Some duality computations for Dedekind sums

Let F be a totally real field of degree n, with totally positive units Uy and an embedding ¢ : Ur — SL,(Z), with an associated
equivariant identification o : a — Z™ for some ideal a = F. At some point, we will also need to consider the adjuate embedding
*L given by

wes (o(u) ™),

and we will also abbreviate the inverse transpose operation on a matrix M as xM. It will also be convenient to notate the adjugate

adj(M) := |det M|M ~*, which is always an integer matrix when M is.
Let ¢ > 1 be a prime number completely split in F, as
(¢)=rc1...Cp.

It will also be convenient to use the notation ¢; = (¢) c 1 'We also fix an oriented basis Ui, ..., Uu,—1 of the free group Up; usually,
we will freely identify them freely with their images under ¢ (though later, when we need to talk about the * embedding, we will

need to be more careful). We also write the linee; :=[1:0:...:0] € ]P’”_l((@); then denote ¢; = u; ... u;e;. The integer matrix

L:(eo en_l)

is then full-rank since U is a totally nonsplit torus. We will further insist that ¢ does not divide the determinant of this matrix; this

excludes only finitely many c.

We will compute explicitly c-smoothed formulas (as well as ¢;-smoothed formulas for each ¢, which combine to give the c-

smoothing) for the Bernoulli cocycle and toric cocycle, and compare with the Shintani cocycle of [ 1.

We will also compute some examples with the real quadratic field F = Q(+/3), for which we distinguish the fundamental unit
2 + +/3 of norm 1, and take ¢ = 11, which splits into ¢; = (11,5 — +/3) and ¢o = (11,5 + +/3). We pick the identification
a: Z[\/g] = 72 identifying the standard basis with 1 and /3, respectively, and the corresponding ¢ sends

2+\/§'—>(2 3)
1 2

a

which is in this case unimodular (so we could have picked any split ¢).

Thus, in this case,

1. BERNOULLI LIFTS
In this section, we compute the cocycle of [ ] for Up.

There is a natural action of SL,,(Z) on the n-torus T' = (R/Z)™. If we restrict to considering T only as a Up-space via ¢, then via
the identification «, we can also identify T with F'/a. It then makes sense to speak of the I-torsion T[] for any ideal I of OF, as
the kernel of F'/a — F'/Ia; the latter torus we can thus identify with T'/T'[I].



Consider the c-torsion cycle T'[¢] — ¢"{0} = ([¢]* — ¢"){0}. The Bernoulli lifts corresponding to this cycle will give us our

“c-smoothed” cocycle.

Then restricted to Ur, this cocycle also breaks up into a telescoping sum
T[c] — {0} = (T[c] — cT[es1]) + c(T[es1] — T [es2]) + ... + " H(T[espn_1] — cT[cn]).

where we write ¢>; := ¢; ... c,. Each of these individual terms in parentheses gives a Ur-fixed degree-zero torsion cycle, which

corresponds to stabilization along “one line”: for example, we will just focus on the first term
T[c] — cT[e1],
because it lines up with the smoothing of [ ], as we will see later.

In the simplest case, where ¢1, ..., ¢, are principal' each [c;] can actually be viewed as an endomorphism of T" for each ¢ (once

one fixes choices of generators, which we do implicitly), so this is equal to

([e]* = e){0} = [([e]* = ele=1]*) + (ele=1]* = [e=a]®) + ..+ (" [en]* — ") {0}

Then the ith term can be written as ¢!~ [cx;] 4 ([c;]* — c{0}); thus, they are all “the same” (for the different factors ;) except for the
constant factor ¢! and the pullback [c>:]+, both of which will have invertible, easily understandable actions on the distributions
which we will ultimately specialize to. In general, even when the ¢; are not principal, something analogous happens allowing us
to make a similar reduction, but one has to consider combinations of cocycles corresponding to different ideal classes. This adds
a bit of technical complication, but does not fundamentally change the situation. The point is that stabilizing at ¢ a split prime is

expressible in a simple way as a combination of stabilizations at each of its factors, so we will focus on the latter.

The cycle
Cl = T[C] - CT[El]
not only has total degree zero, but also has degree zero when restricted to any line of T'[¢] = (Z/c)™ not contained in the hyperplane

(codimension-1 subspace) T'[¢1].

Note that because T[¢1] is Up-stable, no Up-translate of e; can be contained in it, since the Ug-span of e; is the entirety of
F' =~ Z", and this holds even c-integrally by our earlier determinant assumption. In particular, the 1-dimensional subtorus T, :=

R/Z — T = (R/Z)™ corresponding to uey, for any u € Up, is such that the restriction of C; to T, [¢] has degree zero.

