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EISENSTEIN SERIES IN EQUIVARIANT COHOMOLOGY PETER XU
1. INTRODUCTION: CLASSICAL EISENSTEIN SERIES

Consider the classical weight-2 Eisenstein series by the analytic continuation/Hecke regularized series

(L.1) B3P (1) =

Z exp(ma + np)

mngZ\0 |mT + n|?*(m7 + n)? .
where 7 € H is a variable in the upper half-plane, exp(z) = €*™, and (o, ) € (+Z/Z)* — {(0,0)}
parameterizes an additive character of Z? of conductor dividing NV, for some integer N > 1. We may assume
N is minimal, i.e. («, () is a primitive vector, so that the conductor is precisely N. Then Eg"ﬁ (1) is a

holomorphic modular form of level I'(V); see, e.g., [ , HI(11)].

A classical formula due to Siegel [ ] gives formulas for the periods of these modular forms in terms of

periodic Bernoulli polynomials: we write

0 ifeeZ,

(1.2) Bo(z) := {z}* — {x} + 1/6, By (z) :=
{x} —1/2 otherwise.

for the first two periodic Bernoulli polynomials, thought of as functions on R/Z. Here, {z} denotes the
“fractional part” function which takes the remainder modulo 1 (i.e. in [0,1)) of any real number. Then

Y= (Z Z) EF<N)7

1 Y70

Do 5(7) = 52 Eg’ﬁ(T)dT
T0

associated to any matrix

the integral

is independent of the basepoint 7y, and yields a homomorphism I'(N) — Q given by

b
EBQ(B) ifc = 0,

(1.3) Do p(7) = je]—1

“t d -2 Z By </6 +Z> (a& — a) otherwise .
c

This formula exhibits the a priori non-obvious fact that the various Eisenstein series Ey P which together

span all the holomorphic Eisenstein classes in the first cohomology of any arithmetic subgroup of the modular
group [DS, §4.6], give rational classes. In fact, by taking suitably smoothed combinations (‘“stabilizations”),
one can even deduce integrality results, as, e.g. in [ , Corollary 27].

The original proof of this formula, in [ , Theorem 13], was by analytic means, grouping terms in infinite
series and dealing with delicate convergence issues. Our proof is almost entirely algebraic, and closely tied

to the underlying linear algebraic geometry of the 2-torus with GLs-action.
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PETER XU EISENSTEIN SERIES IN EQUIVARIANT COHOMOLOGY
The content of the article can be viewed as an algebraic approach to the construction of the Bernoulli-

Eisenstein classes of Sczech [ ].

1.1. Acknowledgments. I would like to thank Marti Roset Julia for helping me to understand how to recon-
cile the explicit formulas, and Nicolas Bergeron for his inspiration in pursuing this work.

2. EQUIVARIANT/DE RHAM EISENSTEIN CLASSES

We follow the treatment of [ ] to identify EQO“’B with a class in cohomology. Let I' be a torsion-free
subgroup of GLy(Z);' then the T'-action on the upper half-plane by Mébius transformations

<a b) ar +b
T =
c d ct +d

is free and therefore Y (I') := I'\’H is a model for the classifying space of I'. The torus bundle over the

classifying space

T(T) :=I\(H x (C/Z?))
then corresponds to the torus 7' := C/Z? with left ['-action given by the left standard representation of
GL2(Z) = GLy(C) on C?, which coincides with the monodromy action on fibers. Here, we say “corre-

sponds” in the sense that there is a natural isomorphism

@.1) HY(T) = H*(T(D))

between the equivariant cohomology of 7" and the cohomology of the total space of the bundle T(T").

