Finally
K,w
2
define Res;? H§+l( x* SA(M+1)) » A4 to be Resr;c’» composed with

LAY A Lx Bt ~ L
HB{XX:A(L)) - N HB(Gé,A(L)) > A ; put Res? :=‘§?Res§ .

In the same way one defines ResJ in any other cohomology
theory; e.g. we have a G-map Reg} H%fl(X{,Q(L+1)) > Hﬁ(ﬁm,Q)
= Ho{ﬁm,e) {(the only thing one has to remark for general
cohomology is that the last arrow Hg(E;,Q(L)) - & in the
definition of Res comes from canonical projection

Hy (G x 8,8(%)) = Hy(5,R(%)) & A" (ty,...,t,) = H, " (5,0(0-2)),
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*
tya .- Aty > 1, where t, =py(t), t ¢ H (G ,Q(1)) is the
canonical element)}. Clearly we have commutative square of G

maps
L

R
(A1) B> WO (R, )

1 e

i (ot a(een) Y Ny S

L+l( 1

Clearly for (a,B) ¢ Q*x Q*+ we have Rest( py = aiﬁ_lResé.

So if we define ¥y = HQ(N™,4), ¥ < HO(N™,R) to be the sub-
space of elements o, S. t olX{a,s)) = aLB"lw(g), then the

image of ResL lies in this subspace. According to the end
of 2.1.1 we may identify Eﬁ with the space of all locally-
constant A-valued functions o on ¢ s.t. for any c ¢ Af,

a,d ¢ 0 add> 0 we have o(x(® 9)) = a et *lon,

1 0y [ A A . 1 9.y
w(X(o _1)) = o(X); F EQ is the subspace of right (O ﬁ?)
invariant ones.

2.1.3. Eisenstein series. Let Hﬁ = \P R) be

Ran
half-planes considered as analytic manifold over R with

standard coordinate Zy- The group GLQ(EU acts on H* from
az. e

z a b) - O

Q'c bz +d

manifold (M & R) an  may be 1dent1f1ed in a standard way with

H X G/GL (®); the canonical action of G on M coincides with

cbvious left multiplication action. Also the semi-direct

product GLQ(IR)K R? acts on the product of HE  and affine

1ine al by formula (z o,zl)(g,(al,ae))

= s - l

= (uog,(buo+d) l+alzog+a2) and we have X ® R__

the right by formula The (pro-analytic)

= [ xah) x (6xV)1/00,(0) x @F, (x* 8 R),
[t xnty x (GxVL)]/GLe(Q) x (99"

Put X7 = [(HEx A%) x (Gx vY)1/B(R) x (82)Y where

= {(: 9)] < GL,, and let pL ¥ (X ® }U be the projec-

tion. These are etale maps. The connected components cf X
are in 1-1 correspondence with M* & R: the map

p=p%M:=X"» (Ma R, identifies ¥ with the disjoint
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union of some punctured neighborhoods cof parabolic points; for
example the standard point xo corresponds to the component
(1t x 1).

The inverse image of w{’ to H+x G has canonical

trivialization given by section xt := 2'rr1) dzy A ... adz, ,
where Z3» i > 1 are coordinates on A Let w be an 4+1-
form on X“" i.e., the section of the sheaf nl & w{' on M.

I we n“'l(x" ® R) has logarithmic singularities at infinity,

then its inverse image to itxa equals to w(q)-%g- A Xt s

where wiq) = ¥ _ £ (g)q®. Here a4 .. aridz, g% := eoTiaz
acq* @ q

and fa. is certain ¢€-velued function on G. It is easy to see

that fo(m) belongs to H{I‘R and coincides with the residue of
cohomology class of w.
Now for any o € ::"L consider the form m(g)% A2 on

EYx G. This form comes from the unique cne, also denoted by
cu(-—gLAJEL) on M. Put E{'(w) = p,( w(——q/\ 9@'(‘)) {we suppose
that £ > 0); this is a well-defined sectlon of al® u* on
M& IR)an, since for 4 > 0 the series in guestion converges
absolutely. One knows that this {L+l)-form on x* has
logarithmic singularities at infinity; we will denote the same
way by E{'(o;) its cchomology class. The map

E{’:ﬁg’a—) HH'I(X @ R) = HLH'(XL,G) commutes with G-action and
(by Manin-Drinfeld thecrem) cne has E'L(:Fji) < Hgﬂ(){'(‘,A(L-;—l)}.
More precisely, let Qj" denote the intersection of
H{é+l(XJ',A(L+1)) with the (L+1}st-term of the Deligne Hodge

) . L ¢ 2y
filtration on HDR(X ® R). Then F, Res 1 ¢, are mutually
inverse G-isomorphisms.

2.2. Eisenstein series in ¥-cohomolegy. Note that the
Lt RR))

canonical exact sequence of G-modules O - H

H;’H(X R{4L+1)) » E{]‘R—> 0 has a unigque splittlng
3: ‘5{’ H:(’ﬂ(x ,R(4+1)}), since G-modules (X sR(L))  and

L s A L i

§]P. have different weights. Put K/ := S<E:Fp
}-I;‘F'+1(XL,JR(L+1)) ; clearly this is unique right-inverse to

Res;‘ « We will need an explicit formula for 4 in the explicit

presentation of [2] (5.7.1) for H;’+1(X{’,]R(L+l)) .
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Let Ci € Q 1=0,...,4, be the numbers defined by
induction: ¢, = L+l)_l, ic, (L—1+1)C. for l > 0. Define
the C7-class R(4)-valued L form 39 on Y xat by formula

i .. Aé;z)(i’&_i)

Q..z-.

2= —(eri)* E ercoy(r 4
N Lemo aYilE G A

()

Here Yy is imaginary part of Zyer dz:.L means either dzi or
its complex conjugate, the form under the brackets is the sum of

all possible products of forms dzi with dzk missed.
1 2. —
For example a@x = (47 :L)[-yO(Ezml—dleylidzo—dzO)]. The

direct computation shows that d}§ = (%ﬁn JQ{’)L

e ?

For o ¢ 3%, consider the unique (%-class 4-form on X

R
such that its inverse image to (H+x&{') X (GxV } ceincides

with ﬁ-w; denote this form also by I’;’-w - Define the form

L 1,

B (o) € £(GR(L)) by the formula Ef(e) := pi(¢f-0). Since
the series converges absolutely, the dEflnl‘thn 1s correct, and
the above implies that ‘i%i (0) = {E (w) S0 Eg(rp) defines

an element (of the same notaticn) in HHH(X JR(L+1))  (see [2]
5.7.1). Since the arrow defined by % :; - HNH'(X R(L+1))
obviously commutes with G-action, it coincides with E’u from

the beginning of the no.

2.3. A product of Eisenstein series. Denote by 54'(@)
the section of m'r’m on M which is the (4,0) component of

the form Eé’(m) along the fibers of w; one has
2y
E(@) = pulo 2 @) -
Let o be any JL+1-form on X{' with log-singularities
at . Consider (1,0)-form a-Z('(rn) on M {see 2.1.0).
Since Tri(dzlz\ ?:Té“l) = Tr"}'y, the projection formula shows that

a& (o) = p, (22l A (Hl)'l‘ywlw'a(q)%q)-

Now consider a form g (E“ cpl) U g(wa € HE(M,IR(L+2))
B(M, (£+1)) . According to {2] (5.7.1) one has
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L () U B (0p)) = (5% (0) B ()= (-1) B  (0,) 24 (01377

this is a c¢losed l-form on M.
Lemma 2.3.1. This form 1s the restriction to M of a
certain closed current on M.

Proof: Assume that we live on a certain K\M. Let x be
a parabolic point, Cis Cp he the values of Py @y Lat x;¢
Then, for a certain parameter ¢ at x, one has E (¢1)'5,(¢2)
= (e %§~+£l)(c2(log|qi)L+l+f2), where &£, is a l-form holo-
morrhic at x, and f2 is a certain continuous funection s.t.

L 4+1 d
fg(x) = 0. So E (ml)-3¢(w2) = clce(loglql) -7%~+u12, whare
u is an Ll—class form s.t. du is alsc of class Ll. This

12 L iy
shows that E (¢l}'é (mg) is restriction to KM of the, same

noted, current on M defined as 2clc2(L+2}_l(d(log|q!}L+l){l’o)

Y+l are tliclass currents on M.

