Explicit formula for the (GLy, GLs) theta lift via Bruhat decomposition

PETER XU

ABSTRACT. We explicitize the algebraic approach to the (GL2(Q), GL2(Q))-theta correspondence (of [ )}
using theta series in the distributional de Rham complex of the squared universal elliptic curve. As a result, we
obtain novel unsmoothed formulas for this theta lift, analogous to Siegel’s classical formulas for periods of
Eisenstein series. In the setting of CM elliptic curves, we obtain a (GLg(K), K*) theta lift formula, which
earlier was obtained analytically by Ito. We discuss some applications to formulas for L-values.

1. INTRODUCTION

In the article [ ] and its sequel [ ], the authors construct a theta lift from the (n — 1)-homology
of GL,, to modular forms for GL,. This construction uses an equivariant polylogarithm class; in particular,
when n = 2, the class in question corresponds to the algebraic GLs-action on the squred universal elliptic

curve over the upper half-plane (or its modular curve quotients). This class can be computed by various

means: in [ ], the lifts of certain modular geodesics are computed via the seesaw principle, while in
[ ], certain stabilizations of the lift are computed by relating them to values “at the boundary,” i.e. by
partial modular symbols. Related cocycles valued in K -theory were constructed in [SV] and [ ] (for

general n; the regulators of these cocycles these correspond to parabolic stabilizations of the theta lift.

In [X2], we constructed explicit elements in the GLs-equivariant distributional de Rham complex of a torus
to re-derive classical “unstabilized” formulas for periods of weight-2 Eisenstein series. In cohomology, these
Eisenstein series arise as pullbacks of an equivariant class on (S1)?, allowing us to compute them by explicat-
ing equivariant cohomology via geometrically-defined complexes. In this note, we apply the same technique
to the squared universal elliptic curve, and in turn obtain novel explicit formulas for the (GLy, GL;)-theta
lift. These formulas especially shed light on the Eisenstein component of the lift, exhibiting the particular

combiniation of weight-2 Eisenstein series which arise from specializations at parabolic matrices.

Due to the nature of the theta lift’s construction, instead of the equivariant distributional de Rham complex of
[X2], we will use the equivariant weight-2 distributional Dolbeault complex of our squared universal elliptic
curve. The explicit elements in loc. cit. were comprised of weight-1 and weight-2 Bernoulli polynomials
Bj(z) and Bsy(z); these will be replaced with theta series E (7, z) and Es(7, z) interpolating weight-1 and 2
Eisenstein series. To find the explicit forms of these elements, as in loc. cit., we will need to use an explicit
version of the Bruhat decomposition of
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where
0 1
w g
1 0

represents a Weyl element, and B < GLy(Q) is the upper triangular Borel subgroup. In particular, we recover

the following explicit formula:

Theorem 1.1 (Theorem 3.7). Let I' = GLy(Z) be an arithmetic subgroup, and consider any T'-fixed linear

combination

D = Z til (us, vi)],

of nonzero torsion sections(u;, v;) of the squared universal elliptic curve E x4, E, endowed with the block
scalar action of My(7Z). Let

@5% : I' — modular forms of weight 2
be the associated Eisenstein theta lift for (GLy, GL2) defined by (3.15). Define a function parameterized by
elements v € GLo(Q) by the formula

(1.1)
LB (T, 20) e O ele
0:[V](21,22) =3 [a 1 L oa
0 C(;le(%c'yEb(T; Z2) + % 0 E1(7—7 Zl)El(T’ 22) - %E2<T7 22)
c C

where E\ and E5 are specializations in weights 1 and 2 of the classical Kronecker-Eisenstein series, defined

in Section 3.1. Then we have

0 (7) = 3. cibr [y (us, v:) € C.

Here, c; are integer coefficients, and u; and v; are elements of (Z/N)* — {(0,0)}, thought of as N-torsion

sections on F ..

In Section 4.3, we outline also that the same methods yield an almost identical formula (4.2) for subgroups
of GLy(K) for K an imaginary quadratic field, valued in CM specializations (for the field K) of F; and
E5. This formula was previously obtained analytically by Ito [Ito], who related it also to L-values of the

corresponding CM fields.