Here, “natural” means that this isomorphism exists for not just the torus, but for any I'-space and correspond-
ing bundle over Y (I'), and is functorial for morphisms between such objects. See, for example, the second

author’s thesis [X, §3] for an explanation of this dictionary between bundles over the classifying space and

equivariant spaces.
Then following [ , §3], if we fix an auxiliary integer ¢ > 1, there is a unique class
4 € Hy(T —T[e]. Z[1/c])

characterized by being invariant by [a], (for all integers a relatively prime to ¢, which we denote by N(©)) and
having residue

[T[c] — ¢{0}] € Hf g (T, Z[1/c]) = H*(T[c])",
where HE’T[C] (T') denotes the equivariant cohomology with support (defined in the usual “Borel” way by
[-cochains, for example in the author’s thesis [X, §2.1]). When I' = I'(N) and a I'-fixed point («, 5) €
~Z?/7 = T[N, the formulas of [ , §9] tell us that for any ¢ > 1 with (ca, ¢f5) = (o, B).

(a, B)* A7 € HY(x, Z[1/e, (¢ — 1)) = H\(T, Z[1/e, (¢ — 1))

1—¢2

IThe torsion-free assumption is not strictly necessary, but we make it for simplicity.

3



EISENSTEIN SERIES IN EQUIVARIANT COHOMOLOGY PETER XU

has a de Rham representative —3 [ Ey Ple H'(Y(T),Z[1/c]) as defined in the introduction, under the identi-
fication (2.1).

2.1. Computing with complexes. We now define the main tool we need, in this setting: the distributional
de Rham complex of T'. Write Di"r for the real-valued smooth 7-currents on 7', i.e. the linear dual of the
compactly-supported smooth (2 — i)-forms QQT_CZ The exterior derivative d : D — D' is defined as the

graded adjoint of the exterior derivative on forms, i.e.
(de)(n) == (=1)"c(dn).
With this differential, the currents form a complex
D) — Dy — D3,

computing the real cohomology of 7". There is an injective quasi-isomorphism from the usual de Rham

complex

(2.2) U:Q%%'D%,QWH(HHJU/\W>
T

whose injectivity can be seen locally by the non-degeneracy of the wedge product pairing. Via this map, we
can and will implicitly view smooth forms as currents.

We would like to say that the map v is a natural isomorphism, but this functoriality actually fails, because
the integral over 7' depends on its orientation, and so is reversed in sign by orientation-reversing maps.
Consequently, for orientation-reversing maps, the action on currents can fail to give the correct action on
cohomology. For example, on S!, pushforward by the inverse map [—1], sends the 1-form dz — —dz, as it
does for the associated cohomology class, but if we take the “natural” adjoint action, we have:

[ () ) = (11n) = | [T ade = | n(=2)ds = | () dz = (o(d))
for a compactly supported smooth O-form (i.e. function on S*) 7, so we see that [—1], actually fixes the
associated current.” In this article, we will always take the orientation on 7" given by the class [dz; A dz] €
H?(T), and avoid orientation-reversing maps where possible.

This subtlety addressed, we now introduce an important class of currents: associated to closed oriented

submanifolds Z < T of codimension s, we have a closed current of integration
52 € D%

defined by
dz(w) = J w.
z

2Philosophicadly, what is happening is that the distributional de Rham complex is really computing Borel-Moore homology, not
cohomology. The usual isomorphism between the two is via Poincaré duality, which depends on a choice of orientation class.

4



PETER XU EISENSTEIN SERIES IN EQUIVARIANT COHOMOLOGY
In line with our discussion above, reversing the orientation of Z turns ¢, into —J_,. Further, a current

w € DL having residue C € H°(T'[c]) along the residue map
H'(T —T[e],R) — H*(T|c])

is equivalent to dw = d¢ (where this means the linear combination of the currents of integration along points
in the support of C corresponding to their coefficients). See for example [X, (3.3)] from the author’s thesis:
in general, [X, §3.2.2] contains more details on the distributional de Rham complex along with proofs (or

references to original proofs).

