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ABSTRACT. We find group cochains valued in currents giving explicit representatives for the GL2-equivariant
polylogarithm class of a torus. Based on the construction of weight-2 Eisenstein series for GL2 from this polylog-
arithm class, we give a geometrically-flavored derivation of the classical formulas for the associated Dedekind-
Rademacher homomorphisms, i.e. the periods of E2

α,β for various nonzero torsion sections pα, βq.
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EISENSTEIN SERIES IN EQUIVARIANT COHOMOLOGY PETER XU

1. INTRODUCTION: CLASSICAL EISENSTEIN SERIES

Consider the classical weight-2 Eisenstein series by the analytic continuation/Hecke regularized series

(1.1) Eα,β
2 pτq :“

¨

˝

ÿ

m,nPZ2z0

exppmα ` nβq

|mτ ` n|2spmτ ` nq2

˛

‚

s“0

where τ P H is a variable in the upper half-plane, exppzq :“ e2πiz, and pα, βq P p 1
N
Z{Zq2 ´ tp0, 0qu

parameterizes an additive character of Z2 of conductor dividing N , for some integer N ą 1. We may assume
N is minimal, i.e. pα, βq is a primitive vector, so that the conductor is precisely N . Then Eα,β

2 pτq is a
holomorphic modular form of level ΓpNq; see, e.g., [Weil, III(11)].

A classical formula due to Siegel [Sieg] gives formulas for the periods of these modular forms in terms of
periodic Bernoulli polynomials: we write

(1.2) B2pxq :“ txu
2

´ txu ` 1{6, B1pxq :“

$

&

%

0 if x P Z ,

txu ´ 1{2 otherwise .

for the first two periodic Bernoulli polynomials, thought of as functions on R{Z. Here, txu denotes the
“fractional part” function which takes the remainder modulo 1 (i.e. in r0, 1q) of any real number. Then
associated to any matrix

γ :“

˜

a b

c d

¸

P ΓpNq,

the integral

Φα,βpγq :“ ´
1

2π2i

ż γτ0

τ0

Eα,β
2 pτqdτ

is independent of the basepoint τ0, and yields a homomorphism ΓpNq Ñ Q given by

(1.3) Φα,βpγq “

$

’

’

’

’

&

’

’

’

’

%

b

d
B2pβq if c “ 0 ,

a ` d

c
B2pβq ´ 2

|c|´1
ÿ

i“0

B1

ˆ

β ` i

|c|

˙

B1

ˆ

a
β ` i

c
´ α

˙

otherwise .

This formula exhibits the a priori non-obvious fact that the various Eisenstein series Eα,β
2 , which together

span all the holomorphic Eisenstein classes in the first cohomology of any arithmetic subgroup of the modular
group [DS, §4.6], give rational classes. In fact, by taking suitably smoothed combinations (“stabilizations”),
one can even deduce integrality results, as, e.g. in [BCG1, Corollary 27].

The original proof of this formula, in [Sieg, Theorem 13], was by analytic means, grouping terms in infinite
series and dealing with delicate convergence issues. Our proof is almost entirely algebraic, and closely tied
to the underlying linear algebraic geometry of the 2-torus with GL2-action.
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The content of the article can be viewed as an algebraic approach to the construction of the Bernoulli-
Eisenstein classes of Sczech [Scz1].

1.1. Acknowledgments. I would like to thank Marti Roset Julia for helping me to understand how to recon-
cile the explicit formulas, and Nicolas Bergeron for his inspiration in pursuing this work.

2. EQUIVARIANT/DE RHAM EISENSTEIN CLASSES

We follow the treatment of [BCG1] to identify Eα,β
2 with a class in cohomology. Let Γ be a torsion-free

subgroup of GL2pZq;1 then the Γ-action on the upper half-plane H by Möbius transformations
˜

a b

c d

¸

τ :“
aτ ` b

cτ ` d

is free and therefore Y pΓq :“ ΓzH is a model for the classifying space of Γ. The torus bundle over the
classifying space

T pΓq :“ ΓzpH ˆ pC{Z2
qq

then corresponds to the torus T :“ C{Z2 with left Γ-action given by the left standard representation of
GL2pZq Ă GL2pCq on C2, which coincides with the monodromy action on fibers. Here, we say “corre-
sponds” in the sense that there is a natural isomorphism

(2.1) H‚
ΓpT q – H‚

pT pΓqq

between the equivariant cohomology of T and the cohomology of the total space of the bundle TpΓq.