Given a c-torsion cycle C and a function or current 8 on T, let us write

BlCl:= ), Clatip

zeT[c]

where t, : T'— T, z — z — x is the pullback map and C[xz] denotes the coefficient of x in C. Then the Up-invariant n-current
dc

1

is the differential of the (n — 1)-current
(1.1) {(61>*Bl(z)}[cl]

IThis is always possible, by picking c to split completely in the Hilbert class field of F', which occurs with positive density by the Cheboratev density theorem.



where the matrix (e1) represents the inclusion S < T associated to the column vector e;. This (n — 1)-current is essentially a
locally constant stabilization of By (z) on the subtorus corresponding to e1, times the current of integration along that subtorus: the

stabilization is locally constant precisely because C; has degree zero along e .
Then the Ug-coboundary of (1.1) is
ne{(ner) Bi@ el -{(a) B}l
which is the differential of the 1-cochain valued in (n — 2)-currents
n={(e mer), Bia)Bi)} (Gi)
Continuing inductively in this fashion, at the last stage we get that the final lift is the (n — 1)-cochain valued in O-currents
(G = { (e oo e meier) BiGn) o Ba(z) G = {LaBi(1) . Ba(a)} [C1):

At each stage, the differential computation works because the corresponding stabilization of Bj ... By’s is locally constant, because

C; is degree-zero along any line of the form ue;, u € Up.
1.1. Worked example. We have, in our example case,
Cy = T[11] — 11T[(11,5 — v/3)]

where T[(11,5—+/3)] is, more concretely, the subspace of (Z/11)? spanned by (5, 1). This is because (5, 1) corresponds to 5++/3

under o, and

E S | cewayzrv

is annihilated by 5 — /3. Correspondingly, (5, 1) is annihilated modulo 11 by the matrix
5 -3
)
corresponding to the action of 5 — /3 on the basis associated to a.. Thus, we can also equivalently write
Cy =TN1] - 11{LZ/Z - (5,1)}.

We take the associated 2-current of integration for this torsion cycle; then the first lift is

{(el)* Bl(z)} [C1] = <el)* (1131(2) + 231(2 - i/ll))

because the restriction of C; to R/Z, included via ey, is simply S1[11] — 11{0}: this is simply the statements that

C.[(0,0)] = ~10
Gi[(1,0)] =1

C:[(10,0)] =1

becasue the line e; modulo 11 intersects the line [5 : 1] modulo 11 only at the identity.



In this case, since n = 2, there is only one more lift: the final 1-cocycle

05 ans {(61 7161)* 31(21)31(22)} [C1]

when evaluated at v; = +(2 + 1/3), is

1 2
{ (0 1> * 31(21)31(32)} [C1]

{B1(21 — 222) B1(22)}[C1]

10 . .

- -2 .
>l (2~ 22 - T2 ) Batea - /10
i,7=0

10
> k(a,b)By (21 — 222 — a/11) By (22 — b/11)
a,b=0

where

—10 if (a,b) € [3:1] = (Z/11)?,
K(a,b) =
1 otherwise

since one can compute that the image of [5 : 1] is [3 : 1] under the change of coordinates from 4, j to a, b. One can easily see that
for fixed a, or fixed b, the total degree is zero, which implies that this sum of Bernoulli polynomials is indeed locally constant, as

expected.

2. EISENSTEIN DUALITY, SHINTANI FUNCTIONS

In this section, we use a “duality” identity of Eisenstein to show that the formulas for the cocycles of [ ], computed above, can
also be written in terms of Shintani-style generating series: we show that our Bernoulli cocycles compute (almost) all the same

values as the smoothed Shintani cocycle of [ ]

The cocycles valued in smoothed Shintani generating series are also essentially the same ones which were shown in [X2] to come

from a toric equivariant polylogarithm, but we do not go into the details of this here.

The identity of Eisenstein in question is as follows: for any integer £ > 1, we have

2.1) Bl(a/lc):i > o <<+ < )
2k ey (=1 1=¢7

On the right-hand side, we have a kind of symmetrized finite Fourier transform over torsion values of a function like

— OG-~ (1))

—z

which appear in Shintani’s method, and are used in [X2]. On the left, you have the Bernoulli numbers used in the first section.
2.1. Fourier duality on distributions over torsion cycles.

2.1.1. The case n = 1. Write

1 z 21 1 z+1 1 1 1 z
s(z) = = PR -+ -4

2\z—1 1-271) 2 z2-1 2 z2-1 2 z2-1
for the basic building block of the symmetrized Shintani functions. Let us phrase things in terms of distributions on Schwarz

functions: we can view both B; and the function
St — s(exp(2mit))



as functions on the 1-torus R/Z; we are interested in evaluation just at the torsion points Q/Z. We then can view the function By

as a distribution pp, against Schwarz functions on Q/Z, sending

(2.2) ltyz — Bi(t).