+u, 5, where ulg,(log]q]) ~
A — 1.4 L L+ . . 1

ow (E (¢1)'&L{¢2)r(~l) E{g,0E (wy)) 1 is either (uyg=tg )

if 1 is even, or 2‘(L+2)'l-clc2d(log5q§)L+2+(u12+u21)

if 4 4s odd. Clearly these are closed currents. ]

¥ow consider E;(wi) as 4-forms on x*. We have the

function [ml,wel 1= vi(Eﬁ(wl)ﬁ‘E;(mg)) on M. One has
L —L L - EA
(2-3-2) d[¢1:¢g] = [E (wl)'é; (W2)+(_l) E (wE)Yg (wl)]
: R 141
Moreover, clearly [¢1,m2] has asymptotic cl‘ce (logigl)

at a parabolic point; so it defines Ll~class current on M
and 2.3.2 holds as equallty between currents on M. This fact
implies the following lemma, that will be important for us in §4.

Lemma 2.3.3. For any holomorphic 1-form o on ¥ one
o rt (2 (o) +
has  (w,my (B (v) U E)s 9,)) = (-1)* l(m,EL(wl)'Zt(wg))-
Proofi If w, w are {1,0)-forms, then EIA W,
-(—I)Lwta.me for any 4. So by 2.3.1 we have
L4+l L
o ATy Eu ""1) U F,, (wy)) = w Al ml) Z (@y)+(-1)

o —wa (B (o)) B (w2)+( St (o) B (0 )F
(_1)L+1

T¥1
(0,) & (wl)

= —2ulA(E ml)-a wz))‘+w.\d[ml,m2] =t uJAEL(wl)'gf(wg)

+d(w [9y,9,]). This proves the lemma. ]
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{?.4. A formuls for regulateor. Note that since
dimX =4+1 and M is not compact, the Leray spectral sequence

shows that cne has a commutative diagram of isomorphisms

S R{PLHL) ) D }[5”2(}{"‘, R(2t+2))

HL(M, R(LH)) ® N\ ad

2L+l( L
B

e HE (M, R(t42)) & VB

Lemma 2.4%.1. For Y10, € H£+1(XL,}R(L+1)) one has

. A L1
ty u wg = EHRESK¢1 J EKRES“$2.

Proof: Since ¢ and EﬁRest have tThe same residues it
suffices to show that ¢l U wz depends only on residues at $ »
or, eqguivalently, that Resuwl = O implies that wl U $2 =
L.ad L

IR IR
and éﬂg= £(H§+1 {x ,E(L+1)), the kernei of residue map on this
cchomology group coincides with a(H {(x”,m{¢))) . Since one has
alx) Uy = alx U Fly)) f(cr. [2] no 1) the needed fact would
follow from the nullity of U-product pairing EL(XL,EH ® éé%

Since the map Res is injective {(cf. the end of 2.1.3)

- §2L+1(X& R){t+1) . fThe Leray spectral sequence of vL reduces
to two-step flltration on g'(XL}, compatible with U-product:
ﬂ'(l) o H° (X ), g‘(o) =} {XL}/H (1 . Since any {+l-form

being restricted to the fibers is zero, one has @L [ HL+1(1)

and so the U-product factors throuzh H (©) @ é%{

-> QEJ’H‘(X ,RY(4+1) . Now the Hodge structure on HL(XL,ER)(O)

is Tate's structure of weight 4, the Hodge structure on @ﬁﬁ
is the one of weight O, and the Hodge structure on
1

1 1T-n
A xh, B) (441) =5 w'(M, R)(1) has weights O, -1. Since

L # O, the map HL(O) & 3% > E?L+l is zero. 1

Now let us return to 1.2.

Theorem 2.4.2. a) One has 3%(M,Q(L+2))parab

c W (W, a(t+2)), (for &> o).

b) 'The subspace Ik(H%(M,Q(L+2})parab) = Hé(ﬁ,m(&+l))
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is generated by elements Wﬁ(E:(al) Y Qﬁ{we)) = (EL(wl)'Z%(wg}

-(—l)&EL{mz)'Zf(wl))L+l, where the ¢; run through

ResLH}+1{XL,Q(L+1))-

Proof: Clearly the functoriality of Ty together with
2.4.1 imply that rt({a,8)) = v5(r, (a) Uz (8))
= wﬁ(EﬁRe%ﬁa U E;Regéﬁ). To prove a) consider the commutative

diagram

0 > H3(H, a(242)) » E3(M,(442)) » Hy(M™, 0(¢41))

! l l

0 > HL(M, R(4+1)) » HS(M, R{£+1)) > HJ (", R(1))

5l

whose ryows are lecalization sequences and columns are
regulator maps. Since the right vertical arrow is injective by
Forel's theorem, a) follows from the fact that \
vi(Eﬁ(ml} v Eg(we)) € H%(ﬂ,mlt+l)) (see 2.3.4), and Lemma 1.2.

O

This theorem proves Theorem 1.2 in case 4 > O.

3. EISENSTEIN SYMBOLS.

In this section we will show that residue maps
Regﬁ:ﬂzfl(XL,Q(L+l)) > 3" are surjective for 4 > 0 (the case
4 =0 is just Manin-Drinfeld theorem of §5). To do this we
will construct the Eisenstein map EgaEL w-Hi;l(XL,Q(L+1))

. X L Lo L
right inverse to Res {and such that rKE*-— EH}'

2.1. Construction of Eisenstein symbols. For an abelian
scheme A/S and L € 22 let [L] ¢ End A/S be the multipli-
cation by L endomorphism, LA := Ker{L] be the subscheme of

order L[ points, and LU(A) t= AVGA L

Let U e« X dencte the complement of all finite order

points. More precisely, for cempact ocpen W o V put

WU = E LU(W\x): then U f= 1im U < X. Clearly the action of

GV on X leaves U invariant, so we have the induced G x V-
action on U. The scheme ¥ is a projective iimit of schemes
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LU{KW\XL} of finite type over € under the family of affine
morphisms (so one has Hy(¥,®(*)) = lim Kk(LU(K-W\XL),Q{*)).

Consider the "abelian" scheme XL+1 1= X x .ﬁ.><x (a pro-

jective limit of abelian schemes under isogenies); let

pi:XL+l - X, 1 =0,...,4 be the i-th projection. Define the

"abelian" subscheme X' « X' 1o be the kernel of

P o= 012& ].:Jj_:}('(’_!'l > X, let pi 1= pil p+ (clearly xt' s
it X
isomorphic to x* via the isomorphism (pi,...,pi).) Put

1

UL+1 1= Ux .M.x u, UL HES XL' n UL . 0On the schemes XL+1, UL+1
the following groups act: G, the permutation group EL+1
(permatations of pi); and VL+1. The first two of them leave

1
XL invariant; the stabilizator of XL' in VL+1 is

1
Vo Ker{P := Epi:VLH' - V) in cbvious notations. So one
has the action of semi-direct product (G x EL+1) K VL+1 on
¥, ¢t and the one of Mx%ﬂ)uﬁ‘onxu and UY'

Before going further, let me introduce some notations. If
H is any group and A4 is an H-module, then J{H 1= HO(Hyﬁ)
denctes the maximal factor space on which H acfs trivially.
- < L'
So if & is any (G 2L+1)'K V" -module, then évL, is

naturally a Gx EL+1—module. If ¢ is any Q*—module and
a € Z, let wa be the maximal factor-module of weight a of

¥, i.e., the maximal factor space s.t. an element r ¢ Q* acts
a

on ¥, by multiplication on r =, If ¥ is in fact G-module,
then it is @*-module by &* < AT" = Center G, ana ¥, is
naturally & G-module.If A is a I, ,-module, let asgn be

the component of A on which EL+1 acts by character sgn
(this is canonically direct summand of A). We will combine
these notations for (G x 2L+l} [ VL'—modules: e.g. such a

module & defines G-module # .
a, sgn,V

The following basic result will be proved in 3.2.