Since the distributional de Rham complex is a functorial complex computing ordinary real cohomology, the
equivariant cohomology of 7" can thus be computed by the double complex C*(I", D%.), where I' = SLy(Z)
acts on 7T'-currents by pushforward. Analogously to the non-equivariant case, then, an element w of this
double complex restricts to a representative of a class in H}:(T — T'[c]) with residue

[T[e] = c*{0}] e H(T[c])"

if and only if the total differential of w is d7(q — ¢*dg € C°(T', D7.). In particular, if we can find such a class

which is invariant by [a], for all integers a relatively prime to ¢, then it will represent the class

29 e HAT — T[], R).

2.2. Bernoulli polynomials. We now know that in principle, one can compute Eisenstein classes by finding

trace-fixed lifts inside the distributional de Rham complex.

These elements will be built out of the periodic Bernoulli polynomials of weight 1

Bi(z) :={z} — %

where {z} is the fractional part of z, i.e. its unique representative in [0, 1) modulo 1, and weight-2
1

Byfz) = {21 — {2} + o

As periodic functions, these Bernoulli polynomials can be viewed as defined on R/Z. Clearly, B; is not
smooth, or even continuous; its graph is in the shape of a sawtooth. The weight-two Bs, meanwhile, is
continuous, since 0> — 0 + 1/6 = 1> — 1 + 1/6, and smooth away from the identity in S*. Also away from
the identity, it is easy to see that B(z) = 2B;(z). Furthermore, these polynomials satisfy the distribution

relations

Bi(2) = [al:Bi(2) = ), Bi(2)

2/€la]~1z
By(z) = alal«B2(2) :=a Z By(z)
Z'€la]~1z

for all a € N, as can be easily verified by hand.



EISENSTEIN SERIES IN EQUIVARIANT COHOMOLOGY PETER XU
Despite not being smooth as functions, B;(z) and Bs(z) can be considered as smooth 0-currents on all of S?,
in the sense that

a— | Bi(z)a
Sl
is a well-defined functional on smooth 1-forms o on S!, for i = 1, 2. Considered currents, we have that

dB1 =dz — 50,
dBy = 2By dz
the former of which can be verified by computing their Fourier coefficients.

We now construct a certain element 6 of total degree 1 in the double complex of inhomogenous I'-cochains
valued in D, which we denote by C*(I", Df); i.e., in

C°(T, D) ® C'(I, DY)
such that its total differential is
50 — le AN ng € CO(P, D%)

In particular, we set
CO(F, D%v) = ,D%—v =} 90’1 = —Bl<21) (522:0 + Bl(ZQ) le

Then we can compute that the derivative of this element as a current is
(50 — le A dZQ
as desired, so to define §'° € C1(T", DY), it remains to find a lift of

or0™ = (v — (v — 1)[=B1(21) 02y—0 + Bi(2) dz1]).

Before discussing how to find these lifts, we observe the relation of any such lift to the Eisenstein class. The
key observation is that the class §%! is trace-fixed, i.e. [a].0%" = 6°! for all @ € N. Then if we can find a lift
610 of opf°* which is similarly trace-fixed, we can conclude:

Proposition 2.1. Given a such a trace-fixed element 6 = 01° + %! with d,,,0 = 6y — dz1 A dzo as above, we

have for any integer c > 1 that

[([e]* = *)0] = 2 € HX(T — T]c]).

Proof. From the preceding discussion, we see that ([¢]* —¢?)0 is an element with total differential o7 —c*dy,

which is fixed by [a], for all (a,c) = 1. We hence conclude its restriction to 7" — T'[¢] is a closed (under d,;)

element which satisfies the properties characterizing zﬁc)

, and hence represents it in cohomology. U
2.3. Finding lifts. In this section, we will find a definition of % by finding suitable lifts of 06!, and see

how this leads directly to formulas for the periods of classical Eisenstein series.
6



PETER XU EISENSTEIN SERIES IN EQUIVARIANT COHOMOLOGY
We begin by noting that

(2.3) (yoy1 — 1) = ya(y1 — 1)0%! + (7 — 1)6%*

so the problem of finding a lift for I' can be reduced to finding preimages of

(v = D)(B1(21) 025=0 — Bi(22) d21)

for v running over a set generators of I'.