Here, “natural” means that this isomorphism exists for not just the torus, but for any Γ-space and correspond-
ing bundle over Y pΓq, and is functorial for morphisms between such objects. See, for example, the second
author’s thesis [X, §3] for an explanation of this dictionary between bundles over the classifying space and
equivariant spaces.

Then following [BCG1, §3], if we fix an auxiliary integer c ą 1, there is a unique class

z
pcq

Γ P H1
ΓpT ´ T rcs,Zr1{csq

characterized by being invariant by ras˚ (for all integers a relatively prime to c, which we denote by Npcq) and
having residue

rT rcs ´ c2t0us P H2
Γ,T rcspT,Zr1{csq – H0

pT rcsqΓ,

where H‚
Γ,T rcs

pT q denotes the equivariant cohomology with support (defined in the usual “Borel” way by
Γ-cochains, for example in the author’s thesis [X, §2.1]). When Γ “ ΓpNq and a Γ-fixed point pα, βq P

1
N
Z2{Z “ T rN s, the formulas of [BCG1, §9] tell us that for any c ą 1 with pcα, cβq “ pα, βq.

pα, βq
˚ 1

1 ´ c2
z

pcq

Γ P H1
Γp˚,Zr1{c, pc2 ´ 1q

´1
sq “ H1

pΓ,Zr1{c, pc2 ´ 1q
´1

sq

1The torsion-free assumption is not strictly necessary, but we make it for simplicity.
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has a de Rham representative ´1
2
rEα,β

2 s P H1pY pΓq,Zr1{csq as defined in the introduction, under the identi-
fication (2.1).

2.1. Computing with complexes. We now define the main tool we need, in this setting: the distributional
de Rham complex of T . Write Di

T for the real-valued smooth i-currents on T , i.e. the linear dual of the
compactly-supported smooth p2 ´ iq-forms Ω2´i

T,c . The exterior derivative d : Di
T Ñ Di`1

T is defined as the
graded adjoint of the exterior derivative on forms, i.e.

pdcqpηq :“ p´1q
deg ccpdηq.

With this differential, the currents form a complex

D0
T Ñ D1

T Ñ D2
T ,

computing the real cohomology of T . There is an injective quasi-isomorphism from the usual de Rham
complex

(2.2) υ : Ωi
T ãÑ Di

T , ãÑ ω ÞÑ

ˆ

η ÞÑ

ż

T

η ^ ω

˙

whose injectivity can be seen locally by the non-degeneracy of the wedge product pairing. Via this map, we
can and will implicitly view smooth forms as currents.

We would like to say that the map υ is a natural isomorphism, but this functoriality actually fails, because
the integral over T depends on its orientation, and so is reversed in sign by orientation-reversing maps.
Consequently, for orientation-reversing maps, the action on currents can fail to give the correct action on
cohomology. For example, on S1, pushforward by the inverse map r´1s˚ sends the 1-form dz ÞÑ ´dz, as it
does for the associated cohomology class, but if we take the “natural” adjoint action, we have:

r´1s˚pυpdzqqpηq “ pυpdzqqpr´1s
˚ηq “

ż

S1

r´1s
˚η ^ dz “

ż

S1

ηp´zq dz “

ż

S1

ηpzq dz “ pυpdzqqpηq

for a compactly supported smooth 0-form (i.e. function on S1) η, so we see that r´1s˚ actually fixes the
associated current.2 In this article, we will always take the orientation on T given by the class rdz1 ^ dz2s P

H2pT q, and avoid orientation-reversing maps where possible.

This subtlety addressed, we now introduce an important class of currents: associated to closed oriented
submanifolds Z Ă T of codimension s, we have a closed current of integration

δZ P Ds
T

defined by

δZpωq :“

ż

Z

ω.

2Philosophically, what is happening is that the distributional de Rham complex is really computing Borel-Moore homology, not
cohomology. The usual isomorphism between the two is via Poincaré duality, which depends on a choice of orientation class.
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In line with our discussion above, reversing the orientation of Z turns δZ into ´δ´Z . Further, a current
ω P D1

T having residue C P H0pT rcsq along the residue map

H1
pT ´ T rcs,Rq Ñ H0

pT rcsq

is equivalent to dω “ δC (where this means the linear combination of the currents of integration along points
in the support of C corresponding to their coefficients). See for example [X, (3.3)] from the author’s thesis:
in general, [X, §3.2.2] contains more details on the distributional de Rham complex along with proofs (or
references to original proofs).