Notice that this is basically just an alternate notation for our earlier evaluations at torsion cycles (in the case n = 1).

This becomes a less trivial change of notation when one notes that as a function, By satisfies the trace-fixed property
[a]«+B1 = B

for any a € N, meaning that we can view actually view pp, as a distribution against Schwarz functions not just on Q/Z, but on Q

(with the profinite topology), characterized by (2.2) together with the property that up, (U) = pp, (aU) for any a € N.

Remark 2.1. Note that that the Schwarz functions for the profinite topology on QQ can be identified naturally with Schwarz
functions on Ag in an obvious way; we will freely interchange between thinking of the objects in this section as rational or adelic

Schwarz functions/distributions.

On the other hand, the function S satisfies
[a]«S = aS

for all @ € N; thus, we may equally view S as giving a distribution 115 against the subspace of Schwarz functions S(Q)° vanishing
at zero, by sending
Liyz — S(t)

and extending by the rule ps(al) = a=tus(U).

Write .# : S(Q) — S(Q) for the Fourier transform
o= (2 [ oly)expl(2rice ) dhiy))
for h(y) the Haar measure for which h(Z) = 1; one can check the equivariance property
F(M*) = | det M|(xM)* F ().
for any full-rank matrix M.

Then (2.1) can be reformulated as
s, (p) = ps(@ — ¢(0) - Lo4z)
for any ¢ € S(Q). (Note that the Schwarz function on the RHS always is zero at 0.) In particular, if $(0) = 0 (which corresponds

to a degree-zero torsion cycle), upg, () = pus(P).

2.1.2. General n, and a formula for the cocycle in terms of products of S. By simply taking products of everything above, and in
particular the Eisenstein identity (2.1), we get analogous distributions on S(Q"), respectively the subspace S(Q™)? of functions
vanishing on each standard hyperplane ¢; = 0 for 1 < ¢ < n, characterized by

pBn  ligzn = Bi(t1) ... Bi(tn) pn(al) = ppn(U)

WS : Lz — S(t1)...S(tn) psn(aU) =a " pgn(U)



such that on a Schwarz function of the form ¢ = p; X ... X ¢, we have

1Bn(9) = pism [(H1 = $1(0)1o4z) W... B (Bn — Gn(0)1042)]
which in the case that ¢;(0) = 0 for 1 < i < n, i.e., ¢ has “degree zero along each line corresponding to the standard basis of
Qn,” simplifies to

(2.3) 1B (P) = fsn(P).

Lemma 2.2. Any ¢ € S(Q™) which is in the kernel of each of the pushforwards

™2 S(Q") — S(@"Y)
given by projecting away from the ith coordinate, for 1 < ¢ < n (i.e. “summing over lines,” for the lines corresponding to the
standard basis), can be written as a sum of o1 X ... X p,, with each $(0) = 0.

Proof. This follows easily from standard character theory. (]

Thus, by linearity, for any such ¢ as in the lemma, we also have (2.3).

Now, consider the Bernoulli function
in the setting of the previous section. If ¢, is the Schwarz function on Q} corresponding to C;, then an arbitrary evaluation of the

above prime-to-c torsion
(L) (e M%) = ppn(L* (pe B ¢))

where ¢° is a Schwarz function on the prime-to-c adeles (Ag ))" encoding to the prime-to-c torsion we are evaluating at.

Remark 2.3. For example, to evaluate at (1/p, 0, ... 0) for a prime p, ¢° would be the indicator function of the compact open set

(p_lzp X ZLp... X ZLp) % H 77 (Ag))"
L¢{p,c}

But the degree-zero condition we noted in the previous section about Cq, leading to the local constancy of our lifts, is exactly

synonymous with saying that (. is in the kernel of each of the projection maps
S(@) - S@Q

whose kernels are the lines ¢;, the ith column of L, for 1 < 4 < n. This in turn implies that L*¢, is in the kernel of each of the
maps 7; from the lemma (restricted to the c-adic adelic coordinate), from which it follows that L* (. X °) satisfies the condition

of the lemma. We therefore conclude that
118,50 (L* (0c B ¢%)) = pusn(F (L* (9 B ¢°))) = |det L]~ s (L) * (2 B 99)).
In concrete terms, take ¢ to be the indicator function of a torsion section
1 n
x=(T1,...,Tpn) € NZ/Z

with (N, ¢) = 1. Then

—~

©°(y) = lagzn (y) = exp(—2midz, y)) 1z (y)
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On the other hand, our ¢, corresponding to C; is
1(1*122 - CIEIIa
and whose Fourier transform is
Pe(y) = "(1z2(y) — Leya(y))-