2.4. Lifts for SLy(Z) and classical Dedekind-Rademacher formulas. We therefore consider the case of
[' = SLy(Z), which is famously generated by the two matrices

(0 3) = 00)

(24) (S* — 1)(—31(21) 5Z2=0 + Bl(ZQ) le) = —Bl(Zg) 521=0 + Bl(Zl) 522=0 — Bl(zl) dZQ — Bl(Zg) le
(2.5) = d(—Bi(21)Bi(22))

For the matrix S, we find that

and hence can take — B;(21) B (z2) as our preimage.

For the matrix 7', we find that

(26) (T* — 1)(-31(21) 52«2:0 + Bl(ZQ) d21> = Bl(Zg)d<Zl - 22) - Bl(22> le
(27) = —Bl(ZQ)dZQ
(2.8) = d(—Bs(21)/2).

Analogously, for T°, for any b € Z, we get that —bBy(21)/2 is a lift of
(Tf — 1)(—31 (Zl) (522:0 + B1 (22) le)
In principle, then, by expressing v € SLy(Z) in the form
ST ST ... ST

for some finite string of nonnegative integers b, . . ., by (positive except for possibly b;), we can recursively
find the value of #! for v using (2.3), and therefore compute
Y70
J ESP (1) dr
70
if v fixes («, 8) € Z/N for some integer N > 1. However, this expression would become quite involved
due to its recursive definition. The intricacies can be packaged into a formalism of continued fractions, as in

[KM], which we do not reiterate here.
7



EISENSTEIN SERIES IN EQUIVARIANT COHOMOLOGY PETER XU
Instead, we will follow a different approach to the definition of #'° not requiring arbitrary-length decompo-

sitions of matrices.

2.5. Lifts for SLy(Q). To obtain the classical formulas (1.1), we actually extend the range of our cocycle.

The key observation is that all the expressions involved, from the original class
(50 — le VAN dZQ,
to the lifted class
—Bl(Zl) 522:0 + Bl (ZQ) d2’1
to the explicit lifts for S and T°
—Bl (Zl)Bl (ZQ), _b32 (ZQ)/Q,

are all invariant under the scalar pushforwards [a], for any a € N\{0}. For any module M equipped with
such a monoid action of N*, we write M () for this trace-fixed part; in particular, we can apply this to the

pushforward action on the distributional de Rham complex of 7'. For this complex, we can observe:

Proposition 2.2. The trace-fixed complex
0 — (D7) — (D) — (D7)

is left-exact.

Proof. This can be proven identically to [SV, Lemma 6.2.1], as the only trace-fixed cohomology of 7" is in

top degree.’ O

Then the trace-fixed complex actually takes an action of GL; (Q) and not just SLy(Z), since if we write for
any M € GL3 (Q)
M = [a] "M’
where M’ is an integral matrix, it is well-defined to give the action of M on (D%)® as simply coinciding
with that of (M’),, since all scalars act trivially. Correspondingly, we can set I' = GLJ (Q), and ask for §-°
to lift
(v — 1)(—=Bi(21) 029=0 + B1(22) dz1)

for any rational invertible orientation-preserving matrix v € GL3 (Q).

The upshot of making our group larger is that we have the Bruhat decomposition

e o0 -1
a0 )

3In fact, one can show using Fourier series that the complex is almost right-exact as well, except for one dimension of cohomology
on the right, but this is not necessary for our purposes. For details, see [RX], which generalizes much of this background to
general-dimension tori.

8



PETER XU EISENSTEIN SERIES IN EQUIVARIANT COHOMOLOGY
where B < GL; (Q) is the upper triangular Borel subgroup. This Borel subgroup has the further decompo-
sition

B=UxD

(1))

are respectively the upper unipotent and diagonal torus subgroups of GL; (Q). By taking advantage of these

where

decompositions, then, we can turn the lifting problem for a general element of GL; (Q) into a problem for

these three simple types of matrices: for the matrix

5= (0 3)
we(30)

for any b € QQ, we can compute similarly to the case of b € Z (in which case v;, = T°) that a lift is given by

we have already done this. For

— bB2 (ZQ)/2 .
Finally, any diagonal matrix in D fixes —B1(z1) 0,,—0 + B1(22) dz1, so the corresponding lift is zero.