Theorem 3.1.1. a) The group vt acts on H}(XL',Q(*))
trivially.
L)
b) G-medules E&(XL SR(*))
. e gt
H}((X JQ{*)) - Hﬂ(x ’Q(*))L,sgn .
t 1
¢) Consider the restriction map Qk(XL SO(*)) = H&(UL S 0(*).

sgn have weight 4, i.e.,
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induced G-map Hy(xt.e(*)). - Hu (vt ,a0x))
The induc P Hy ’ sgn A ’ L, sgn &
E 2
is an isomoprhism. []

Now consider the G K V-module T := H4(U, l}} = g (e
The space T8t s naturally a (GxT, 1) x VT moduie:
the group I,,, acts by a(fO® ce ®T, )

= sgn{c)f _ @...9f _ Clearly the map
o~ (0) o ()
— 1
< ):TT®L+1 - gﬁfl(UL ,0{4+1)) given by the formula
————— | * * . A
{fgreawafyy 2= {pg (£o)seeeop, (01 15 a (GxEMl) K VY-
morphism. It defines a G-morphism < >: Ty ®LAL
{4 sgn V

1AL AT 3:1.1 1,0
> B Ut ule+1)) = Hy m (X7 ,Q(4+1))

il ’ 1, sen, V"' A sen

L+1(X ,8(4+1)) which we call the Eisenstein symbol map.
Our flrst aim is to compute explicitly the source of { .

Again some simple technical notations and remarks. For a
commutative p-adic type group W denote by ¥(W), the space
of §-valued Schwartz-Bruhat functions on W with obvious
W-module structure, and let @& (W) — ¢(W) be the submodule of
functions of invariant integral zero. More precisely, one has
an integration map j:w(w) > Vi where v 1is the space dual
to the (i-dimensional) space of Q-valued invariant measures on
W, and &(W) := Ker [ . We have the following easy

Lemma 3.1.2. a) The arrow [ identifies (W), with
Cne has @(w)w =

W
B) For 4> 0, let P:w** 5 W be the sum of projections.

Put W' := Ker P; one has va, = va+l ® vil = vﬁL . The

integration along the fibers map P, :v(w)3*+l = w(wL+1)

> (W) ® v induces isomorphisms )m’ﬂ 3 ew) = V2,

IRV S -

We need the case W = V. The group G acts on v = vy
by the character |det| {so v has weight 2}, and 3.1.2
implies

Corollary 3.1.3. There is a natural G-iscmorphism

~ 1L
(v)erl s (V)M S a(v) e VL ]
sgn, Vv

HIGHER REGULATORS OF MODULAR CURVES 15

Since the divisors of degree zero supported on peints of
finite order of ellipiic curves have finite order in Pie, the
divisor map defines the short exact quuence 0 - fT =7 _Q&Ew>

${V) » 0 of G g V-modules where Jb = 5‘ (M) ® ¢. This
defines a filtration of length 4+2 on o
subspace (the 0-th graded factor) is :I®L+l

whose smallest
and smallest factor-

space {the 442-ons) is é(V)®L+l .

Lemma 3.1.4. The sequence 0O +ZT§{+1 :}®L+1 V)®&+l
-+ 0 is exact.

Proof: S&ince the functor ¢r» 2 X is exact, it suffices

. v
te show that if L5 is the i-th graded factor of the above
filtraticn and i # 0, t+2, then L* 4+ = 0. But Lt is the
V

direct sum of modules of type & (V)®T ®'3§L+1"i

o r a1 ) .
(8 (v)™L ®CIO*“+1 5 o= e ()% ®3’ng 1. IF i A 441 this
v v

. and

equals & (v)ﬁ’i ® 33“1“1

; iIf 1 A0 this is zero by 3.1.2a). [}
Lemma 3.1.5. The sgn-component of {ﬁu§:3ML+l

j‘{ﬂ“( a s B(4+1Y) is zero on 3®L+1 .

Proof: For f; « CT one clearly has <f;:TTTTfL>

El t
w o (£, .e,L, } e }zjf*l( M, 0{1+1)) e Hf,;rl(u*’“ ,0(441)). But the

elements of 7 JY(M) are obviously invariant under E,+1-action.

O

Clearly 3.1.4 and 3.1.5 imply

Corollary 3.1.6. The HEisenstein symbol < > rfactors

{uniquely} through fL;én,v - é(V)fL;én v 1
3 - 3 r

And now 3.1.3 togethor w1th 3.1.6 define the Eisenstein map
Ts(v) 8 VPN = e (y) - gt ot e
J?' -4 4 ,q 4 .

Finally recall the construction of horispherical isomor-
phism 7:2(v)_, ® v** 3 5% First for any ¢-valued Schwartz-
Bruhat function g on Af let L(g,s) denote the corresponding
L-function {i.e., L{g,s) is the analytic continuation of the
o teq -3
ceries nci**

One knows that if g is g-valued then L{g,-2-1) ¢ ¢, and

gln)n that converges absolutely for Re s > 1).
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L(e,=t-1):9(a ) 4ol @ s an isomorphism {weight —£4-1) is
taken with respect to the @ T-action on (& ) s.t. (rg)(x)
= glr” x)). For a function f e &(V) consider T € §(Af)
defined by the formulas fl(x) = If(x,y)dy (dy is standard
invariant measure on Af), for g ¢ G put
T(rHe) = L{(g” f)l,—L -1). Clearly ~(f) is §-valued
function on G s.t. (f)(g(a g)) = "'ra(f)(g)'a'”t"'l-|d|_l for
any d e A*f and a € Q . Define the desired ﬁap
e (v)_, 8 v® > 5* by the formla r(r) = T(£)|aet| ™
It is easy to see that t is a G~iscomorphism.

Put EV:=TF O gt s Hﬁfl ¢ sB{t+1)); here we identified
x*' with x' via (pl,...,pé). We have the following theorem
to be proved in 3.3.

Lt
Theorem 3.1.7. One has ResgEy = IdEL . ]

Corollary 3.1.8. Re{% is surjective. !

. . t L
Clearly 3.1.7 implies that 1By, = B (see 2.2).

3.2. Proof of Theorem 3.1l.1. First recall the standard
motivie decompositions of elliptic curves. Let p:E = S be an

elliptic curve over some scheme 8, and e:3 » E be zero section.

Pat R := @%(E é E,8(1)) = Pic(E X E) ® ©. Then multiplication

of correspondences defines ring structure on R: if o, € R

B = ¥ * ({ P, . > E
then a*f := PlB*(Ple{a)'PEB £})  where j_J..E é E g E-+E g

is projection on (i,j)-pair. The unit 1 for * is the class
of diasgonal. The transposition E x E + E x E defines an

jnvolution a + a® of R: one has (a*ﬁ)t = ﬁt*ut. one has

natural R-module structure on any HY (E,Q(i)) if a € R,

B € HI(E,Q(1)), then o*p := p ,({a,0}8)), where p ExE + 3

is i-th projection. If f is any endomorphisms of the scheme

E over 5, then its graph Ff is an element of R and one has
- . J -

Teoor, = Tg*Tg, 5 1f @ Ey(X,Q(1)), then T.*a = f,(al,

troxa = £ (a)

lemma 3.2.1. If a ¢ E(S) is a point of finite order on
E, then the graph of translation by a 1is equivalent to 1 in
R. 8o this translation acts trivially on any ﬁ%(E,Q(i)). ]
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. Now consider the elements PO = Exe, P2 = exE =T
o enp
= PO and P1 HE 1--P0--P2 of R. Then for any
J‘ * %
a & Hg{E,@{1)) one has Py*a = P e (a), P *a = e,P,(a),

*#
Pi*a = a-P e g-e, P a. One has the following well known

Lemma 3.2.2. The elements Pi are mutually crthogonal

projectors that define spectral decomposition of elements
2
r[L} € R. HNamely one has P =Py, Pin =0 for i #j and
- L or2-i
TrL*Ps Pi*Trr) = L7°P; forany Le Z. 1
i)
1= PiHL(E, 0(*)).