Correspondingly, by evaluating the (GL2(Q), GLy(Q)) theta lift on primitive hyperbolic matrices, a seesaw
diagram (as in [ , §13]) shows that we obtain formulas for diagonal restrictions of Hilbert-Eisenstein

series:

Theorem 1.2 (Theorem 4.2). Let G1(1, 1[_ai( )) be the diagonal restriction of a weight-1 Hilbert-Eisenstein

series for a real quadratic field F', corresponding to the p-stabilized indicator function of a wide ideal class
2
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[a]. Then we have the identity of level-T'y(p) modular forms

_ d 4(a + d) 1{(1 a
(P)y _ F
G1(1, 1[a]p ) = P2I0% U] E - Ey(7,22) + p { <0 C> By (7, 21) Eq (T, 22)} . ]

zeE[p]?—K2

where E and E, are classical weight-1 and 2 Eisenstein series as before, and K, is a I'(p)-fixed combination

of torsion sections of the universal elliptic curve.

1.1. Related work. A similar computation of equivariant cohomology was completed in [KS, §3], using
generalized Kronecker-Eisenstein series. Our calculation can be considered as a more explicated form of the

calculation there, for the self-product of the universal elliptic curve with trivial coefficients, except that:

(1) we treat the entire action of GL, at once, instead of just working with the equivariance under one

subtorus at a time;

(2) we construct also a cocycle for a larger group with no geometric action on the fibers (GLy(Q) instead
of GLy(Z), or GLy(K) in the CM case);

(3) we do not rely on any stabilization or smoothing coming from translations by torsion sections.

We restrict to this setting both because it is particularly arithmetically rich, and allows for a considerably
simpler and less technical exposition. Futhermore, by eschewing smoothing, the resulting formulas are more
transparently related to classical objects such as classical holomorphic Eisenstein series or the period formu-
las of Siegel (as in [ X2]), and corresponds directly to the theta kernel of integration of [ ]. Furthermore,
our formulas can be specialized (with cohomological meaning) at arbitrary non-zero torsion points, thanks to
Theorem 3.5. As we noted in our previous article [X2] in a simpler setting, our same methods should pro-
duce analogous formulas with twisted coefficients corresponding to higher-weight automorphic sheaves; the
resulting formulas will involve progressively more complicated combinations of higher-weight specializa-
tions of Kronecker-Eisenstein series. Another natural generalization would be to use the more complicated
decomposition of parabolic subgroups for GL,, and n-fold products of elliptic curves; in this setting, our

unsmoothed formulas grow in complexity very quickly with n.

The (GL2, GLy)-theta lift is closely related to Gross-Stark units for real quadratic fields, and to Stark-Heegner
points, via the p-adic Kudla program approach of [ ]; this is the subject of work in preparation, both
independently and with Marti Roset Julia. However, in these works, we always use smoothed versions of the
formulas, since they are easier to describe in more generality, and result in p-adic interpolability.

2. EISENSTEIN THETA LIFT FOR (GLg, GLy)

The theta lift we are considering was originally constructed purely analytically in [ ], but we will find

the algebraic construction of [ ] more useful; the comparison between the two is also proven in loc. cit.
3



EXPLICIT FORMULA FOR THETA LIFT VIA BRUHAT DECOMPOSITION PETER XU
To begin, we consider the complex upper half-plane H, and the universal elliptic curve over it given by the

complex uniformization
E:=MHxC)/{(r,Z+7Z)}.

Here, we will write 7 = = + y: for the coordinate on the base, and z for the fiberwise coordinate on C. This

fiber bundle has the complex analytic action (as a fiber bundle) of GLy(Z) by

a b (r,2) = ar +b z
c d T2 = cr+d er+d)

We will also write z = u — 7v for u, v € R; this then allows GL4(Z) to act on the column vector (u, v) by the

standard left action. The principal space we will work on is the self-product 7' := E x4 E, which we will
coordinatize by 7 on the base, and z; and 22 on the two elliptic curves. For us, the important property of 7'
is that it has a fiberwise action by endomorphisms of Ms(Z), coming from the endomorphism action of Z on
any elliptic scheme by isogenies, i.e. the integer a € Z acts by the finite multiplication-by-a isogeny [a]. of
degree a?. In particular, the group GL,(Z) acts by automorphisms on 7.

