
Some duality computations for Dedekind sums

Let F be a totally real field of degree n, with totally positive units UF and an embedding ι : UF ãÑ SLnpZq, with an associated

equivariant identification α : a
„

ÝÑ Zn for some ideal a Ă F . At some point, we will also need to consider the adjuate embedding

‹ι given by

u ÞÑ pιpuq´1qT ,

and we will also abbreviate the inverse transpose operation on a matrix M as ‹M . It will also be convenient to notate the adjugate

adjpMq :“ |detM |M´1, which is always an integer matrix when M is.

Let c ą 1 be a prime number completely split in F , as

pcq “ c1 . . . cn.

It will also be convenient to use the notation ĉi “ pcqc´1
i . We also fix an oriented basis u1, . . . , un´1 of the free group UF ; usually,

we will freely identify them freely with their images under ι (though later, when we need to talk about the ‹ embedding, we will

need to be more careful). We also write the line e1 :“ r1 : 0 : . . . : 0s P Pn´1pQq; then denote ℓi “ u1 . . . uie1. The integer matrix

L “

´

ℓ0 . . . ℓn´1

¯

is then full-rank since UF is a totally nonsplit torus. We will further insist that c does not divide the determinant of this matrix; this

excludes only finitely many c.

We will compute explicitly c-smoothed formulas (as well as ci-smoothed formulas for each i, which combine to give the c-

smoothing) for the Bernoulli cocycle and toric cocycle, and compare with the Shintani cocycle of [CDG].

We will also compute some examples with the real quadratic field F “ Qp
?
3q, for which we distinguish the fundamental unit

2 `
?
3 of norm 1, and take c “ 11, which splits into c1 “ p11, 5 ´

?
3q and c2 “ p11, 5 `

?
3q. We pick the identification

α : Zr
?
3s

„
ÝÑ Z2 identifying the standard basis with 1 and

?
3, respectively, and the corresponding ι sends

2 `
?
3 ÞÑ

˜

2 3

1 2

¸

.

Thus, in this case,

L “

˜

1 2

0 1

¸

which is in this case unimodular (so we could have picked any split c).

1. BERNOULLI LIFTS

In this section, we compute the cocycle of [RX1] for UF .

There is a natural action of SLnpZq on the n-torus T “ pR{Zqn. If we restrict to considering T only as a UF -space via ι, then via

the identification α, we can also identify T with F {a. It then makes sense to speak of the I-torsion T rIs for any ideal I of OF , as

the kernel of F {a Ñ F {Ia; the latter torus we can thus identify with T {T rIs.
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Consider the c-torsion cycle T rcs ´ cnt0u “ prcs˚ ´ cnqt0u. The Bernoulli lifts corresponding to this cycle will give us our

“c-smoothed” cocycle.

Then restricted to UF , this cocycle also breaks up into a telescoping sum

T rcs ´ cnt0u “ pT rcs ´ cT rcě1sq ` cpT rcě1s ´ cT rcě2sq ` . . . ` cn´1pT rcěn´1s ´ cT rcnsq.

where we write cěi :“ ci . . . cn. Each of these individual terms in parentheses gives a UF -fixed degree-zero torsion cycle, which

corresponds to stabilization along “one line”: for example, we will just focus on the first term

T rcs ´ cT r̂c1s,

because it lines up with the smoothing of [CDG], as we will see later.

In the simplest case, where c1, . . . , cn are principal1 each rcis can actually be viewed as an endomorphism of T for each i (once

one fixes choices of generators, which we do implicitly), so this is equal to

prcs˚ ´ cnqt0u “ rprcs˚ ´ crcě1s˚q ` pcrcě1s˚ ´ c2rcě2s˚q ` . . . ` pcn´1rcns˚ ´ cnqst0u

Then the ith term can be written as ci´1rcěis˚prcis
˚ ´ct0uq; thus, they are all “the same” (for the different factors ci) except for the

constant factor ci´1 and the pullback rcěis˚, both of which will have invertible, easily understandable actions on the distributions

which we will ultimately specialize to. In general, even when the ci are not principal, something analogous happens allowing us

to make a similar reduction, but one has to consider combinations of cocycles corresponding to different ideal classes. This adds

a bit of technical complication, but does not fundamentally change the situation. The point is that stabilizing at c a split prime is

expressible in a simple way as a combination of stabilizations at each of its factors, so we will focus on the latter.