Since the distributional de Rham complex is a functorial complex computing ordinary real cohomology, the
equivariant cohomology of T can thus be computed by the double complex C‚pΓ,D‚

T q, where Γ Ă SL2pZq

acts on T -currents by pushforward. Analogously to the non-equivariant case, then, an element ω of this
double complex restricts to a representative of a class in H1

ΓpT ´ T rcsq with residue

rT rcs ´ c2t0us P H0
pT rcsqΓ

if and only if the total differential of ω is δT rcs ´ c2δ0 P C0pΓ,D2
T q. In particular, if we can find such a class

which is invariant by ras˚ for all integers a relatively prime to c, then it will represent the class

z
pcq

Γ P H1
ΓpT ´ T rcs,Rq.

2.2. Bernoulli polynomials. We now know that in principle, one can compute Eisenstein classes by finding
trace-fixed lifts inside the distributional de Rham complex.

These elements will be built out of the periodic Bernoulli polynomials of weight 1

B1pzq :“ tzu ´
1

2

where tzu is the fractional part of z, i.e. its unique representative in r0, 1q modulo 1, and weight-2

B2pzq “ tzu
2

´ tzu `
1

6
.

As periodic functions, these Bernoulli polynomials can be viewed as defined on R{Z. Clearly, B1 is not
smooth, or even continuous; its graph is in the shape of a sawtooth. The weight-two B2, meanwhile, is
continuous, since 02 ´ 0 ` 1{6 “ 12 ´ 1 ` 1{6, and smooth away from the identity in S1. Also away from
the identity, it is easy to see that B1

2pzq “ 2B1pzq. Furthermore, these polynomials satisfy the distribution
relations

B1pzq “ ras˚B1pzq :“
ÿ

z1Pras´1z

B1pzq

B2pzq “ aras˚B2pzq :“ a
ÿ

z1Pras´1z

B2pzq

for all a P N, as can be easily verified by hand.
5
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Despite not being smooth as functions, B1pzq and B2pzq can be considered as smooth 0-currents on all of S1,
in the sense that

α ÞÑ

ż

S1

Bipzqα

is a well-defined functional on smooth 1-forms α on S1, for i “ 1, 2. Considered currents, we have that

dB1 “ dz ´ δ0,

dB2 “ 2B1 dz

the former of which can be verified by computing their Fourier coefficients.

We now construct a certain element θ of total degree 1 in the double complex of inhomogenous Γ-cochains
valued in D‚

T , which we denote by C‚pΓ,D‚
T q; i.e., in

C0
pΓ,D1

T q ‘ C1
pΓ,D0

T q

such that its total differential is
δ0 ´ dz1 ^ dz2 P C0

pΓ,D2
T q.

In particular, we set
C0

pΓ,D1
T q – D1

T Q θ0,1 :“ ´B1pz1q δz2“0 ` B1pz2q dz1

Then we can compute that the derivative of this element as a current is

δ0 ´ dz1 ^ dz2

as desired, so to define θ1,0 P C1pΓ,D0
T q, it remains to find a lift of

BΓθ
0,1

“ pγ ÞÑ pγ ´ 1qr´B1pz1q δz2“0 ` B1pz2q dz1sq .

Before discussing how to find these lifts, we observe the relation of any such lift to the Eisenstein class. The
key observation is that the class θ0,1 is trace-fixed, i.e. ras˚θ

0,1 “ θ0,1 for all a P N. Then if we can find a lift
θ1,0 of BΓθ

0,1 which is similarly trace-fixed, we can conclude:

Proposition 2.1. Given a such a trace-fixed element θ “ θ1,0 ` θ0,1 with dtotθ “ δ0 ´ dz1 ^ dz2 as above, we
have for any integer c ą 1 that

rprcs˚
´ c2qθs “ z

pcq

Γ P H1
ΓpT ´ T rcsq.

Proof. From the preceding discussion, we see that prcs˚ ´c2qθ is an element with total differential δT rcs ´c2δ0,
which is fixed by ras˚ for all pa, cq “ 1. We hence conclude its restriction to T ´ T rcs is a closed (under dtot)
element which satisfies the properties characterizing z

pcq

Γ , and hence represents it in cohomology. □

2.3. Finding lifts. In this section, we will find a definition of θ1,0 by finding suitable lifts of γBΓθ
0,1, and see

how this leads directly to formulas for the periods of classical Eisenstein series.
6
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We begin by noting that

(2.3) pγ2γ1 ´ 1qθ0,1 “ γ2pγ1 ´ 1qθ0,1 ` pγ2 ´ 1qθ0,1

so the problem of finding a lift for Γ can be reduced to finding preimages of

pγ ´ 1qpB1pz1q δz2“0 ´ B1pz2q dz1q

for γ running over a set generators of Γ.