For any torsion-free subgroup H < GLy(Z), the Y (H) := H\’H can be equipped with an algebraic structure
making it the fine moduli space of elliptic curves over C-schemes with H-level structure. There is also the

corresponding universal elliptic curve
E(H) := H\(H x (C/Z?)).

and its square

T(H):=E(H) xym E(H),
whose fiber over a point of the moduli space is the square of the corresponding elliptic curve. In this article,
for technical reasons, we will primarily work over H rather than after quotient by H'; however, the output of

our construction will visibly descend through these quotients.

Let I' ¢ GLy(Z) be any subgroup; we will work with the I'-equivariant cohomology of T'-subspaces of 7. In
this article, we will follow the approach pioneered by [[<S] to define the theta lift algebraically in coherent
cohomology of relative sheaves of differentials over H; see the author’s thesis [X] for details about how this

relates to the algebraic construction of [ ].

Following [KS], if we fix an auxiliary integer ¢ > 1, there is a unique (“polylogarithm’) cohomology class
Zﬁc) e Hp(T —Tlc], Q%‘fT[c]/H)(O)

characterized (as indicated by the superscript (0)) by being invariant by [a], for all integers a relatively prime
to ¢, and having residue

[T[e] = ¢{0}] € HE iy (T, 7 13)
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where HﬁT[C] denotes the equivariant cohomology with support. Let S < T be a nonempty ['-fixed arrange-
ment of T'[c]-translates of elliptic subgroups of T'; we restrict the class zﬁc) to
HF(T S, QT sm) = hm HF(T Sy, QT sf/H>(0)
S;c8
where the limit is over finite subarrangements. The various 7" — Sy are cofinally fiberwise Stein manifolds
over the contractible base #, so have vanishing higher coherent cohomology; thus, in the Hochschild-Serre

spectral sequence we have a Hochschild-Serre edge map
e Hy(T = 8,07 _g3)"” — H' (T, HY(T — 8,97_gp5,)) := H' (T, limy H(T — S5, g, 15,))"”
where here we use the exactness of filtered colimits.

Thanks to a similar argument as the one to uniquely define zﬁc), using projectors built from isogenies, e(zﬁc))

can be refined to a class which we denote
Zy e HY(D, HY(T — S, 9%_g2) )

i.e. a cohomology class valued in prime-to-c isogeny-fixed forms (instead of being isogeny-fixed only up to

coboundary).

This group cohomology class valued in 2-forms on (an open subspace of) the bundle 7" parameterizes a family
of theta lifts: if one contracts with the GLy(Z)-fixed vector field dz; ® 0z and pulls back by any I'-fixed

torsion section z disjoint from .S, then
61, i= 2*(Z\) 1 02 ® 0z,) € H'(T, HO(H,w®?))

can be viewed via integration as a map from H,(T") to a weight-2 modular form inside H°(H,w®?), as the
values of the integral will be fixed by any level structure [ stabilizing the section x. Note that for any
given nonzero x, one can always find a disjoint S < 7" invariant by its stabilizer, so all torsion sections have
associated pullbacks. Furthermore, since one can always restrict away from the union of two different .S, it
is clear the pulled back class is independent of the choice of removed sub-elliptic curves. If we fix any point
of the base 7 € H, we can similarly define the fiberwise version of these cycles by restriction,

79 e HYT, HY(T, - S,,0% _)),0%) = 2*(Z) n 02, ® 029) € H'(T',C)

Ty

where the subscript 7 refers to the fiber over that point. (We here omit the I' from the notation for brevity,
since these classes are compatible under restriction of I' in any case.)

Out of technical convenience, we will obtain our explicit formulas for the fiberwise classes @(Tc; Since the
action of I is trivial for these classes, however, this will also imply formulas for the classes @(FC)I !