The cycle

C1 :“ T rcs ´ cT r̂c1s

not only has total degree zero, but also has degree zero when restricted to any line of T rcs “ pZ{cqn not contained in the hyperplane

(codimension-1 subspace) T r̂c1s.

Note that because T r̂c1s is UF -stable, no UF -translate of e1 can be contained in it, since the UF -span of e1 is the entirety of

F – Zn, and this holds even c-integrally by our earlier determinant assumption. In particular, the 1-dimensional subtorus Tue1 :“

R{Z ãÑ T “ pR{Zqn corresponding to ue1, for any u P UF , is such that the restriction of C1 to Tue1rcs has degree zero.

Given a c-torsion cycle C and a function or current β on T , let us write

βrCs :“
ÿ

xPT rcs

Crxst˚
xβ

where tx : T Ñ T, z ÞÑ z ´ x is the pullback map and Crxs denotes the coefficient of x in C. Then the UF -invariant n-current

δC1

is the differential of the pn ´ 1q-current

(1.1)
!´

e1

¯

˚
B1pzq

)

rC1s

1This is always possible, by picking c to split completely in the Hilbert class field of F , which occurs with positive density by the Cheboratev density theorem.
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where the matrix pe1q represents the inclusion S1 ãÑ T associated to the column vector e1. This pn ´ 1q-current is essentially a

locally constant stabilization of B1pzq on the subtorus corresponding to e1, times the current of integration along that subtorus: the

stabilization is locally constant precisely because C1 has degree zero along e1.

Then the UF -coboundary of (1.1) is

γ1 ÞÑ

!´

γ1e1

¯

˚
B1pzq

)

rC1s ´

!´

e1

¯

˚
B1pzq

)

rC1s

which is the differential of the 1-cochain valued in pn ´ 2q-currents

γ1 ÞÑ

!´

e1 γ1e1

¯

˚
B1pz1qB1pz2q

)

rC1s.

Continuing inductively in this fashion, at the last stage we get that the final lift is the pn ´ 1q-cochain valued in 0-currents

pγ1, . . . , γn´1q ÞÑ

!´

e1 . . . γ1 . . . γn´1e1

¯

˚
B1pz1q . . . Bnpznq

)

rC1s “ tL˚B1pz1q . . . Bnpznqu rC1s.

At each stage, the differential computation works because the corresponding stabilization of B1 . . . B1’s is locally constant, because

C1 is degree-zero along any line of the form ue1, u P UF .

1.1. Worked example. We have, in our example case,

C1 “ T r11s ´ 11T rp11, 5 ´
?
3qs

where T rp11, 5´
?
3qs is, more concretely, the subspace of pZ{11q2 spanned by p5, 1q. This is because p5, 1q corresponds to 5`

?
3

under α, and
„

5 `
?
3

11

ȷ

P Qp
?
3q{Zr

?
3s

is annihilated by 5 ´
?
3. Correspondingly, p5, 1q is annihilated modulo 11 by the matrix

˜

5 ´3

´1 5

¸

corresponding to the action of 5 ´
?
3 on the basis associated to α. Thus, we can also equivalently write

C1 “ T r11s ´ 11t 1
11Z{Z ¨ p5, 1qu.

We take the associated 2-current of integration for this torsion cycle; then the first lift is

!´

e1

¯

˚
B1pzq

)

rC1s “

´

e1

¯

˚

˜

´11B1pzq `

10
ÿ

i“0

B1pz ´ i{11q

¸

because the restriction of C1 to R{Z, included via e1, is simply S1r11s ´ 11t0u: this is simply the statements that

C1rp0, 0qs “ ´10

C1rp1, 0qs “ 1

. . .

C1rp10, 0qs “ 1

becasue the line e1 modulo 11 intersects the line r5 : 1s modulo 11 only at the identity.
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In this case, since n “ 2, there is only one more lift: the final 1-cocycle

γ1 ÞÑ

!´

e1 γ1e1

¯

˚
B1pz1qB1pz2q

)

rC1s

when evaluated at γ1 “ ιp2 `
?
3q, is

#˜

1 2

0 1

¸

˚

B1pz1qB1pz2q

+

rC1s “ tB1pz1 ´ 2z2qB1pz2qurC1s

“

10
ÿ

i,j“0

C1rpi, jqsB1

ˆ

z1 ´ 2z2 ´
i ´ 2j

11

˙

B1pz2 ´ j{11q

“

10
ÿ

a,b“0

κpa, bqB1pz1 ´ 2z2 ´ a{11qB1pz2 ´ b{11q

where

κpa, bq “

$

&

%

´10 if pa, bq P r3 : 1s Ă pZ{11q2,

1 otherwise

since one can compute that the image of r5 : 1s is r3 : 1s under the change of coordinates from i, j to a, b. One can easily see that

for fixed a, or fixed b, the total degree is zero, which implies that this sum of Bernoulli polynomials is indeed locally constant, as

expected.