This, as in the previous section, makes it in in principle possible to write down the value of 6 for any

element of GL; (Q), but to obtain the classical formulas (1.1) we need an explicit version of the Bruhat
a b
= eB
a by (1 b/d) [a O
0d/ \o 1/)\0od)

decomposition: For any
we can write
In the other Schubert cell, for

with ¢ # 0, we can write

(a b) _ (1 a-sgn(c)) <0 —1) (sgn(c) 0 ) (1 d/c)
c d 0 | 1 0 0 sgn(c)) \0

Let us see how the formulas (1.1) now follow from these explicit decompositions. For v € B, we find that

1 b/d 1 b/d a 0 1 b/d b
1,0 _ plo 1,0 — pLo =
b =9 <o 1)+<o 1)*9 (0 d> f (o 1) 2q72(%2)
9




EISENSTEIN SERIES IN EQUIVARIANT COHOMOLOGY PETER XU
For v € GLj (Q) — B, we use the further decompositions

1 a-sgn(c))y (1 a/c) (1 O
0 | o 1/\o |
1 dfe A WA

o %52) o1 )0k

Recalling that the positive diagonal torus QZ, x QZ, < GLy(Q) acts trivially on B;(21) 6,,—0 — B1(22) dz1,

and

coming from B = U x D.

using the recursive principle (2.3) we find using our explicit Bruhat decomposition that the lift 6%:°(~y) can be

written as the sum of three terms:

(1) The lift
a
GI’O(UQ/C) = _%BQ(ZQ)

(2) The lift

(3) The lift

1 a-sgn(c) 10 d a-sgn(c) —1
S.0" ety) = — B
(O ’C‘ >* (Ud/d t’)/) 2det”}/ ‘C’ O . 2(22)

2.6. Comparison of pullbacks. Let us see how the lift % of the previous section recovers the original
formula (1.1) for matrices in SLy(Z). Our idea is that if we have a ['-fixed torsion section («, §) : = < T, we
would like to compare the evaluation (c, 3)*0"° with the period Ei - Dy passing via the cohomology class
<~r which both are related to.

The problem is that ' is valued in O-currents rather than functions, whose evaluation at points is not in
general well-defined: currents cannot be pulled back by closed inclusions in general. Thus, we cannot even a
priori evaluate our cocycle at («, 3), let alone compare the result with the analogous pullback of the Eisenstein
cohomology class .zr.

The first technical tool we need to remedy this is the introduction of a variant of the distributional de Rham
complex: for fixed ¢, and any I' = GLJ (Q), let Hr < T be the T'-orbit of the lines {z; = i/c} and {29 = i/c}
inside 7" as ¢ varies over {0,1,...,7 — 1}. Each of these (infinitely many) “lines” inside 7" is a subtorus

embedded as a subgroup, up to translation by a point of 7'[c]. For any finite subarrangement H < Hr, we
10
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define a complex D, ; via the pullback square

D;, — D}

(2.9) l l

Qr y —— Dy oy

which results in an identification of D}’ y With the i-currents such that their restriction to 7' — H are given by
smooth ¢-forms. Here, the bottom horizontal map is the earlier-defined inclusion, and the right vertical map
is the restriction dual to the pushforward of compactly-supported differential forms. We define then
Dy gy = h_r,nD;“H
H

where the limit runs over H finite subarrangements of Hp, along the natural inclusion maps. The group I
permutes the pullback diagrams for each H (sending it to that of vH'), and these assemble to give a pushfor-
ward action on D3, ;. Further, because the bottom row in each pullback diagram is a quasi-isomorphism,
we see that D5, ;- computes the cohomology of 7', just as D3 does. Furthermore, analogously to the full
distributional de Rham complex, we have a left exact sequence

0— (D%HF)(O) - (DZIF,HF)(O) - (D:QF,HF)(O)

The important new phenomenon for us is that if I fixes a point («, #) € T not lying in Hr, then there is a
composite pullback map

D(Y)“,Hp — lim Vg
H
which induces the pullback («, 5)* on the level of real cohomology. One consequence of this exactness is

that the required property of 60, i.e. that of lifting

v (’Y - 1)<9071)7

must characterize it uniquely up to coboundaries if we insist that it be valued in trace-fixed O-currents.