IWith a little extra work, one can also prove similar formulas for the “spread out” classes Z. (C), but this is not the focus of this
article.
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2.1. Computing with complexes. We now define the main tool we need, in this setting: the weight-2 distri-
butional Dolbeault complex. Let X be a complex manifold of complex dimension d, and write A%? for the
sheaves of smooth complex differentials on X of holomorphic degree p and antiholomorphic degree g; these
sheaves are flabby on X, so we (a bit abusively) use this same notation for their global sections. These forms

support the pair of anti-commuting Dolbeault differentials
. AP ptla 5. gpg p,g+1
a . AX - AX 70 . AX - AX

which are square zero, satisfy the Leibniz rule, and sum to the usual exterior derivative on differential forms.
For an integer w > 0, we recall that the holomorphic (w, 0)-differentials are precisely the kernel of 0 inside
Aw,()

X .

Ordinarily, the Dolbeault resolution of Qi— is constructed from these sheaves, but instead, we dualize: first,
write A@gfc for the space of compactly supported relative (p, q)-differentials on X, carrying the same differ-

entials as the usual ones (though they do not form a sheaf). Then we define

DY = hom (A% "",C)

,C

which we call the space of (p, q)-currents on X. Unlike the compactly supported forms, these do form a
sheaf, since they can be restricted along inclusions of opens in adjunction to the pushforward of compactly
supported forms. Since these pushforwards are injective, the sheaf restrictions maps are surjective and thus
each DY? is flabby. We therefore again abusively use the same notation for the sheaf and its global sections.
For these properties of currents, the original reference is [dR].

The Dolbeault operators
7 17 3 . 9 ) 1
0: DY — D10 DR — DT
are defined as the graded adjoints of the exterior derivative on forms, i.e.
(0c)(n) := (=1)*=<c(dn), (9c)(n) = (~1)"#c(n)
where deg refers to the total degree (i.e. p + ¢ for a (p, ¢)-current).

There is a natural inclusion

vy AY' — DY

(o)

where 7 is a compactly supported smooth (d — p,d — g)-form; the integral makes sense and is finite since

given by

the wedge product is also compactly supported, and of degree (d,d). It is clear that vy commutes with
the Dolbeault differentials @ and 0. Furthermore, since (p, q)-compactly supported forms have covariant
functoriality by flat holomorphic maps and contravariant by proper holomorphic maps, by adjunction, (p, q)-

relative currents can be pulled back by flat maps and pushed forward by proper ones. One can check that the
6
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push-pull formula for differential implies that vy is functorial for flat pullback and proper pushforward of

complex manifolds.’

There exists a 0-Poincaré (or Dolbeault-Grothendieck) lemma due to [ ] for these currents; the analo-
gous result for differential forms can be found in [ ]. As with the classical Poincaré lemma, these are
cohomologically useful when stated in the following form:

Lemma 2.1. The complex

2.1) QU DYt L pul 5,

is an acyclic resolution of sheaves. Further, the map of 0-complexes induced by vy
(2.2) Ay — DY*

is a quasi-isomorphism for each degree w.

In particular, for 2-dimensional X and w = 2, the complex
D_%(’O 9, Di’l 2, Dg{,z

is functorial in X (in the sense described previously) and computes the coherent cohomology of Q3. (Here,

we recall that X is assumed to be relative dimension 2, so there are no further terms.)

We now introduce an important class of currents: associated to closed complex submanifolds Z < X of

codimension 7, we have a closed current of integration
) 7 € Dgg
defined by
dz(w) := f w.
z

Now consider a fixed squared elliptic fiber 7, = E, x E,. Then the class of a closed current w € D%’Tl having

residue C € H°(T}[c]) along the residue map
o (TT - TT[C]7 Q%“T—Tf[c]) - HO(TT[C])

is equivalent to dw = d¢ (where this is interpreted as a suitable linear combination of the currents of integra-

tion along points in the support of C); see for example [X, (3.3)] from the author’s thesis.