For any i = 0,1,2 put Hy(E,@(*))
(1 and [L] acts on

By the lemma Hﬂ(E Q{*)) = @Hﬂ(E,u}_ (*})
ﬁ#( )(l) by multiplication by i,

(
)

Remark 3.2.3. Consider the tower & —Lﬂlw> E, Ne¢ Z, of

isogenies; put E := lim E. Then, since any {N]*

]
H* EQ, )}( )*H'(E * (i) + s 3
¥ LB 0{*)) is an isomorphism, one has
H#(E e(*)) = Hy (B, 0(*)) .ard one has natural decomposition
EM(E g(x)) = HQ(E,Q(*})(I) spectral for operators [L]*, L e Q.
In 3.2.5-3.2.7 we will refer to such a scheme (e.g. to the

scheme X over M) as an elliptic curve without any commentaries.
Consider the localization seauence - ,¥ (S Q{i-1))

> 1) (E, ? 1)) > #(1U,0(1))  where U := Ere(S)f—-J—) E. Since
Pyey = 1d the arrow e, is injective and J is surjective.
More precisely, we have isomorphisms *.}gf ( S, p{i-1))

3 e @), "l 6,003 0 @ wlhie,00)) ) o wd v a00).

Now suppose that N € Z is invertible 1in 0 and we are
given a level N structure on E. Then [N]:E -+ E is a
UZ/NZH ~-Galois covering; consider the induced covering
[N} U(E} > - Note that for any G-Galois covering #£:X - Y
one has " ﬂl(Y §(*)) ¥ qq(x Q(*))G Hiy X,Q{*))G since
K-theory modulo tor51on has etale descent. By 3.2.1 (z/wzﬁg

acts on ﬁﬂ(E,Q trivially and the commutative diagram
'*
. In
Hy(2, () > Hu(U,e(*))
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implies:
Lemma 3.2.4. The kernel of the restriction map
* . _*
IPE ) > B GUe(0) 15 Byme()) (), ana 5
induces the isomorphism Hyl(B,q( )}(0) @ g%(E,Q(*))(l)
F Bp(U.a(*)) .
AN (mmz)?

3.2.5. Let us begin the procf of 3.1.1. First suppose
that 4 = 1. Then Xl’ is an elliptic curve over M (crf.
3.2.3), and 50 3.2.1 implies 3.1.1 a); 3.2.2 implies 3.2.1 b)
since the action of transposition g e 5 coincides with [-1];
Finally 3.2.4 implies 3.1.1 c¢).

3.2.6. To treat the case 4 > 1 note that the scheme x*
is naturally an elliptic curve over XLwl via any of the pro-
jections qj 1= (po""’ﬁj""’p&~l):xL > xt-1 The finite
order point translations for elliptic curve qj correspond to
the asction of the elements of V‘L whose components are all zero
but j-~th one. By 3.2.1 these elements act trivially on
EA(K{,Q(*}), and su does the whole group vt is easy to see
that the projectors Pg on %@(XL,Q(*)), that correspond to

different qj by 3.2.2, mutually commute, and so we have

( PIRIRP § )
decomposition Hg(XL,Q(*)) = @ﬂ%(xL,Q(*)) e -1 sum over

all (io""’iL—l) s.t. 0 g_ij { 2. For any

L= (Lp--sl, ) € 0 derine [2) ¢ Bnd XM by the formula
Y
(L] (Xgs - esX, _4) = ([Tg)Xgs - v s [Ty 1%, 1), one has

[L] o = [T L)) since [Z) = N[L;]; where [Ly]; is the

>
[L ]—ﬁndomorphlsm for elliptic curve qJ, the action of [L]*

(10""’1L 1

on ﬁ((X S8(*)) coincides with multiplication by
i

HLJJ and ﬁk(XL,Q(*))(lO,- e l} is determined unigquely by
this property.

3.2.7. Now consider the isomorphism I := (Pr,..., ) e

vy L Iy 0 T1-1

X - X7 . The actlon cf vV on X corresponds to the
action of VL on X » 80 the above proves 3.1. 1 a). To prove
3.1.1 b} it sufflcﬂs to show that T := I, (ﬁg(x w*)) )
c K = HalX ,Q( ))( -»1) ThlS follows from two fggts

a) Projection of T in Hg(x LL(*)) (2, cest) is zero

and b) The T, ;2 -Subspacé of Q&(XL',Q(*)), generated by
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* - -
I ﬂk(XL,Q(*))(O’ seeert) has zero sgn-component. In fact, by

I, -invariance, a} implies that T K = @g*( } J , Sum over
all (ij) s.t. ij =0,1. In the same way, &) implies that
K" = 0, where K := @ﬁk( ) K sum over all (i, & s.t.
1; = 0,1 and some iy is O. Note that K" - K ek and
for any L € § the operator {L] acts on K by multiplica-~
tion by L7, and has eigenvalues < oo &M Since T ig
[Ll-invariant, this implies that T c K' . qg.e.d.

Now to prove a) and b) consider the map

4 £4-1
s = qy°T mr(pi,...,pi_g):x - X

under the transposition in T,y that permutes pé and pi .

T

This implies that 8,1} (x" s4(*)) o, = O and that sgn-component

This map is invariant

of T, -Space, generated by S*@k(xéml,n(*)) is zero. Since
tEe projiction from a) is €n45¢s and the subspace in b) is
5 H&(XL_ »R(*)}, these facts are proven.

3.2.8. It remains to prove 3.1.1 e¢). It suffices to show

that ﬁk(ULl,Q(*}) L decomposes under the action of

sgn, Vv
operators [L]* Leq into the sum of eigenspaces with sigen-

values L‘L LH':L ...,LQL 1, and the L —elgenspace is Just
ﬁk(xL',Q( ))5 n {in fact one may show that L -eigenspace is
isomorphic to Hy (X xat-1 LSE( })sgn)‘ We will do this using the
induction by. %; for L =1 +this was shown in 3.2.5. Sc¢ suppose

we know the fact for 1" < ¢.
First note that :x* 3 x*  identifies Ut with

vt n P (U), where PY:x* = X iz the sun of projections. So
- 'a _11
the connected component Ptl(e} of UL\U’ is L 1 ; VL acts
.{’u
on the connected componenta transitively with stabilizator V

The scheme U\UY' is projective limit of schemes W\(UL\UL )}

of finite type over M (W < V& is compact open). One has a
t

canonical isomorphism ﬁ%(U{\UL RALY Lol

Lol M
= ﬁk(u SR(Y) 110 ® WiV} (ef. 3.1.2) and so cancnical

270
G-isemorphism Hy(Uhu',0(x)) , = up(u 1, o)) o1 BV
v Vv
!‘ ]

Now consider the localization sequence of the pair (U7,U0" ).
On= has a cerresponding exact seguence
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D A o me ! x
-ee > He (U7, 6 ))v** He (U™, o ))v*"

> HATI{UL!UL',Q(*‘l))VL - gkfl(UL-ll

)Q(*"l}) ' ® v .
VL—l

This is a sequence of EL—modules, so we get an exact segquence

1
ce B o)) 0t e,
s5gn,V sgn,Vv
& .- 4-10
> H_/(l(U 1 ;Q(*‘l)) L1t & v
sgn, VvV
where Egn is the sgn—characeter of EL . Using 3.2.4% the sanme

way as in 3.2.6 one sees that 3 Hﬂ(x g(*)) » H}(U Q( )]

is epimorphic, so any element of Ker & came from x

Moreaver j* induces an 1somorphlsm @Hﬂ(x &®( })

- ﬂ#(UL g{*}), sum over all (i s.t. ij = 0,1. In particular,

[L] » L € §, acts on HX(U Q* i) with eigenvalues 1,L,...,LL

and J is injective on I ﬁA(X ,Q( ))sgn by 3.2.7. But the

induction hypothesis says that [L]* acts on
—l(UL'l',Q(*ml))wmu AL ® v with eigenvalues

- sgn, V
L+l - QL 1 . So %he long exact sequence splits into short
ones, @”(U SQ(*)Y)_ iy > E4(U ,Q{ N 1+ is injective,
sgn, V sgn,V
and so (X ,Q( ))s 7 gﬁ (*)) Py is injective.
& sgn,Vv

since Hi(x* ,Q(*))Sgn = (vt e (%)) LnHX(U‘ 8 (* })sgn )
(as sgn is exact functor) the eigenvaluas of [L]* on ’
By (0" ,e(*)) e (" La(),, are I¥*, ... 12¢1

sgn
sgn, v
together with 3.1.1 b) proves the induction hypothesis for «.