With these ingredients, we are now able to prove the central comparison result:

Theorem 2.3. IfI' = GLy(Q)™ fixes (o, 5) € T[N]\{0}, then for all v € T,

1

—5®as(7) = (@, 8)"0"°(7)

where here, we somewhat abusively consider 0*° to be valued in the functions given by the formulas in section

2.5 to make sense of the pullback in general.*

“This theorem still holds if we define the lift §1:° according to the formulas in section 2.4 instead (i.e. using the lifts obtained by
S, T decompositions in SLy(Z) instead of the Bruhat decomposition in GLJ (Q)), with the same proof. Since our main focus is
the lifts taking advantage of the Bruhat decomposition, we choose to phrase everything in terms of the section 2.5 formulas.

11
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Proof. We begin by treating only the case where either a # 0 or 5 # 0, as this is easier. In this case, we see

that in fact according to our formulas,

([e]* = )0™(v) € (D)

for all v € T, since its derivative is a smooth 1-form once restricted away from Hr. Then since («, 3) ¢ Hr,
we conclude that it makes sense to consider the pullback («, 3)*([c]* — ¢?)6; since this induces the pullback

on cohomology, we have

1 1 o 1

—5Pas(1) = (@ 8) Tt = (e, B)" (] — A)0(2) = (a, 5)°0()

for any ¢ such that (ca, cf) = («a, 5),i.e. c=1 (mod N). For these («, /3), the result follows, since the only

non-vanishing component of § after pullback is 6%,

In the other case when either & = 0 or 8 = 0, the problem is that though the formulas in section 2.5 when
treated as functions make sense to evaluate at («, ), since they are not in the locus of smoothness, this
evaluation has no a priori cohomological meaning: heuristically, the currents “do not know” about the values
of functions like B;(z) at the boundary points where they are discontinuous. To remedy this, we have the

following lemma:

Lemma 2.4. There is an injection

M — (DE.I)“,HF)(O)
where M is defined to be the module of functions on T — {0} spanned by the GL3 (Q)-orbit (under pushfor-
ward) of Bs(z2) and B1(z1)B1(22), given by sending

o )

Proof of lemma. The only property of this inclusion whose proof is not fully analogous to the proof for the
inclusion of smooth O-forms is the injectivity: whereas for smooth forms it follows by using a partition of

unity to work locally, this is far from true in general if we weaken the continuity assumptions.’

Noting that the loci of discontinuity of functions in M can only be along codimension-1 subtori embedded as
subgroups, coming from terms of the form By (z;) By (z2) and its translates. We note the following property of
this function: if x = (21, x2) € T is a point lying on one of the subtori of discontinuity S < T (so z; = 0 or
x9 = 0) but not equal to zero, then S divides any sufficiently small neighborhood around z into two connected
components, which we label + and — arbitrarily. Then we observe that the limits from these two components

L+ = hm+ 31(2’1)31(2’2),L— = lim Bl(Zl)Bl(Zz)

zZ—T zZ—IT

SFor example, it fails even if we replace 7' — {0} by 7" in this very lemma, thanks to the identity
2(31(21)31(22) + Bl(ZQ)(Bl(—Zl - 2’2)) + Bl<—21 - ZQ)B1(Z1)) + BQ(Zl) + BQ(ZQ) + BQ(—ZQ — 22) =0

which holds identically away from the zero section (where the left-hand side evaluates to 1/2). This nonzero linear combination of
Bernoulli polynomials in M therefore gives rise to the zero current.