2.4. Lifts for SL2pZq and classical Dedekind-Rademacher formulas. We therefore consider the case of
Γ “ SL2pZq, which is famously generated by the two matrices

S “

˜

0 ´1

1 0

¸

, T “

˜

1 1

0 1

¸

.

For the matrix S, we find that

pS˚ ´ 1qp´B1pz1q δz2“0 ` B1pz2q dz1q “ ´B1pz2q δz1“0 ` B1pz1q δz2“0 ´ B1pz1q dz2 ´ B1pz2q dz1(2.4)

“ dp´B1pz1qB1pz2qq(2.5)

and hence can take ´B1pz1qB1pz2q as our preimage.

For the matrix T , we find that

pT˚ ´ 1qp´B1pz1q δz2“0 ` B1pz2q dz1q “ B1pz2qdpz1 ´ z2q ´ B1pz2q dz1(2.6)

“ ´B1pz2qdz2(2.7)

“ dp´B2pz1q{2q.(2.8)

Analogously, for T b, for any b P Z, we get that ´bB2pz1q{2 is a lift of

pT b
˚ ´ 1qp´B1pz1q δz2“0 ` B1pz2q dz1q.

In principle, then, by expressing γ P SL2pZq in the form

ST b1ST b2 . . . ST bk

for some finite string of nonnegative integers b1, . . . , bk (positive except for possibly bk), we can recursively
find the value of θ0,1 for γ using (2.3), and therefore compute

ż γτ0

τ0

Eα,β
2 pτq dτ

if γ fixes pα, βq P Z{N for some integer N ą 1. However, this expression would become quite involved
due to its recursive definition. The intricacies can be packaged into a formalism of continued fractions, as in
[KM], which we do not reiterate here.

7
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Instead, we will follow a different approach to the definition of θ1,0 not requiring arbitrary-length decompo-
sitions of matrices.

2.5. Lifts for SL2pQq. To obtain the classical formulas (1.1), we actually extend the range of our cocycle.
The key observation is that all the expressions involved, from the original class

δ0 ´ dz1 ^ dz2,

to the lifted class
´B1pz1q δz2“0 ` B1pz2q dz1

to the explicit lifts for S and T b

´B1pz1qB1pz2q, ´bB2pz2q{2,

are all invariant under the scalar pushforwards ras˚ for any a P Nzt0u. For any module M equipped with
such a monoid action of Nˆ, we write M p0q for this trace-fixed part; in particular, we can apply this to the
pushforward action on the distributional de Rham complex of T . For this complex, we can observe:

Proposition 2.2. The trace-fixed complex

0 Ñ pD0
T q

p0q
Ñ pD1

T q
p0q

Ñ pD2
T q

p0q

is left-exact.

Proof. This can be proven identically to [SV, Lemma 6.2.1], as the only trace-fixed cohomology of T is in
top degree.3 □

Then the trace-fixed complex actually takes an action of GL`
2 pQq and not just SL2pZq, since if we write for

any M P GL`
2 pQq

M “ ras
´1M 1

where M 1 is an integral matrix, it is well-defined to give the action of M on pDi
T qp0q as simply coinciding

with that of pM 1q˚, since all scalars act trivially. Correspondingly, we can set Γ “ GL`
2 pQq, and ask for θ1,0

to lift
pγ ´ 1qp´B1pz1q δz2“0 ` B1pz2q dz1q

for any rational invertible orientation-preserving matrix γ P GL`
2 pQq.

The upshot of making our group larger is that we have the Bruhat decomposition

GL`
2 pQq “ B

˜

0 ´1

1 0

¸

B

3In fact, one can show using Fourier series that the complex is almost right-exact as well, except for one dimension of cohomology
on the right, but this is not necessary for our purposes. For details, see [RX], which generalizes much of this background to
general-dimension tori.

8
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where B ď GL`
2 pQq is the upper triangular Borel subgroup. This Borel subgroup has the further decompo-

sition
B “ U ¸ D

where

U “

˜

1 ‚

0 1

¸

, D “

˜

‚ 0

0 ‚

¸

are respectively the upper unipotent and diagonal torus subgroups of GL`
2 pQq. By taking advantage of these

decompositions, then, we can turn the lifting problem for a general element of GL`
2 pQq into a problem for

these three simple types of matrices: for the matrix

S “

˜

0 ´1

1 0

¸

we have already done this. For

υb :“

˜

1 b

0 1

¸

for any b P Q, we can compute similarly to the case of b P Z (in which case υb “ T b) that a lift is given by

´bB2pz2q{2.

Finally, any diagonal matrix in D fixes ´B1pz1q δz2“0 ` B1pz2q dz1, so the corresponding lift is zero.