Since the distributional Dolbeault complex is a functorial complex computing the coherent cohomology of
holomorphic differentials, the coresponding equivariant coherent cohomology of Q% can thus be computed

%For orientation-reversing maps, one has to be careful about this comparison map, since they introduce an extra sign; this was an
issue we had to work with in [X2]. However, all of our maps will be morphisms of complex manifolds, and hence orientation-
preserving.
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by the double complex C'*(I', D%"), where I' = GLy(Z) acts on the currents by pushforward; see, for exam-
ple, the author’s thesis [ X, §3.1].

Analogously to the non-equivariant case, then, an element w of this double complex for 7 restricts to a

representative of a class in H3(T, — Tr[c], QF, . ;) with residue
[T7[c] = ¢*{0}] € H(T:[c])"

if and only if the total differential of w is 7, — c*dy € C°(I',D7%). In particular, if we can find such a
class which is in the frace-fixed part (D%’:)(O), this notation meaning the part which is invariant by [a], for all

integers a relatively prime to ¢, then it will represent the class

Zic) € Hll(T'r — T;[¢], Q’?FT—TT[C])'

3. CONSTRUCTING THE LIFT

3.1. Kronecker-Eisenstein series as theta functions. We now know that in principle, one can compute
Eisenstein classes by finding suitable lifts inside the distributional de Rham complex. It remains to find

currents realizing these lifts.

Recall the Kronecker-Eisenstein series [ ]

/

(3.1 K, (s,7,z,u) = Z ‘(:j:—’:ézexp (2m’%)

weZ+ZLt
for 7 € H, z,u € C, and a € Z; the superscript apostrophe denotes that the sum omits any term where
w + z = 0. This series is convergent for Re s > 1 + a/2, but has meromorphic continuation to all s € C, with
simple poles possibly only at s = 0 (when z € Z + Z7 anda = 0) s = 1 (whenwu € Z 4+ Z7 and a = 0). We

define special notations, following [ , §9], for the specializations we need:
(3.2) Bi(r,2) = —K\(1,7, 2,0),
2w
1
(33) EQ(T, Z) = —HKQ(LT,Z, 0)

Since these functions are manifestly (Z+ Z )-periodic in z for fixed 7, we can consider E; (7, z) and Es(7, 2)
as functions on E.. Further, F(7, 2) is odd and Fy(T, z) is even in z, for any 7; in particular, we see that
Ey(7,0) = 0. As noted in [ ], these two functions specialize at torsion points

El(Ta o — BT>7 E2<7-7 o — 57—); (Oé,ﬁ) € (@/Z)2\{<07 O)}

to holomorphic modular forms in 7 of weight 1, respectively 2, which are the classical Eisenstein series of

those weights, of level corresponding to the stabilizer of («, ) in SLy(Z).
8
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From [ , (9.6)] together with [ , Proposition 20], we observe that we have the distribution relations
as functions

(3.4) [a]«(Ei(T, 2)dz) = Ey(T, 2) dz,

(3.5) [al+Ea(T, 2) = Ex(7, 2)

for any integer a € Z\{0}. Further, [ , Theorem 19] and [ , §9.4] together imply that, considered

as acurrenton I,

- 2idz A dZ

6E1(T, Z) dz = (50 - VOlET = (50 — w
where here we give the formula for the normalized volume form on £.. Away from the zero section (ignoring
the current of integration d), this derivative holds on the level of functions. Furthermore, [ , (35)] says
that

0Ey(T,2) = QZ_y - Ey(r,2)dz

as functions (and hence currents) on F.. Thus, both £ and E5 are smooth away from the zero section, where
Ej is once-differentiable and E'; has a singularity. Note that the formulas in [ , §9.4] imply that on a
punctured neighborhood of the zero section, £; looks like it has a simple log pole (even though its actual
value at zero is 0). It therefore makes sense to consider forms like £y (7, z) dz and Es(7,2) dz as (1,0)-
currents on £ by considering them as kernels of integration as in the map vx we defined for smooth forms,

since the corresponding integrals will converge for compactly supported smooth forms.

3.2. Explicit isogeny-fixed currents. We now construct a certain element of total degree 1 (or 3, if one adds
in the Hodge weight 2)

¢ € C*(GLy(Q), (D))

whose total differential is the cocycle
b — volr, & 2°(. (DF)") = (D))"

Lemma 3.1. If we construct such a (,, then for any integer ¢ > 1, the restriction of ([c]* — ¢*)(, to any
[' © GLo(Z) and T — T [c] < T represents the class Zﬁc).