2. EISENSTEIN DUALITY, SHINTANI FUNCTIONS

In this section, we use a “duality” identity of Eisenstein to show that the formulas for the cocycles of [RX1], computed above, can

also be written in terms of Shintani-style generating series: we show that our Bernoulli cocycles compute (almost) all the same

values as the smoothed Shintani cocycle of [CDG]

The cocycles valued in smoothed Shintani generating series are also essentially the same ones which were shown in [X2] to come

from a toric equivariant polylogarithm, but we do not go into the details of this here.

The identity of Eisenstein in question is as follows: for any integer k ě 1, we have

(2.1) B1pa{kq “
1

2k

ÿ

ζPµk´t1u

ζ´a

ˆ

ζ

ζ ´ 1
`

ζ´1

1 ´ ζ´1

˙

.

On the right-hand side, we have a kind of symmetrized finite Fourier transform over torsion values of a function like

z

1 ´ z
P OpGm ´ t1uqˆ

which appear in Shintani’s method, and are used in [X2]. On the left, you have the Bernoulli numbers used in the first section.

2.1. Fourier duality on distributions over torsion cycles.

2.1.1. The case n “ 1. Write

spzq “
1

2

ˆ

z

z ´ 1
`

z´1

1 ´ z´1

˙

“
1

2
¨
z ` 1

z ´ 1
“

1

2
`

1

z ´ 1
“ ´

1

2
`

z

z ´ 1

for the basic building block of the symmetrized Shintani functions. Let us phrase things in terms of distributions on Schwarz

functions: we can view both B1 and the function

S : t ÞÑ spexpp2πitqq
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as functions on the 1-torus R{Z; we are interested in evaluation just at the torsion points Q{Z. We then can view the function B1

as a distribution µB1
against Schwarz functions on Q{Z, sending

(2.2) 1t`Z ÞÑ B1ptq.

Notice that this is basically just an alternate notation for our earlier evaluations at torsion cycles (in the case n “ 1).

This becomes a less trivial change of notation when one notes that as a function, B1 satisfies the trace-fixed property

ras˚B1 “ B1

for any a P N, meaning that we can view actually view µB1
as a distribution against Schwarz functions not just on Q{Z, but on Q

(with the profinite topology), characterized by (2.2) together with the property that µB1pUq “ µB1paUq for any a P N.

Remark 2.1. Note that that the Schwarz functions for the profinite topology on Q can be identified naturally with Schwarz

functions on AQ in an obvious way; we will freely interchange between thinking of the objects in this section as rational or adelic

Schwarz functions/distributions.

On the other hand, the function S satisfies

ras˚S “ aS

for all a P N; thus, we may equally view S as giving a distribution µS against the subspace of Schwarz functions SpQq0 vanishing

at zero, by sending

1t`Z ÞÑ Sptq

and extending by the rule µSpaUq “ a´1µSpUq.

Write F : SpQq Ñ SpQq for the Fourier transform

φ ÞÑ φ̂ :“

ˆ

x ÞÑ

ż

Q
φpyq expp´2πixx, yyq dhpyq

˙

for hpyq the Haar measure for which hpZq “ 1; one can check the equivariance property

F pM˚φq “ |detM |p‹Mq˚F pφq.

for any full-rank matrix M .

Then (2.1) can be reformulated as

µB1
pφq “ µSpφ̂ ´ φ̂p0q ¨ 10`Zq

for any φ P SpQq. (Note that the Schwarz function on the RHS always is zero at 0.) In particular, if φ̂p0q “ 0 (which corresponds

to a degree-zero torsion cycle), µB1
pφq “ µSpφ̂q.