This

3.3. Proof of Theorem 3.1.7. Let us reformulate a little
the statement of the theorem using the Fourier transform instead
of *. For a Schwartz-Bruhat function o on Af put
&(x) := [a(y)¥(xy)ay, where w:8T 5 ¢* is the standard additive
character: §(y} = exp(2riy) for vy ¢ @; for a function ® on
V=82 put 8(x) := [o(y)TKx,D>)dy where 0 t= X Vpeyyx,
and dy 1s the standard measure. Recall that the funetional

equation relates L{a,s) with i(&,l-s); we need the case
s = ~4-1: for any a ¢ W{Af) s.t. al-x) = (—1}La(x) one has
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Lla,--1) = 2(-2r1) "2 (241) 1008, 242); if al-x) = (-1)*La(x)
then L(a,-4-1) = 0. Now consider G-map Ft. @(V) 1) @& vt > s
s.t. for {z,2) e B xG and o ¢ (V) one has

(o) (z,8) .
o("g (nl’ne)))gﬂu\xﬂ

1.2
= 2{-2ri) (2+1)1 ( T
(nl,ng)eQE\{O} (nlz+n2)é+2 9

(cf. 2.1.3).

Clearly one has EL(m) = EL(Tw), sc to prove the thecrem it
suffices to show that rﬁ%ﬁ(m) = ﬁL(m) for any o ¢ §${V) ® N3
To do this we will compute, after some preliminaries in no.

3.3.1-3.3.2, the left hand side explicitly.

3.3.%. For notations cf. the beginning of 2. Let Z be
a smooth variety and 1:9 = UD. < 2 be a divisor. If a holo-
morphic form w on Z\L has log-singularities along £ then
w is locally of class Ll on Z. So w defines Ll—class
current Sw or simply w on 2. Note that this inclusion
né(log D) “>C, ® £[-2 dim Z] does not commite with differentials.
For example, if f ¢ @£ (Z1D), then d(°d lcg £) = & 41y ¢ where
for any diviser B' we put QB' := fundamental class of 0
considered as current on Z.

Now let w:Z = T be a smooth proper map of relative
dimension n s.t. ¥ is transversal to the fibers of w. If
ve£(z), ve né(log D)} then the current w,{wav) is of
class C” and we may compute its value at any point t e T
integrating (wav)” along W—l(t).

3.3.2. Let us return to the modular curve. We will write

X dinstead of X ® € {where g{¢] =¢, L exp(g%i)) and

so on, for short.q{élearly X/M considered as C"-class group
variety over M, has a canonical integrable connection. In
particular for any holomorphic l-form v ¢ ﬂl(X/M) = w{M) one
has canonical v e &2'10C (X) s.t. ¥ = v. cCne has

(pl+p2)*(3) = p;(U)-+p;(V) (here p; X ; X+ X are projections),

and Y is uniguely determined by this property.
From now on fix sueh v non-zero at any point (we may work
locally on M; e.g. we may pass to H'xG). Put w t= 1w, (va dV}.
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mhis is holomorphic 1-form on M (the Kodaira-Spencer transform
of V), non-zero at any point. So for any (1,0)-form ¢ on
X one has w© = av+pfw for some functions a,B ¢ £D(x). Let
=T, (vaV) £ £O(M) be the volume of the fibers function;
one has (v adv)" = lr'_lw.u-v AN

Consider the local system T := Rlv*(Q(l)) on M. Our
form v defines the embedding v:Tes th, vy ou(y) = {vay)
and X = € xM/T. Now note that T coincides with the local
system of characters of the fibers of 1w, since for any elliptic
curve E over ¢, viewed as topclogical group, one has
(characters of E) := Hom(E,Sl} = Hl(E,Z(l)) . For vy T
denote by XY the corresponding character; the differential of
Xy along the fibers is v_l(v(Y)V—V(y)-v)-xy

For any current o ¢ C(X) define the T*-valued current

d on M - Fouriler transform of « - by the formula
aly) = Tr*(aiy). Also if ¢ 1is & function on X put

-~ -] = -
4 = mleuav . Clearly one has @(Y) = 27NN (y)8(y); if
o is continuous, then e (w) = %= &{v).

yeL
This Fourier transform is related with the one on V as
follows. The fuﬁctions on V are divisors on X supported on
¥\U; so one h s the map 6:y{V) » C_E(X,IR(—B.)} {ef. 3.3.1).
We have '5& = EIT .
Now consider some f ¢ 0*{U); put 4 log £ = oV +Bw.

Lemma 3.3.2. One has 4{0) = 0; if v # 0, then
T ~ oD
Bv) = -v(v) @V i), Blv) = viv) Py T (y)
Proof: Since the current d log f+d log £ is the differ-
ential of Lr-class current 2 logif|, one has G{0)
= ‘b:lrr*(d log TAV) = eﬁlw*(d log|f| A V) = 21;*11r (d{log| V)
= 0. Now we have éi = d(%d log i‘)# = (daA'\'J')# =.20 v Ay,
lV T a'\-}'
—— -~
and so  div f{y) = '1.-%( ) = -v(y)ad(y). To prove the formula
for £, note that 0 = (V¥~d(d log f))# = (a'ﬁ:\d'\“a'-%'i?/\dﬁnm)#
-
= (a 'b-l+i§)w»-vav So -§ = —az7’ and E%(Y) = V‘lv(y)ﬁ‘(y)
v 3w eV
= w7 18y) = viv) B4y B (y) ]

3.3.3. Now we may begin to prove Theorem 3.1.7. Put
v =Py (via -, ’\PL*(V) € Q{'(X!' /M} and consider the arrow
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L1 L+:L L
q:F" THpp (U
1]
Y - B0, qtw) = 7E (AT (er. 3.1.1). Ir
141 L+l )

} = [4+1-forms with log-singularities at = on

w e F then clearly one has
L[L l!
- 1
w= (-1} 2 4Lq(m)/\\.-‘!‘ . The arrow g obviously factors

L+l ‘L+l( Lt )

through F DR , » and so the composition of q

£,sgn,V
L+1 L A4+l 4L +1 -{,
with d log = rDR Hy {(v" ,q¢(4+1)) = F Hig (¥ Y factors
through Hj’;l( Le(4+1)) 4+ + The commtative diagram
L,sgn,V
L+1 L+
™ een) Lo Pt ot
L,sgn,V
3.1 {1,0)
3.1 “ Z {M)
) N /
1
it w () oo 3 pth ot .
L,sgn,V L,s8n,V
implies that for any & « H;+1(U{",Q(L+l)) one has
L{4-1)}
2

1"_{’q(d log 5)/\\)U . For example, for any
"

<fy e 8 {U} one has & log((fo,...,fg)

»L -L

(-1) ¢ v (@ 1o F T A T YAVt

wd =4 . 1 R
= (-1 2 3 J’Tr*{' (A'd log f‘i/\?r’ )/wl' , whera A'd log £y

= p(l)*d log fOA Ap“t*d ilog f{'. To prove 3.1.7 it remains to
compute this form in terms of div fi.

L+l X;

3.3.4. Consider the sum of projections map P:X
x*" = Ker P. Put A d log f;

* x S S
1= pod log fga... /\p{,d log £, € 0 (u Y,

- *
L+l - o3 )A”.APL £(L+}_ 10)
= Adlog f,Ap \J)A'b’t' e z““*g’“l)(x ). By 3.3.1, A d log f;
and E are currents on x* and P (E) € 5(2’1)()(). The
formula P,{£) = nav AV defines a certain form
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n e Ker(ﬂ(l’o)(x} > 0(1’0)(X/M)). By 3.2.1 we have
Ll(h d log £ A'GL'} = e (n) {where e:M -+ X is the zero

section), and 50, by 3.3.3, 4 log <f ---,fi>
L!L—l!