12
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exist, and furthermore that they average to zero. By moving this argument around by the general linear

action, this applies to any nonzero point on a codimension 1 discontinuity stratum of a function in the orbit
of Bl(zl)Bl(Zg>.

Now consider an arbitrary f € M, and suppose that the associated current [ f] is the trivial O-current. Then
as we have seen, f must be identically zero outside a finite union of subtori through the identity. Consider an

arbitrary nonzero point  on one of these subtori S < 7', and pick some decomposition

f=nr+/f

where f; consists of terms coming from the orbit of By or B;(z1)B;(z2) which do not have a discontinuity
along S, and f> consists of terms from the orbit of B;(z;)B;(22) which do have a discontinuity along S.
Then we find that

@10 5 (m £+ i f6) = 5 (Jm 16 - AE) + i 16~ AG)
@ =5 (i ~(e) + im (e

since f is identically zero on a neighborhood of x in 7" — S. But f; is continuous in a neighborhood of x
by assumption, so this expression is just — f1(x). On the other hand, the average of the two limits we started
with is zero from the preceding discussion, so we conclude that f;(z) = 0. We also have f5(z) = 0 because
functions in the orbit of B;(z1)B:(z2) are zero along their discontinuity loci by construction. We hence
conclude that f(x) = 0; since this applies to any nonzero point x, we conclude that f is the zero function on
T — {0}. This concludes the proof of injectivity. O

Remark 2.5. The fact that this injection only holds on 7'— {0}, and not 7', also has the following significance:
if we had injectivity also at zero, then (by the argument below) (1.3) would yield a valid cocycle even for
a = 3 = 0. This “®” in fact fails to be a cocycle: it is known in the literature as the Dedekind symbol,
whose coboundary gives a representative of the Euler class for SLy(7Z). Write M, for the analogue of M on

all of T": then by using the long exact sequence in SLs(Z)-cohomology associated to the short exact sequence
0—>%Z—> My— M—0

(where the map My — M is the evident “forgetting the value at 0 map), then the image of [f] under the
connecting map H'(I', M) — H?*(T',Z) yields the obstruction class to lifting 6 to H'(T", M,). Using our

explicit representative for #, one can therefore obtain a representative of the Euler class.

To conclude the proof in general, let T[N] < T be the subset of primitive N-torsion sections, i.e. those
of exact order N. Fix a point xy € T[N]" with two nonzero coordinates, and let I'; (zy) < SLo(Z) be the

congruence subgroup fixing xy. Then we have an identification

SLo(Z
Ind; 2 Q = homses (T[N], Q)
13
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since SLy(Z) permutes T'[N]' transitively and I'y(x) is the stabilizer of xo. We also have a SLy(Z)-
equivariant map

j M — homSets<T[N]/7Q)a f — (1: — I*f)
which yields by pushforward a cocycle

juf € CY(SLay(Z), Indy 2\ Q)

T1(zo0)

such that its restriction to I'; () is the cocycle x3), which we know represents the class —%@xo. Thus by

Shapiro’s lemma, the class [j.0] coincides with the restricted Eisenstein class on 7" N]

1 ¢ ,
5% € H'(SLa(2), HATNY)).

This implies that for any («, §) € T[N], with stabilizer T', we have

[(0,8)°0] = [(0, )" 8] = (0, )" =47 =~ [E2 ] € H'(T, Q).

2
Applying this argument starting with some z, with at least one nonzero coordinate (via the previous argu-

ment) completes our proof.

To conclude the article, we compare our explicit specializations of ' to the classical formulas (1.3), when
v € SLy(Z): thanks to the preceding theorem, these values should coincide precisely for all torsion sections
(cr, B), up to a factor of —1/2.

We recall our formulas for 6 stemming from the Bruhat decomposition: For y € B, we found
b
0'"°(y) = ——B
() =~ Bal=2)

whose pullback by («, 3)

b

e Ba(B)

clearly aligns with the classical formula for —%(I)aﬂ on upper triangular matrices.