Proof. 1f the total differential of (. is dy — volg, then the total differential of ([c]* — ¢*)(; is 07, [ — ¢*do.
Furthermore, it remains invariant by all isogenies prime to c; hence by the discussion at the end of the previous

section, the result follows. O
To construct this lift, we must specify (%! € C%(GLy(Q), (P3")©) and (1 € CY(GLy(Q), (DZ°)®) such
that ¢}0 = 0cL,(Q)Gro1 Where the latter differential refers to the group coboundary map.

We therefore fix the choice

Y= By (1, 21) d21 8,0 + E1(T, 22) dzy A VoL, —g
9
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whose image under ¢ is can be computed as

(36) ECB’I = E[El (7', 22) ng 522:0 + E1 (T, Zl) le A VOlZl:()]
(3.7 = (0p — Vol =9 02,—0) + (VOl,;—¢ 0,,—0 — VOl,,—¢ A VOl,,—q)
(3.8) = 0p — volr,

It remains therefore to find, for each v € GL,(Q), a lift to (D%TO)(O) of
(Ve — 1) = (v — D[E1(7, 22) d22 62y—0 + E1(7,21) dz1 A VOl 0]

We observe that there are no more choices to be made; these lifts are unique:

Lemma 3.2. The trace-fixed complex

0 (DA — (D3O — (D)

T T T

is left-exact.

Proof. This can be proven identically to [SV, Lemma 6.2.1], as the only trace-fixed cohomology of Q7. is
in top degree, coming from the form yielding the fundamental class of the 4-torus 7’ in the Hodge-de Rham

spectral sequence.’ U

To find formulas for these lifts for a fully general matrix ~ is complicated if approached directly: the push-
forward action on currents can yield expressions with arbitrarily many terms. Instead, we decompose our

matrices to simplify the calculation.

3.3. Telescoping with the Bruhat decomposition. The main observation we need is that we have the “tele-
scoping” relation

(3.9) (Y21 — DGR = (1 — 1R + (2 — 1)E!

T

reducing the problem of finding a lift for the product of matrices to the problem for the individual matrices.
Thus, the problem of finding lifts can be reduced to a set of generators of GLy(Q).

We recall that the Bruhat decomposition says that

i) )

3In fact, one can show using Fourier series that this complex is almost right-exact as well, except for one dimension of cohomology
on the right. This is unnecessary for us, so we omit it.

10



PETER XU EXPLICIT FORMULA FOR THETA LIFT VIA BRUHAT DECOMPOSITION
where B denotes the upper triangular Borel subgroup, and w the antidiagonal Weyl element. We can make

this more explicit by writing

_fa b\ (1 a) (0 1) (1 dJ/c
wo ()00 6 %)
(1 a/e\ (1 0) [0 1) (1 —3& 1 0
G606 )6 )

whenever ¢ # 0, for an arbitrary matrix v € GLy(Q). Here, we have further decomposed the appearing upper

triangular matrices by factoring them into a diagonal times a unipotent matrix. When ¢ = 0, our matrix is

already in the Borel, so we can directly write
a b (1 b/d)\ [a O
0d/ \o 1)\o0 d

The point of this is that w, diagonal, and unipotent matrices all act in very computable ways on C%Tl, enabling
us to find lifts:

(1) All diagonal matrices act trivially on (%!, by the isogeny properties of E; we proved earlier together
with the fact that the volume form of a torus is isogeny-invariant. Hence the corresponding lifts are

Z€10.

(2) For the element w, we can write (w — 1){z, as
E1 (T, ZQ) dZQ 521:0 + E1 (7', Zl) le A VOlZl:() - E1 (’T, Zl) le 522:0 — E1 (T, ZQ) dZQ VAN VO]ZQ:O

= 0[E\ (7, 21)E1(T, 25) dz1 A dz]

which is a very simple lift.