This, as in the previous section, makes it in in principle possible to write down the value of θ1,0 for any
element of GL`

2 pQq, but to obtain the classical formulas (1.1) we need an explicit version of the Bruhat
decomposition: For any

γ “

˜

a b

0 d

¸

P B

we can write
˜

a b

0 d

¸

“

˜

1 b{d

0 1

¸ ˜

a 0

0 d

¸

.

In the other Schubert cell, for

γ “

˜

a b

c d

¸

P GL`
2 pQq ´ B,

with c ‰ 0, we can write
˜

a b

c d

¸

“

˜

1 a ¨ sgnpcq

0 |c|

¸ ˜

0 ´1

1 0

¸ ˜

sgnpcq 0

0 sgnpcq

¸ ˜

1 d{c

0 det γ
|c|

¸

Let us see how the formulas (1.1) now follow from these explicit decompositions. For γ P B, we find that

θ1,0pγq “ θ1,0

˜

1 b{d

0 1

¸

`

˜

1 b{d

0 1

¸

˚

θ1,0

˜

a 0

0 d

¸

“ θ1,0

˜

1 b{d

0 1

¸

“ ´
b

2d
B2pz2q

9
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For γ P GL`
2 pQq ´ B, we use the further decompositions

˜

1 a ¨ sgnpcq

0 |c|

¸

“

˜

1 a{c

0 1

¸ ˜

1 0

0 |c|

¸

and
˜

1 d{c

0 det γ
|c|

¸

“

˜

1 d¨sgnpcq

det γ

0 1

¸ ˜

1 0

0 det γ
|c|

¸

coming from B “ U ¸ D.

Recalling that the positive diagonal torus Qˆ
ą0 ˆ Qˆ

ą0 Ă GL2pQq acts trivially on B1pz1q δz2“0 ´ B1pz2q dz1,
using the recursive principle (2.3) we find using our explicit Bruhat decomposition that the lift θ1,0pγq can be
written as the sum of three terms:

(1) The lift
θ1,0pυa{cq “ ´

a

2c
B2pz2q.

(2) The lift
˜

1 a ¨ sgnpcq

0 |c|

¸

˚

θ1,0pSq “ ´

˜

1 a ¨ sgnpcq

0 |c|

¸

˚

B1pz1qB1pz2q.

(3) The lift
˜

1 a ¨ sgnpcq

0 |c|

¸

˚

S˚θ
1,0

pυd{det γq “ ´
d

2 det γ

˜

a ¨ sgnpcq ´1

|c| 0

¸

˚

B2pz2q

2.6. Comparison of pullbacks. Let us see how the lift θ1,0 of the previous section recovers the original
formula (1.1) for matrices in SL2pZq. Our idea is that if we have a Γ-fixed torsion section pα, βq : ˚ ãÑ T , we
would like to compare the evaluation pα, βq˚θ1,0 with the period E2

α,β , by passing via the cohomology class

czΓ which both are related to.

The problem is that θ1,0 is valued in 0-currents rather than functions, whose evaluation at points is not in
general well-defined: currents cannot be pulled back by closed inclusions in general. Thus, we cannot even a
priori evaluate our cocycle at pα, βq, let alone compare the result with the analogous pullback of the Eisenstein
cohomology class czΓ.

The first technical tool we need to remedy this is the introduction of a variant of the distributional de Rham
complex: for fixed c, and any Γ Ă GL`

2 pQq, let HΓ Ă T be the Γ-orbit of the lines tz1 “ i{cu and tz2 “ i{cu

inside T as i varies over t0, 1, . . . , i ´ 1u. Each of these (infinitely many) “lines” inside T is a subtorus
embedded as a subgroup, up to translation by a point of T rcs. For any finite subarrangement H Ă HΓ, we

10
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define a complex D‚
T,H via the pullback square

(2.9)

D‚
T,H D‚

T

Ω‚
T´H D‚

T´H

which results in an identification of Di
T,H with the i-currents such that their restriction to T ´H are given by

smooth i-forms. Here, the bottom horizontal map is the earlier-defined inclusion, and the right vertical map
is the restriction dual to the pushforward of compactly-supported differential forms. We define then

D‚
T,HΓ

:“ lim
ÝÑ
H

D‚
T,H

where the limit runs over H finite subarrangements of HΓ, along the natural inclusion maps. The group Γ

permutes the pullback diagrams for each H (sending it to that of γH), and these assemble to give a pushfor-
ward action on D‚