For v € GL] (Q) — B, we recall we had 6'°(~) as the sum of three terms

_%BQ(ZQ) B <1 a- sgn(c)) Bu(21)Bi(25) — d (a -sgn(c) —1) Bo(z).

] 0
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Recalling that v is assumed to have integer entries, the second term becomes

1 a-sgn(c)

(2.12) — (o, B)* (0 ]

) Bi(z1)Bi(2z) = — Z By (1) Bi(2)

z1+a-sgn(c)za=a
|clza=8

le]—1 . .
(2.13) _ 2]31(a6+”-—§>31(6+2>.
= ¢ i

Finally, recalling that det v = 1, the third term becomes

le|]—1 .
d a-sgn(c) —1 d +1
e1y  —La e (@5 [sen(c)].Ba(z) = —5 > sgn(c)Ba (aﬁ - sgn(c)a>
2 o). 2 & <
d'& B+i
(2.15) =—— sgn(c) By
25 el
(2.16) - g (B)
. - % 2
by the distribution property of B, combined with the relation
B _ g N
C C

coming from the fact that v~!(«, 8) = (a, 3), i.e. v fixes the torsion point of evaluation.

Combining these three terms, we obtain precisely the classical formula (1.3) for —3®, 3 on the other Schubert

cell.

2.7. Future directions. One extension of the methods of this article, the subject of work in progress, is to
compute a formula for the (GLy, GL5)-Eisenstein theta lift of [ I: in this setting, (S1)? is replaced by
the square of an elliptic curve, the Bernoulli polynomials by theta series F; (7, z), Eo(7, ) whose pullbacks
are weight-1 and 2 Eisenstein series, and the equivariant de Rham complex by the weight-2 equivariant Dol-
beault complex. Otherwise, the method goes through in the same way, though the discontinuity phenomenon
exhibited by B; is replaced by a logarithmic singularity of £;. Unlike the present article, the formulas in the
theta lift setting are novel. (In parallel, we also are writing a preprint [X3] on the “stabilized” approach to this

theta lift, though this in the setting of K -theory rather than the differential forms which are their regulators.)

The more “obvious” direction of generalization is to replace GLy with GL,,, with its action on the n-torus,
and to obtain formulas for the periods of Eisenstein series of this larger group in terms of sums of products
of Bernoulli polynomials of total degree n: this would be the “algebraic” analogue of the Bernoulli formulas
in [ ], just as the present article is to [ ]. However, though most of our formalism goes through in
this case largely untouched, the combinatorics of finding lifts becomes much more delicate as n increases:
instead of just taking the Bruhat decomposition, one needs to consider families of nested parabolics to lift the

Bernoulli currents at various stages. It is presently unclear to us what a good systematic method for keeping
15
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track of these lifts might be; an approach inspired by the stratifications used in [ ] may be useful. A
topological approach, as we used in a slightly different setting [ X2] for example, would be ideal; however, it
would have to be much more complicated than in loc. cit. to account for the phenomena arising from various
parabolic subgroups. Asin [ ] in the case n = 2, this may be related to the geometry of the Borel-Serre

compactification of the associated symmetric space.

The other issue that occurs in this generalization is that the analogue of Lemma 2.4 is only true in codimension
1 generally, as suggested by the main theorem of [ ], so we would not know how to treat pullbacks torsion
sections with multiple zero coordinates in a uniform one. (One could simply take a different initial lift to avoid
the issue with any given fixed torsion section, but then this makes the results less systematic.) Because of
these technical difficulties, this direction of generalization is currently not the subject of our work; however,

it would be interesting to understand how they can be circumvented.

Finally, it would be interesting to see if similar formulas could be obtained in this way for GLs-Eisenstein
series of higher weight, by introducing twisted coefficients into our complexes. It is, however, not obvious to
us what precisely the twisted analogue of our periodic Bernoulli polynomials should be.
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