2.1.2. General n, and a formula for the cocycle in terms of products of S. By simply taking products of everything above, and in

particular the Eisenstein identity (2.1), we get analogous distributions on SpQnq, respectively the subspace SpQnq0 of functions

vanishing on each standard hyperplane ti “ 0 for 1 ď i ď n, characterized by

µB,n : 1t`Zn ÞÑ B1pt1q . . . B1ptnq µB,npaUq “ µB,npUq

µS,n : 1t`Zn ÞÑ Spt1q . . . Sptnq µS,npaUq “ a´nµS,npUq
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such that on a Schwarz function of the form φ “ φ1 ⊠ . . .⊠ φn, we have

µB,npφq “ µS,n rpφ̂1 ´ φ̂1p0q10`Zq ⊠ . . .⊠ pφ̂n ´ φ̂np0q10`Zqs

which in the case that φ̂ip0q “ 0 for 1 ď i ď n, i.e., φ has “degree zero along each line corresponding to the standard basis of

Qn,” simplifies to

(2.3) µB,npφq “ µS,npφ̂q.

Lemma 2.2. Any φ P SpQnq which is in the kernel of each of the pushforwards

πi : SpQnq Ñ SpQn´1q

given by projecting away from the ith coordinate, for 1 ď i ď n (i.e. “summing over lines,” for the lines corresponding to the

standard basis), can be written as a sum of φ1 ⊠ . . .⊠ φn with each φ̂‚p0q “ 0.

Proof. This follows easily from standard character theory. □

Thus, by linearity, for any such φ as in the lemma, we also have (2.3).

Now, consider the Bernoulli function

tL˚B1pz1q . . . B1pznqurC1s

in the setting of the previous section. If φc is the Schwarz function on Qn
c corresponding to C1, then an arbitrary evaluation of the

above prime-to-c torsion

pL˚µB,nqpφc ⊠ φcq “ µB,npL˚pφc ⊠ φcqq

where φc is a Schwarz function on the prime-to-c adeles pApcq

Q qn encoding to the prime-to-c torsion we are evaluating at.

Remark 2.3. For example, to evaluate at p1{p, 0, . . . 0q for a prime p, φc would be the indicator function of the compact open set

pp´1Zp ˆ Zp . . . ˆ Zpq ˆ
ź

ℓRtp,cu

Zn
ℓ Ă pApcq

Q qn

But the degree-zero condition we noted in the previous section about C1, leading to the local constancy of our lifts, is exactly

synonymous with saying that φc is in the kernel of each of the projection maps

SpQn
c q Ñ SpQn´1

c q

whose kernels are the lines ℓi, the ith column of L, for 1 ď i ď n. This in turn implies that L˚φc is in the kernel of each of the

maps πi from the lemma (restricted to the c-adic adelic coordinate), from which it follows that L˚pφc ⊠φcq satisfies the condition

of the lemma. We therefore conclude that

µB,npL˚pφc ⊠ φcqq “ µS,npF pL˚pφc ⊠ φcqqq “ |detL|´1µS,npp‹Lq˚pxφc ⊠ xφcqq.

In concrete terms, take φc to be the indicator function of a torsion section

x “ px1, . . . , xnq P

ˆ

1

N
Z{Z

˙n

with pN, cq “ 1. Then
xφcpyq “ {1x`Znpyq “ expp´2πixx, yyq1Znpyq
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On the other hand, our φc corresponding to C1 is

1c´1Zn
c

´ c1ĉ´1
1 a,

and whose Fourier transform is

xφcpyq “ cnp1Zn
c

pyq ´ 1c1apyqq.

Then we have

tL˚B1pz1q . . . B1pznqurC1s
ˇ

ˇ

z“t
“ µB,npL˚pφc ⊠ 1t`Znqq

“ |detL|µS,npp‹Lq˚pxφc ⊠ xφcqq

“ µS,npp|detL| ¨ ‹Lq˚pxφc ⊠ xφcqq

“
1

Nn

ÿ

yPpZ{NZqn

expp´2πixx, yyqtpadjpLT qq˚pSpt1q . . . Sptnqqur pC1s
ˇ

ˇ

x“t

where here
pC1 “ T rcs ´ T r̂c1s.

We therefore have an expression for our lift in terms of a smoothed sum of Shintani-type functions.

2.2. Shintani functions and unit formulas. Let us briefly recall the Shintani approach to L-functions for F , and how Dasgupta

and collaborators obtain Gross–Stark units formulas from it: as before, we have an identification a – Zn, making a a lattice inside

a b R – Rn.