T,HΓ
. Further, because the bottom row in each pullback diagram is a quasi-isomorphism,

we see that D‚
T,HΓ

computes the cohomology of T , just as D‚
T does. Furthermore, analogously to the full

distributional de Rham complex, we have a left exact sequence

0 Ñ pD0
T,HΓ

q
p0q

Ñ pD1
T,HΓ

q
p0q

Ñ pD2
T,HΓ

q
p0q

The important new phenomenon for us is that if Γ fixes a point pα, βq P T not lying in HΓ, then there is a
composite pullback map

D0
T,HΓ

Ñ lim
ÝÑ
H

Ω0
T´H

pα,βq˚

ÝÝÝÝÑ R

which induces the pullback pα, βq˚ on the level of real cohomology. One consequence of this exactness is
that the required property of θ1,0, i.e. that of lifting

γ ÞÑ pγ ´ 1qpθ0,1q,

must characterize it uniquely up to coboundaries if we insist that it be valued in trace-fixed 0-currents.

With these ingredients, we are now able to prove the central comparison result:

Theorem 2.3. If Γ Ă GL2pQq` fixes pα, βq P T rN szt0u, then for all γ P Γ,

´
1

2
Φα,βpγq “ pα, βq

˚θ1,0pγq

where here, we somewhat abusively consider θ1,0 to be valued in the functions given by the formulas in section
2.5 to make sense of the pullback in general.4

4This theorem still holds if we define the lift θ1,0 according to the formulas in section 2.4 instead (i.e. using the lifts obtained by
S, T decompositions in SL2pZq instead of the Bruhat decomposition in GL`

2 pQq), with the same proof. Since our main focus is
the lifts taking advantage of the Bruhat decomposition, we choose to phrase everything in terms of the section 2.5 formulas.
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Proof. We begin by treating only the case where either α ‰ 0 or β ‰ 0, as this is easier. In this case, we see
that in fact according to our formulas,

prcs˚
´ c2qθ1,0pγq P pD0

T,HΓ
q

p0q

for all γ P Γ, since its derivative is a smooth 1-form once restricted away from HΓ. Then since pα, βq R HΓ,
we conclude that it makes sense to consider the pullback pα, βq˚prcs˚ ´ c2qθ; since this induces the pullback
on cohomology, we have

´
1

2
Φα,βpγq “ pα, βq

˚ 1

1 ´ c2
z

pcq

Γ “
1

1 ´ c2
pα, βq

˚
prcs˚

´ c2qθpγq “ pα, βq
˚θpγq

for any c such that pcα, cβq “ pα, βq, i.e. c ” 1 pmod Nq. For these pα, βq, the result follows, since the only
non-vanishing component of θ after pullback is θ1,0.

In the other case when either α “ 0 or β “ 0, the problem is that though the formulas in section 2.5 when
treated as functions make sense to evaluate at pα, βq, since they are not in the locus of smoothness, this
evaluation has no a priori cohomological meaning: heuristically, the currents “do not know” about the values
of functions like B1pzq at the boundary points where they are discontinuous. To remedy this, we have the
following lemma:

Lemma 2.4. There is an injection
M ãÑ pD0

T,HΓ
q

p0q

where M is defined to be the module of functions on T ´ t0u spanned by the GL`
2 pQq-orbit (under pushfor-

ward) of B2pz2q and B1pz1qB1pz2q, given by sending

f ÞÑ

ˆ

η ÞÑ

ż

T

fη

˙

.

Proof of lemma. The only property of this inclusion whose proof is not fully analogous to the proof for the
inclusion of smooth 0-forms is the injectivity: whereas for smooth forms it follows by using a partition of
unity to work locally, this is far from true in general if we weaken the continuity assumptions.5

Noting that the loci of discontinuity of functions in M can only be along codimension-1 subtori embedded as
subgroups, coming from terms of the form B1pz1qB1pz2q and its translates. We note the following property of
this function: if x “ px1, x2q P T is a point lying on one of the subtori of discontinuity S Ă T (so x1 “ 0 or
x2 “ 0) but not equal to zero, then S divides any sufficiently small neighborhood around z into two connected
components, which we label ` and ´ arbitrarily. Then we observe that the limits from these two components

L` “ lim
zÑx`

B1pz1qB1pz2q, L´ “ lim
zÑx´

B1pz1qB1pz2q

5For example, it fails even if we replace T ´ t0u by T in this very lemma, thanks to the identity

2pB1pz1qB1pz2q ` B1pz2qpB1p´z1 ´ z2qq ` B1p´z1 ´ z2qB1pz1qq ` B2pz1q ` B2pz2q ` B2p´z2 ´ z2q “ 0

which holds identically away from the zero section (where the left-hand side evaluates to 1{2). This nonzero linear combination of
Bernoulli polynomials in M therefore gives rise to the zero current.