= (1) 2wt (At

-+ X as a
and

. 1+1
3.3.5. Let us compute e*(n). Consider P:% 5
+1 +
map of topological tori. One has Char(X ) =T

PiT =+ TL+1 is the diagonal map. Define the Fourier transform

for currents and functions on XL+1 the same way as in 3.3.2,

L{t+1)
. 2 el L+l L] + _1v AT
using (-1) T VA instead of 1~ .
Since n € 5(1’0)(X), one has e*(n) = ET fiy)
ve

P
=yt oz ﬁ:?g)(v) vl oz E#(P*(Y)). Let o, B; correspond
yel© . yel
to fi as in Lemma 3.3.2; then
£ = («1)L ) Pf(ﬁﬁ) HP*(Q.)w‘NVL+1A L We have
SR e
L4421} .
et = (-1 2 g (v} & (v:)-w, and so,
(Yo""’YL) {-1) ogig¢ﬁl 1/ s %l
by 3.3.28,
L(4-1
* ] .
e = (-1 s D N (v) a(y)w
(v : vel ot i J
L§{+l! s
= (-1) © - pt41) Er(ﬁ(dlv £ (v)v{y) T ) e,
ve

/"--..._._//H\_
Note that m({div £ }(y) = P,(® div fi)(v); here

® daiv £; € #(v"™). we may combine this with 3.3.4 and the
definiticon of ﬁﬁ to see that for any o ¢ @(V? one has
d 1og Egle) = (-1)T(2+1){ £ Flv)-v(v)FB)aavt
: yel
This series coincides with Eb(w) from the beginning of
3.3. To see this, choose v = dzy on HxG. Then
w = (-2vi)"1dzo, and you get the desired formula.
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4. CODA: THE VALUES OF L~FUNCTIONS.

In this section, we will prove Theorem 1.3 for <4 > 1.

4.1. Preliminaries on e-factors, and periods. Suppose

we are given two elements 81,8, € i % ©; say that ay is

equivalent to ae,alaaae 1t a, € ﬁ*a If U is any non-zero

Uee € ® UL
q

Q-vector space, then ay ~a, (omp a, U E a,
Denote by % the group of ﬁ*—valued Dirichlet characters;
for L e Z denote by ‘EL < ¥ the set of characters of the
same parity as £. For V e & (ef. 1.1.3) let B(V):ﬁ*->if
be its central character; one has 8(V) ¢ ¥°. For X € % and
Vv ¢ & denote by x -V the twisted representation x(det) ® V;
one has B8{y-V) = -G(V) Denote by e(V,8),e(%,8) ¢ (¢ @ §)”
the e-factors in functlonal equations.

Lemma 4.1.2 ([3] (5.5)). Equivalence classes of
s{x,n},e(V,n},n ¢ Z, do not depend on n; denote them by
e(x), (V). oOne has e(V)~e(8(V)), e{xy %) ~elxy ) elxy)-

Proof: For a ¢ (¢ ® §)” define the function
@, iAut € > (€ ® E)* by formula wa(g) = g(a)a'l- Clearly cne

has  a) ~a, (= ®, = ®, . 50 the lemma is implied by the fact
1

that e,y n)(8) = x(o(e))s v (y oy = B(V) (@) ror x e 2,
Ve f Here o:fut ¢ » z* is the character of the action on
the roots of unity. Decompose 's into the product of local
ones: ¢ (y) in{ Te (xp iy ),e(V)naHe (v, w ). The above
identities follow from the fact that e (x ,¢ {(bx})

= ¥ (ble o (X pr¥p(x)), e pr Vp(ox)) = Bp(V)(b)ep(Vp,wp(X)) for

b e ﬁ;, since the values of e _~functions at integers are
defined in a purely algebraical way and so gep(?,¢(x))

= ? .
ey »¥(o,(g)x)) O
Since L{x,1-t) ¢ § for < >0 and ¥ ¢ xL; the function-

al equations imply

Lemma 4.1.2. a) For 4> 0 and x ¢ i& one has
‘ £
L(x,442) ~ e(x)(2r1)**2

b} For V<@ and 4> O one has
L(V,t42) ~ e(V)r 20 (v, 1) (er. 1.1.3). ]
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For VeXR and 4 ¢ Z say that a e (¢ ® Q)* is an
4-twisted period of V ir ot MV) = aHB(MV,Q( -4)) under the
period isomorphism ol (MV) @R~ HE (MV,Q( -L}). The equivalence
class E(V) of such a's is well-defined.

Lemma 4.1.3. a) One has L(V,l)-Hé(MV,Q) = at(y,).

b) For any V ¢ & one may find even x' and odd x~
such that both L{V-x%,1) are invertible; so in this case

ES
L(vx5, 1) ~ £, (vX7).

e) Let x be the Dirichlet charecter of the same parity
as 1 € Z. Then for any V ¢ ® one has

£350v-x) ~ (rTh e (x)e, (v).

Proof: This lemma is well known: a) follows from Manin-
Drinfeld, b) folliows from surjectivity of Birch-Manin symbol
map. To see c), decompose the zero component of M's motive
[E]O (= motive of cyclotomic field @[¢]) by the characters
of aut gl¢] = 2% = AT/ W0 = e[x]. The group s(nl)
on [%x] by x_l(det) So the canonical pairing (M° = fﬂ}l
- {ﬁ]l defines the isomorphism [x] ® M, = MV® (qet) = If 1
has the same parity as vy, then HO 5([x]: ( i}) and H Rx])
are l-dimensional §-spaces and one has DR (%)) =¢f x) (#J_T)l

HR([x),@(-1)) (ef. [3] (6.5)). This, together with the
{trivial) Kunneth formula proves c). 1

acts

Corollary 4.1.4. Iet Vve®R and 4 ¢ 2. For any x ¢ g
one has L{x-V,1} ¢ e(x )(Tri)'L (V)-ﬁ . One may find y e zﬁ
s.t. L{x-Vv,1) is invertible. In this case
L{xV,1) ~ e{x) (r1)7*g, (v). O

4.2. The use of Poincare duallty. Let us reformulate 1.3.

Denote by < >: HB( Qwi-4)) ® HE(M,Q L+41)) - €@ the Poincare
duality pairing: <a,8 := Tr(awp) {ef. 2.10). Consider our
space Py = ® V@ P, < HL(E,R(t+1))® T . Since

Vel
dim HB(MV,Q(L+1)) one has

1 e 1
P » =4F,,H (M,f‘(—{ ) H (M *qu %"i”l))
ot ™ LR PR

= <, 0t (W) D8, (V)" H(M“ (441)) -
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By 3.1, 2.4.2 and 2.3.3, we know that ( (M) ot e
is the space generated by Petersson scalar products
(w, it (¢1)‘g (we)), where w ¢ Ql( )v and o, ¢ 3. Note that
F R Q = @«L EX where EX is an irreducible representation

s.t. L(Ex,s) = L{%,s-4-1)-L(1,s8). So 4.1.1, 4.1.2 and 4.1.4
imply that 1.3 follows from

{4.2.1) For any irreducible V = Ql(ﬁ) ® 0 and x - {L the

T~ space generated by scalar products
(w,E (e) ?L et ed, wev,e e B, e 3£,

L(Vv-x,1)-L{V,442) T
Lix-8{V},1+2] -

coincides with

This statement follows immediately from Rankin's trick. In
the next section I will recall briefly the basic points we need;
for details see e.g. [4].

4.3. Rankin's trick. First we need some facts about
g-expansions and Mellin transforms. Let W:Af - " be the
character of AT s.t. ¥(t) = exp(-2rit) for t e g, let
wp:Qp > ¢ be a local component of . A Whittaker (or simply
W-) function on G is a continuous €- or € @ f-valued
function £ on G s.t. f(g(a ?)) = y{u)f{g} for any u ¢ ﬂf;
similarly one defines W-functions on Gp = GLE(Qp). Say that
& W-function on ¢ is rational if for any o ¢ Aut € one has

aol{f{g)) = ffg(l 0 13; and the same for W-functions on &
o}

c)"l P’

Let w be a 4+1l-form on X& ® ¢ with log-singularities
at e. Its inverse image to ity g is w ggu«?ﬁ, where

w = E £ () 9% (see 2.1.3). pPut W{w) := f. . Then
(Q) Q€Q,Q>_O Q,w 1,m

W{w) is a W-functicn; if w e Q
if w 1is parabolic, then

L+1(KL), then W(w) 1is rational;

ggh EA - " 1 ¢
(4.3.1) ©lgyg R aeufoa ()dq/\ae}( o)

Let E=®E c 0" (%%, log «) ® T be an irreducible
Q-representation. Then W(E) = @w(Ep), where W(Ep) are certain
spaces of rational € ® ¢-valued W-functions on Gp; this means
that W(E) is the space of linear combinations of functions

flg) = pr(gp) where £ ¢ W(Ep) and for almost all p,fy s
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the spherical function, i.e., {unigue} GL CZ )-invariant
function s. t fp(l) =1, For e ¢ E consider the function
K(e) on af given by the formula XKfe)(a) := W(e){(l 91));

0 a
this function is compactly supported in Af and rational in
the sense that cX{e)(a} = K(e}(a-08{¢)) for o € Aut C.
Similarly cne defines rational functions K(ep) on Q; for
ep eEp. Put

Lleys8) i= [ o Kley)(a)]al 37" a%a

f

z(j‘zz; K(ep)(pna)a*a)-p-n(s%—l)

{here d*a is the standard invariant measure on Q;). This
formal series is a rational function of parameter p's and the
set  {L{ ep,s), p € Ep} coincides with §[p~ 5,251 L(E :5), where
L{E_,s) is the L-factor of Ep The Buler product
L(E,s) = HL(Ep,s) converges for Re s » i%i ; it prolongs
holomorphically to any s and satisfies the functional equation
for s &« L4g-s5.