Inside a b R there is the closed convex domain pa b Rq` of totally positive elements, preserved by the action of UF . For any

collection of linearly independent rays r1, . . . , rk Ă Rn, k ď n, consider the relatively open simplicial cone

C˝pr1, . . . , rnq :“ ta1r1 ` . . . ` akrk; a1, . . . , ak P p0,8qu.

Then Shintani showed that there is always a finite collection of cones S in pabRq` whose disjoint union is a fundamental domain

for the action of UF on this convex domain; we call this S a Shintani decomposition and their union a Shintani domain.

Following [CDG] (after an idea of Colmez), one can generalize this by formally putting coefficients (allowing ˘1 suffices) on the

cones, so that the formal “sum” of all the cones in S is pa b Rq` after cancellations. In such a case, loc. cit. also shows that one

can pick S such that its collection of n-dimensional cones is precisely

C˝pe1, uσp1qe1, . . . , uσp1q . . . uσpn´1qe1q

as σ ranges over Sn´1, and all the other cones are faces one or more of these. (Recall that u1, . . . , un´1 is a basis of UF .)

For each cone C “ C˝pr1, . . . , rkq, the Shintani generating function is

fCpz1, . . . , znq :“
ÿ

yPRC

zy
ś

ri
p1 ´ zrq

where

RC : Zn X tc1r1 ` . . . ` ckrk,@i, ci P Q, 0 ă ci ď 1u

where we (a bit abusively) identify the rays r1, . . . , rk with their integral generators,and we write zx for the monomial zx1
1 . . . zxn

n ,

for any x P a – Zn. This generating function is equivalently

adj
´

r1 . . . rn

¯T

˚

z1 . . . zk
p1 ´ z1q . . . p1 ´ zkq
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(where we interpret this matrix as map from Gn
m Ñ Gn

m in the obvious way). (If k ă n, the result does not actually depend on

anything beyond r1, . . . , rk.)

In any case, the total Shintani generating function for F is then defined by

fSpzq “
ÿ

CPS
fCpzq.

Let

fkpz1, . . . , zkq “
z1 . . . zk

p1 ´ z1q . . . p1 ´ zkq

be the Shintani generating function for the “standard” k-cone. Analogously to before, define distributions µShk,n for 1 ď k ď n

on SpQnq0 by

µShk,n : 1t`Zn ÞÑ fkptq; µShk,npaUq “ a´nµShk,npUq

(When k ă n, we don’t need all of the vanishing conditions on SpQnq0, but impose them anyway because it doesn’t matter too

much for us.)

We note the important property that

spz1q . . . spznq “ fnpz1, . . . , znq ` linear combination of fkpzIq for k ă n, k “ |I| Ă rns

Then for any Schwarz function φ P SpQnq for which its restriction to the hyperplanes

Hi :“ ta P Qn; xa, ℓiy “ 0u

for 1 ď i ď n is degree zero, we have

fCrφs “ tspz1q . . . spznqurL˚φs.

2.3. Worked example. Recall our previously-computed Bernoulli cocycle lift
#˜

1 2

0 1

¸

˚

B1pz1qB1pz2q

+

rC1s “

10
ÿ

a,b“0

κpa, bqB1pz1 ´ 2z2 ´ a{11qB1pz2 ´ b{11q.

Here, κ, as a function on pZ{11q2 embedded in the natural way into pQ{Zq2, is precisely L˚φc; observe that indeed the sums of κ

along “vertical” and “horizontal” lines in the c-torsion is zero.

The Shintani-type expression which is equal to this is, for z a N -torsion point,

1

N2

ÿ

yPpZ{Nq2

expp´2πixz, yyq

#˜

1

´2 1

¸

˚

Spt1qSpt2q

+

r pC1s
ˇ

ˇ

t“z

which we can write out more explicitly as

1

N2

ÿ

ζPµ2
N

ζ´z1
1 ζ´z2

2

10
ÿ

i,j“0

pC1rpi, jqsS

ˆ

z1 ´
i

11

˙

S

ˆ

2z1 ` z2 ´
2i ` j

11

˙

“
1

N2

ÿ

ζPµ2
N

ζ´z1
1 ζ´z2

2

10
ÿ

a,b“0

τpa, bqS
´

z1 ´
a

11

¯

S

ˆ

2z1 ` z2 ´
b

11

˙

where

τpa, bq :“

$

&

%

0 if pa, bq P r5 : 9s Ă pZ{11q2

1 otherwise.
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