12
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exist, and furthermore that they average to zero. By moving this argument around by the general linear
action, this applies to any nonzero point on a codimension 1 discontinuity stratum of a function in the orbit
of B1pz1qB1pz2q.

Now consider an arbitrary f P M , and suppose that the associated current rf s is the trivial 0-current. Then
as we have seen, f must be identically zero outside a finite union of subtori through the identity. Consider an
arbitrary nonzero point x on one of these subtori S Ă T , and pick some decomposition

f “ f1 ` f2

where f1 consists of terms coming from the orbit of B2 or B1pz1qB1pz2q which do not have a discontinuity
along S, and f2 consists of terms from the orbit of B1pz1qB1pz2q which do have a discontinuity along S.
Then we find that

1

2

ˆ

lim
zÑx`

f2pzq ` lim
zÑx´

f2pzq

˙

“
1

2

ˆ

lim
zÑx`

fpzq ´ f1pzq ` lim
zÑx´

fpzq ´ f1pzq

˙

(2.10)

“
1

2

ˆ

lim
zÑx`

´f1pzq ` lim
zÑx´

´f1pzq

˙

(2.11)

since f is identically zero on a neighborhood of x in T ´ S. But f1 is continuous in a neighborhood of x
by assumption, so this expression is just ´f1pxq. On the other hand, the average of the two limits we started
with is zero from the preceding discussion, so we conclude that f1pxq “ 0. We also have f2pxq “ 0 because
functions in the orbit of B1pz1qB1pz2q are zero along their discontinuity loci by construction. We hence
conclude that fpxq “ 0; since this applies to any nonzero point x, we conclude that f is the zero function on
T ´ t0u. This concludes the proof of injectivity. □

Remark 2.5. The fact that this injection only holds on T ´t0u, and not T , also has the following significance:
if we had injectivity also at zero, then (by the argument below) (1.3) would yield a valid cocycle even for
α “ β “ 0. This “Φ0,0” in fact fails to be a cocycle: it is known in the literature as the Dedekind symbol,
whose coboundary gives a representative of the Euler class for SL2pZq. Write M0 for the analogue of M on
all of T : then by using the long exact sequence in SL2pZq-cohomology associated to the short exact sequence

0 Ñ Z Ñ M0 Ñ M Ñ 0

(where the map M0 Ñ M is the evident “forgetting the value at 0” map), then the image of rθs under the
connecting map H1pΓ,Mq Ñ H2pΓ,Zq yields the obstruction class to lifting θ to H1pΓ,M0q. Using our
explicit representative for θ, one can therefore obtain a representative of the Euler class.

To conclude the proof in general, let T rN s1 Ă T be the subset of primitive N -torsion sections, i.e. those
of exact order N . Fix a point x0 P T rN s1 with two nonzero coordinates, and let Γ1px0q Ă SL2pZq be the
congruence subgroup fixing x0. Then we have an identification

IndSL2pZq

Γ1px0q
Q – homSetspT rN s,Qq

13
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since SL2pZq permutes T rN s1 transitively and Γ1px0q is the stabilizer of x0. We also have a SL2pZq-
equivariant map

j : M Ñ homSetspT rN s
1,Qq, f ÞÑ px ÞÑ x˚fq

which yields by pushforward a cocycle

j˚θ P C1
pSL2pZq, IndSL2pZq

Γ1px0q
Qq

such that its restriction to Γ1px0q is the cocycle x˚
0θ, which we know represents the class ´1

2
Φx0 . Thus by

Shapiro’s lemma, the class rj˚θs coincides with the restricted Eisenstein class on T 1rN s

1

1 ´ c2
z

pcq

SL2pZq
P H1

pSL2pZq, H0
pT rN s

1
qq.

This implies that for any pα, βq P T rN s1, with stabilizer Γ, we have

rpα, βq
˚θs “ rpα, βq

˚j˚θs “ pα, βq
˚ 1

1 ´ c2
z

pcq

Γ “ ´
1

2
rE2

α,βs P H1
pΓ,Qq.

Applying this argument starting with some x0 with at least one nonzero coordinate (via the previous argu-
ment) completes our proof.

□

To conclude the article, we compare our explicit specializations of θ1,0 to the classical formulas (1.3), when
γ P SL2pZq: thanks to the preceding theorem, these values should coincide precisely for all torsion sections
pα, βq, up to a factor of ´1{2.

We recall our formulas for θ1,0 stemming from the Bruhat decomposition: For γ P B, we found

θ1,0pγq “ ´
b

2d
B2pz2q

whose pullback by pα, βq

´
b

2d
B2pβq

clearly aligns with the classical formula for ´1
2
Φα,β on upper triangular matrices.