Now let V = @Vp c nl(ﬁ) ® § be an irreducible parabolic
representation; we may apply the above to it. For w_ ¢ Vp’

c= . . §-d-2 x| .
ep € B, put [u,e ] : T« K(mp) K(ep) Ja] d*a; again this

series is a rational function of the parameter p*s, and for a
certain L-factor L(V_,E ,s) with coefficients in T, the
E—s?gce; generated by [wp,e ]s’ Wy, € Vp, e € Ep, is

&lp 7,p ]-L(Vp,EP,s). If both w_  and ep are spherical
functions, then [uw_, ]5 = L(Vp,Ep,s) L(G(V }- B(E ), -t~ 2)“1
The Euler product L(V,E,s) = HL(Vp E ,s) converges for

Re § » 443 and prolonges holomorphlcally to any s (if ¢t =0
this is valid for E # v ). Consider the C-linear funetion

[, 1V % E>C®7T defined by CENLINN = Nfuy, ], for

Re s > L+43; for arbitrary s this function is mercmorphic, it
is holomorphic for Res ) L+3 . 8ince local factors

L{G{V }- B(Ep) 25-L~2)" -1 have no zeros for Re s z_igg and take
values in §© at integers, the -above shows that

{4.3.2) for nez, n > 'L+3 the T-space generated by {w,e]

wevV, ecE, is L(V,E n)-L{a(v)-8(E), 2n-L- 2)‘ g .
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et us reformalate {#.3.2) a bit. Denots by BE,L the
gpace of € % W-valued cont%nuous functions ¢ on g s.t. .
eleg- (> ) = wlg) |a/d| for any a e R, c e A, d ¢ A

c 8, , be the subspace of §-valued
r

Fix a non-zero invariant

if s 1is integral let ﬁ ,L

r""tﬂo

0
ones; clearly BL+},L 2 Q.

measure du on G/.D(ZZ)'Z[(A ), then for o ¢ 3L+1,2L
w-!det|§-du is right B(g)-invariant, so we have non-

EA _
. 8
(s 1By 1 ®Bp 0 5,0 @V 2 C80

the

measure
degenerate G-pairing

o V' > T, (9,9

0
B, @ 80,1 -n,t

= ?

G'ﬁB(Q)-(B-E()(A ) 1 4
consider the function (m,é>s:gr¢ (g7 w, g e}s ;
3o we have the G-map )S:V % E -+ ﬁ_s+¢+gL'

L [
l-w2-|det|fdu . Now for we E, ¢
clearly

{onepg € B oot

For any ¢ € Bs—l,L one has

6.3.3)  Kmdguw) = [ o W) ool et o
Here 2 = Center GL2 and du' 1is an invariant
measure on G/Z{Q)-W{Af); note that .
w(w)-We)-oldet|t is a right z(Q)-(A')-
invariant function.

: irreducible
Since the spaces ﬁs,L for s £ L/2, /2 + 1 are ,

4
4,3.2 implies that for n e Z, n» “g— ome has

(4.3.4) (> {veE) = L{V,E,n)-L{8 (v)-8(5),2n-t-2)"1-60 .,

or

(4.3.5) +the Q-space generated by (u:e) ,0), wevV, e € E,

is L{V,E,n)-L{8{V)- B(E) on-1-2)" lg.

L+

Remark 4.3.6. The equality %.3.4 holds alse for n 5
if we assume that V £ E° ({for & = ). (Note that the left-

hand side is contained in the right-hand one, and the only non-
laet|“*/2.4 . 50, if the

Q
@ € Bn~l,£

o] s
trivial G-subspace of BL/Q,L is
equality does not hold we have a non-trivial G-pairing between

L4 0 i a unigue
v and E.) For n = =3~ the space 8, , contains q

non-trivial G-subspace 34, clearly 4.3.4 1mplles that the

stronger version of 4.3.5 - when

@ runs only through Fonolds. M
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Now we may return to Eisenstein seriegs. For ¢ ¢ 8 the
) 51 L s, 1L
section (27y) e of w
is is an element of wL (M ® £). The series <BS’L( )
b2y o
1= Py ((QWy) .0 ") converges absolutely for Re s

and ¢£S’ B, , > °ﬂ(M) commutes with Ge-action; the map
! C

is (&+1)-EL from 2.3. So for e ¢ E we have € ® §-
valued {1,0)-form e-ES’L(m) on M. Let us compute the scalar
product (w,e-Es’L{m)). We have

Do(H+x G) is B(@g y*_invariant and

L+2

£4L+1,JL

(UJ, -ES"L({Q)) - 2-L+l J' m(q)_w

e )(gw)s'm'(g)-ldet el taomy-ax

(g

(4.3.1) S+l s
= ot xG/g(Q ( )QE( )'(EVV)

wig)|det gELd2wy-dx .

To compute this first integrate along x, 1.e., along WIAY~
crbits. The Fourier orthogonal relations show that we may
replace ‘g(q) by W(e)-q in this integral; we get

(w,e-E5% () CAMEE ]I[:( wwy(?ﬂ'ﬂ d2ry
(f.r/z :p-W(w)‘w e) |det|du
(4.3.3) g
= ee27® T(s#) K, &gy, 0)

for certain ¢ ¢ Q*. So 4.3.5 implies that for n > ;q the
T-space, generated by (w,e-E&7 L L( 1), we V, e € E, @ ¢ BO“I .
coincides with L(V,E,n)-L(B(V)-B(E),Qn——L—E)_l T nh

For E = E and n = 4+2 this statement is exactly 4.2.1,
since L(V,EX,SB( = L{V,s)L(V-X,s=4-1) and S(Ex) = %. This
finishes the proof of 1.3 in case & > 0.
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5. CASE 4 = Q.

The proof of Theorem 1.3 in case L =0 follows the same
pattern as in the case 4 > ©. We will discuss here the minor
changes needed to treat this case.

5.1. The definition of spaces 3Z3C R, R), 30 ¢ #3370
and residue maps Res%:ﬂé(m,m(l)h 3%, Res:HZ(M, @(1)) = 3
goes without changes. Note that 3%? is the space of R-valued
measures on |M° ® R|, invariant under the action of sufficilent-
1y small open K < G, and 30 is the space of Q-valued ones on
IM”|. <o we have canonlcal maps j:s%{¢ R, 3° > ¢ let K]R’
50 be the kernel of j . The exact cohomology sequence shows
that the image of ResB is _gg, one also has Im Re§{
by Man:m Drinfeld theorem (note that n (M, (1Y) = (M) & @
and Regy is dlvisor map ).

The forms #° angd B?S of 2.1.3, 2.2 are 4 log q and
10gfq§ respectively. The Eisenstein series P*(wd?g) for
P € ?O doss not converge absolutely They are defined as
analytlc continuation cof series 21 -0 (see 4.3) to s =1; one
proceeds in the same manner with E or put directly
Eo(w) = dz EO( }. fhe results of 2.1.3, 2.2 and 2.3 remain

valid (with 3%‘ replaced by §O }.