Then we have

(LaBi(1) - Bueal[C1]]_, = s (L (e B 1120))
= [ det L|US,7L((*L)*(@ X S/O\C))

= ﬂS,n((| detL‘ : *L)*(@ X Q/OE))
— Y e 2o A SEE,,
ye(Z/NZ)"
where here

C1 = Tle] - T[&].
We therefore have an expression for our lift in terms of a smoothed sum of Shintani-type functions.
2.2. Shintani functions and unit formulas. Let us briefly recall the Shintani approach to L-functions for F', and how Dasgupta

and collaborators obtain Gross—Stark units formulas from it: as before, we have an identification a = Z", making a a lattice inside
a®@R ~ R™,

Inside a ® R there is the closed convex domain (a ® R), of totally positive elements, preserved by the action of Up. For any

collection of linearly independent rays r1, ...,y < R”, k < n, consider the relatively open simplicial cone
C°(r1y. .. rp) i={a1r1 + ... + agrg;a1,. .., ax € (0,00)}.

Then Shintani showed that there is always a finite collection of cones S in (a ® R)+ whose disjoint union is a fundamental domain

for the action of Uy on this convex domain; we call this S a Shintani decomposition and their union a Shintani domain.

Following [ ] (after an idea of Colmez), one can generalize this by formally putting coefficients (allowing +1 suffices) on the
cones, so that the formal “sum” of all the cones in S is (a ® R) after cancellations. In such a case, loc. cit. also shows that one

can pick S such that its collection of n-dimensional cones is precisely

Co(elv Us(1)€1y -+ -5 Ug(1) - -+ ua(nfl)el)
as o ranges over S,,_1, and all the other cones are faces one or more of these. (Recall that uq, ..., u,_1 is a basis of Up.)
For each cone C' = C°(ry, ..., k), the Shintani generating function is
fC( 1, s 2 Z 1—[ — Zr
yeRc 7'1,
where
Re :Z" n{ciri + ... + cprp, Vi,c; € Q0 < ¢; < 1}
where we (a bit abusively) identify the rays rq, . . ., ry with their integral generators,and we write z,, for the monomial 27" ... zZ",

for any x € a = Z™. This generating function is equivalently

. T Z1 ... 2L
adj(n rn>*(




(where we interpret this matrix as map from G}, — G}, in the obvious way). (If & < n, the result does not actually depend on

anything beyond ry, ..., 7%.)

In any case, the total Shintani generating function for F' is then defined by

fs(z) =) fe(2).

CeS

Let
Z1 ... 2%k

1—21)...(1—Z}€)
be the Shintani generating function for the “standard” k-cone. Analogously to before, define distributions pgp, » forl < k <n
on S(Q™)% by

fk(zl,...,zk) = (

HShy,n * 1t+Z" s fk(t)a MShk,n(aU) = ainﬂ'Shk,n(U)
(When k < n, we don’t need all of the vanishing conditions on S(Q™)°, but impose them anyway because it doesn’t matter too

much for us.)

We note the important property that

s(z1)...8(zn) = fu(z1,..., 2n) + linear combination of fy(z;) for k < n,k = |I| < [n]

Then for any Schwarz function ¢ € S(Q") for which its restriction to the hyperplanes
Hi = {a € Q";(a,€i> = 0}
for 1 < ¢ < nis degree zero, we have

felel = {s(z1) .. s(zn)} [ Lagp]-

2.3. Worked example. Recall our previously-computed Bernoulli cocycle lift
10
1 2
{ (o 1) 31(21)31(22)} [Ci] = D kla,b)Bi(z1 — 220 — a/11)By (22 — b/11).
% a,b=0

Here, , as a function on (Z/11)? embedded in the natural way into (Q/Z)?, is precisely Ly .; observe that indeed the sums of x

along “vertical” and “horizontal” lines in the c-torsion is zero.
The Shintani-type expression which is equal to this is, for z a /N-torsion point,

1 ~
L) Qexp<2m<z7y>>{(2 1>*s<t1>s<t2>}[c1]|t_z

ye(Z/N)

which we can write out more explicitly as

1 e A i 204
N2 Z G176y ch[(ld)]s T S( 221+ 22— 11

(e;ﬁ\, 1,j=0
1 L0 a b
b Z (T Z T(a7b)5(21—11>5<221+22—11>
CGH?\; a,b=0
where
0 if(a,b)e[5:9] = (Z/11)?
7(a,b) :=

1 otherwise.
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