For γ P GL`
2 pQq ´ B, we recall we had θ1,0pγq as the sum of three terms

´
a

2c
B2pz2q ´

˜

1 a ¨ sgnpcq

0 |c|

¸

˚

B1pz1qB1pz2q ´
d

2 det γ

˜

a ¨ sgnpcq ´1

|c| 0

¸

˚

B2pz2q.

After pullback by pα, βq, the first term becomes

´
a

2c
B2pβq.

14
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Recalling that γ is assumed to have integer entries, the second term becomes

´pα, βq
˚

˜

1 a ¨ sgnpcq

0 |c|

¸

˚

B1pz1qB1pz2q “ ´
ÿ

x1`a¨sgnpcqx2“α
|c|x2“β

B1px1qB1px2q(2.12)

“

|c|´1
ÿ

i“0

B1

ˆ

a
β ` i

c
´ α

˙

B1

ˆ

β ` i

|c|

˙

.(2.13)

Finally, recalling that det γ “ 1, the third term becomes

´
d

2
pα, βq

˚

˜

a ¨ sgnpcq ´1

|c| 0

¸

˚

rsgnpcqs˚B2pz2q “ ´
d

2

|c|´1
ÿ

i“0

sgnpcqB2

ˆ

a
β ` i

|c|
´ sgnpcqα

˙

(2.14)

“ ´
d

2

|c|´1
ÿ

i“0

sgnpcqB2

ˆ

β ` i

|c|

˙

(2.15)

“ ´
d

2c
B2pβq(2.16)

by the distribution property of B2 combined with the relation

β

c
“

a

c
β ´ α

coming from the fact that γ´1pα, βq “ pα, βq, i.e. γ fixes the torsion point of evaluation.

Combining these three terms, we obtain precisely the classical formula (1.3) for ´1
2
Φα,β on the other Schubert

cell.

2.7. Future directions. One extension of the methods of this article, the subject of work in progress, is to
compute a formula for the pGL2,GL2q-Eisenstein theta lift of [BCG1]: in this setting, pS1q2 is replaced by
the square of an elliptic curve, the Bernoulli polynomials by theta series E1pτ, zq, E2pτ, zq whose pullbacks
are weight-1 and 2 Eisenstein series, and the equivariant de Rham complex by the weight-2 equivariant Dol-
beault complex. Otherwise, the method goes through in the same way, though the discontinuity phenomenon
exhibited by B1 is replaced by a logarithmic singularity of E1. Unlike the present article, the formulas in the
theta lift setting are novel. (In parallel, we also are writing a preprint [X3] on the “stabilized” approach to this
theta lift, though this in the setting of K-theory rather than the differential forms which are their regulators.)

The more “obvious” direction of generalization is to replace GL2 with GLn, with its action on the n-torus,
and to obtain formulas for the periods of Eisenstein series of this larger group in terms of sums of products
of Bernoulli polynomials of total degree n: this would be the “algebraic” analogue of the Bernoulli formulas
in [Scz2], just as the present article is to [Scz1]. However, though most of our formalism goes through in
this case largely untouched, the combinatorics of finding lifts becomes much more delicate as n increases:
instead of just taking the Bruhat decomposition, one needs to consider families of nested parabolics to lift the
Bernoulli currents at various stages. It is presently unclear to us what a good systematic method for keeping
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track of these lifts might be; an approach inspired by the stratifications used in [Scz2] may be useful. A
topological approach, as we used in a slightly different setting [X2] for example, would be ideal; however, it
would have to be much more complicated than in loc. cit. to account for the phenomena arising from various
parabolic subgroups. As in [Stevens] in the case n “ 2, this may be related to the geometry of the Borel-Serre
compactification of the associated symmetric space.

The other issue that occurs in this generalization is that the analogue of Lemma 2.4 is only true in codimension
1 generally, as suggested by the main theorem of [Scz2], so we would not know how to treat pullbacks torsion
sections with multiple zero coordinates in a uniform one. (One could simply take a different initial lift to avoid
the issue with any given fixed torsion section, but then this makes the results less systematic.) Because of
these technical difficulties, this direction of generalization is currently not the subject of our work; however,
it would be interesting to understand how they can be circumvented.

Finally, it would be interesting to see if similar formulas could be obtained in this way for GL2-Eisenstein
series of higher weight, by introducing twisted coefficients into our complexes. It is, however, not obvious to
us what precisely the twisted analogue of our periodic Bernoulli polynomials should be.
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