As in 2.1.3, put &3 = H (M, B(1))n FrEL (M 8 R)
= Im(H&{M,R(l))+ Hik( (l))) We have canonical direct sum
decomposition {valid for any curve} HS(M,R(?))= H%(M,m(l)}
@ H%(ﬁ F{:}}. The Lemma 2.4.1 in case 4 = 0 1is noct true
as stated but the proof (trivial in this case) shows that
E {Res &1) U EC(Res w2) is the projection of ¥, U ¥, to
(E m (. Consider the Poincare duality pairing

< by H {M,C} ® H (M,dt) - I8 restricted to

ol (F e m) HL (M, €)H %{M,m (1)) e Hé(M,E). The above shows that

S -0 0
Cwybp U b = {w,E”(Res ¥y) U E (Res ¥, 0>
= "(w:EO(RES Wl)EO(RES ’4’2))—

5;2. The above decomposition of HE(M,R(E)) also holds
for Hy To see this recall the following lemma of Bloch.
Let S be a spectrum of somewhat localized ring of integers in
a number field, p:C - § be a projective curve over S and
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L= -~ = ] [y

Cm < C be a divisor. Suppose that € is regular scheme and

c is a disjoint union of components S; s.t. for any 1 the

projection p|C 85 > S is isomorphism and any S, -S. has
2]

finite order in Pic(T). Put ¢ := T\C™,

, Lemma 5.2.1. Put aylc) := (my(c,e(1)),p"Hy(s, 0(1))
« He(C,&(2)}. We have the direct sum decomposition

Bp(C,0(2)) = 8(C) © HY(T, e(2)).

Proof: Consider the exact localization seguence
euS 2T j s 2
Ly(85,0(1)) > He(T,e(2)) ~4 5(c,q(2))
3 i
= emy(s,,0(1)) —5> Hy(T, a(2))

. 8]
Since HJ,f(Si,Q(l}) = 0, the arrow J  is injective. Since
Pyle =@ (pj'cj)* the imasge of 3 is contained in the kernel

of the sum of the coordinate map; but this one equals 3% (C)

by our conditions. So Im 3 = Im 3%, i.e., H_?{(C,Q(E)) is the
sum of our subspaces. To see that this sum is direct, we have
to show*thaE Ker aié(c) = 0. Note that Ker(ae{-,-)}

= div-p*: S {c)e e (s)e q~» @ 0*(Si) @ @) obviously coincides
with @ (5) ® &*(S) @ q. Sincé' its image in & is zero by
Borel's theorems [6’*(8),49*(8)} ® Qc KE(S) ® § = 0, the map

3l% is injective. 3

2
Put  Ey(C,0(2))P = 10(c)",0(c)")-0 c H2(c,0(2)),
2 e b o
HZ(T,&(2))P27%° = ¥5(¥,¢(2)) 0 ¥2(c,0(2))P78% | (ieariy 5.2.1
implies
5.2.2 0One has direct sum decomposition

2 arab =
H(C,6(2))P47%0 = 5 (c) @ H3(T, q(2))P2reb
. ‘I:et us apply the above considerations te the fiber
C'ﬂ c C_n D_Cﬂ of*the abovs situition over the generic point
n e 8. Since & (Cn) = & (n)-9 (C} one has

. 2.2.3. gl:ia‘xj'estriction map H%(E,Q(E))parab
- Hj{(Cﬂ, g{2)) is surjective.
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By Manin-Drinfeld the curves I%/Q[e;n] fit into 5.2.1.

5.2.4. One has cancnical direct sum decompositions
2 @y 2 parab
EH(M, 0(2)) = Hp(H.q(2)) @ g, (M), HE(M,&{2))
= 3, 0(2))P*" @ 1, (M),

Now let us prove that H/%(E,Q(E))parab c Hﬁ(ﬁ,@(z))z
{Theorem 1.2.3; case 4 = 0}. Consider canonical mcdel of M
over Z . Namely, let VH’;ZZ be the integral closure of
ﬁozz =IE’JZ‘Z in M . Clearly M, 1s a proper scheme over
z[¢,] with GLE(Z/nZ)—action. For n;/n, one has an obvious
map M 2> W, 73 Put 'MZ := lim 'anz . One knows that the

2 1
anz are regular schemes, and the scheme Mzzz := the closure
of Ng in ﬁnz is a disjoint union of components that project
isomorphically to Spec Z[{{,] {ef. e.g. [5]). So 1l.2.3 will
follow from 5.2.2, if we prove the following more precise version

of Manin-Drinfeld theorem:

Lemma 5.2.4. The difference of any two components of Mgm
has finite order in Pic ﬁnz& .

Proof: Note that for any x € Spec zz[gn] the fiber %
of -ﬁn?z over x is reduced. So (by the ordinary Manin-
Drinfeld and since Pie zz[gn] ® ¢ = 0) 5.2.4 follows from

5.2.4.1. For any f ¢ &*(M) and a closed point
x(n) € Spec Z[gn] the order of div £ along the irreducible
components of Mx is constant.

Iet p = char x n) and n = p°m, (my,n) = 1. Recall that
the components of M are in natural 1-1 correspondence with
points of Pl(z/*z); the action of SL2(Z/nZ) on the first set
corresponds to the obvious action via SLE(Z/nZ) - SLE(Z/paZ)
on the second. It will be convenient for us to pass to M: so,
if x ¢ Spec @[¢] is closed point of char p then, the set of
components of M, 1is ]Pl(Zp) :]PJ(QP). The natural action of
G on M prolongs to the one on "M'EZ; the group SL, (Af) c G
acts on the set of components of 'lv'g( via the projection

SLy(aT) » SLy(ey) > Aut ]Pl{Qp).

These facts easily imply 5.2.4.1. Namely, for a profinite
set L denote by F(L} the space of locally-constant €-valued
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functions on L, let & c L be the space of constant functions.
. * 1 a ordaf
The arrows div, :6 (Mn) > (P (z/p"Z)), div, (£)(a) =
n n

ord, T
are compatible for different n and so defined SLQ(Af)—map
divx:@*(M) ® g - :;(1?1(%)) . We have to show that

div, (8" (M) ® §) c @. But the SL,(AT)-module & (M) ® ¢ is an
automorphic representation (Eisenstein series + trivial module).
The space Z(PL(g ))/@ 1is the sum of infinite-dimensional
representations of SLE(QP)’ and SLE(Af) acts on it via the

(Af)(ﬁ*(m ® ¢, 3(Pl(a,))/0)
2

|
5.3. All the resulis of Section &4 remain valid for 4 = Q:

cne has to use Remark 4.3.6. This finishes the proof in case
L o= 0.

projection on S8L,(1_). So Hem
2P SL.
= 0, and we are done.
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NOTES ON ABSOLUTE HODGE COHOMOLOGY

A. A. Beilinson

INTRODUCTION. First a few words about the situation in étale
echomology to motivate what follows. Let m:X - 3Spec K be a
scheme over a field K, and let & ¢ Db{Xét) bes a complex of
sheaves on Xg.; put RL(X,3) := Rr(F) ¢ DP{ (Spec K}ét). We have

RT((Spec K)g,,RL(X,%)}

o
Hi

ét’

R Hom

i}

b (% ,RU(X,¥)}.
DY ((Spec K)ét)

If ¥/K is a separable closure of K and G = Gal K/K, then the
sheaves on (Spec K)ét are G-modules, and

RT(X,#) = RT({X % E)ét,z) is the geometric étale cochain complex
of X with canonical Graction.

0.1. Now suppose that K = €. Then, following Delilgne [4]
the role of sheaves on'arithmetic” Spec ¢ should be played by
(mixed) Hodge structures. This analogy suggests that for any
scheme X there should be a canonical object RI(X,Z) ¢ Db(u)
{where H = category of Hodge structures), whose underlying
complex of abelian groups is the usual chain complex of topologi-
cal space X(€). We will see that this is indeed the case: The
basic construction of Deligne [4] plus a bit of homologiecal
algebra do the Jjob. For i ¢ Z define the absolute Hodge
cochain complex of X with coefficients in Z(i}

Ry (X, Z{1)) := R Home(H)(Z’. JRU(X, z){i)) .

Here (i) on the right-hand side means Tate twist in Db(u). The

absolute Hodge {or simply K~) cohomology groups
Hy (X, Z(*)) = H' [RTy (x,7Z(*})) far m a twisted Poincaré duality
theory in the sense of [3]. Thgy may be =asily computed in terms
of Deligne-Hodge structure in H' (X), e.g- we have canonical
® 1986 American Mathematical Society
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