(3) For a unipotent matrix -, with upper-right entry u, we find that the term with the current 9,,_ cancels

in (7, — 1)(r. (since the coordinate z; is fixed), and what remains is
2 _
(3.12) ﬂEl (T,20) dz1 A dzg A dZ3 = 0 [AuEsy(T, 29) dz1 A dzo]
Yy

Combining these with our explicit Bruhat decomposition, we find the following formulas: in the case when
¢ = 0, we obtain

(313) C ;_ (’)/) = EEQ(T, 2’2) le VAN dZQ.

In the case when ¢ # 0, we use the full Bruhat decomposition to obtain the following:

11



EXPLICIT FORMULA FOR THETA LIFT VIA BRUHAT DECOMPOSITION PETER XU

Proposition 3.3. The unique lift C}’TO on a matrix v € GLy(Q) is given by the expression*

a 1 4d 1(1 a 4a
(314) [(C 0) Cdet’yEQ(T7 22) + E (0 C) El(T, Zl)El(T, 2’2) + ?EQ(T, ZQ) le AN dZQ.

) for

We therefore have obtained full formulas for {7, whose c-stabilizations yield the kernel classes zt
the Eisenstein theta lift after restriction to GLy(Z). For a general matrix -, there does not appear to be a

substantial further simplification of the preceding formulas, besides writing out the pushforwards as sums.

3.4. Specializations at torsion points. The actual “theta lift” for (GLg, GL,) is generally taken to be valued
after contraction pullback by torsion sections. Fix an arithmetic subgroup I' © GL3(Z); in order to compare

our results with the cohomological theta lift, we will restrict . to I'.

Remark 3.4. This arithmeticity hypothesis is only necessary to compare with the cohomological construction
of the theta lift: one can still obtain pulled-back cocycles on, say, S-arithmetic subgroups for some set of
inverted places .S, so long as they fix some torsion sections (of order necessarily prime to the places in S).

We do not write down this extension here, but the formulas can be obtained by our same methods.

In this context, we wish to consider the image of Z' under the composite

o o

1 2 "50®% 11 D* 101 1
(3.15)  Hp(T: — T¢[c], QTTfTT[c]) —— Hp(T; = T[], Or, —1,1) — Hr({7},C) = H(I',C)
where D is any I'-fixed torsion cycle D disjoint from 77 [c]. (Here, we are slightly abusive in writing the
pullback D*; this is actually a sum of pullbacks over the various torsion sections in the support of D.)
Analogous to the case of a single torsion section, we will write @gj for this image. We wish to interpret this
composite in terms of the explicit double complex representative (,; the main issue is that currents cannot in

general be pulled back by closed immersions.

The technical tool we need to remedy this is the introduction of a variant of the distributional Dolbeault
complex: For any I' ¢ GLy(Q), let Hr < T, be the I'-orbit of the lines {z; = 0} and {z; = 0} and their
translates by c-torsion sections inside 7’-; this is a union of infinitely many elliptic subschemes (and their
c-torsion translates). For any finite subarrangement / — Hp, we define a complex D%’; y via the pullback

square

. 20
DTT H DTT

(3.16) l l

“Notice that here, we have to introduce factors coming from the determinants of the matrices to go from pushforwards of forms to
pushforwards of functions.

12
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which results in an identification of D;: y With the (2, 7)-currents such that their restriction to 7, — H are
given by smooth (2, 7)-forms. Here, the bottom horizontal map is the earlier-defined inclusion, and the right
vertical map is the restriction dual to the pushforward of compactly-supported differential forms. We define

then
2,0 BT 2.0
T, Hp = h_H}DTT,H
H

where the limit runs over H finite subarrangements of Hp, along the natural inclusion maps. The group I
permutes the pullback diagrams for each H (sending it to that of vH'), and these assemble to give a pushfor-
ward action on D%:} .- Further, because the bottom row in each pullback diagram is a quasi-isomorphism,
we see that D?F’; u. computes the cohomology of QZT, just as D%: does. Furthermore, analogously to the full

distributional de Rham complex, we have a left exact sequence

0— (D%TO,HF)(O) - (D’?Ff,HF)(O) - (D%TQ,HF)(D)

meaning that (., considered in this more refined complex, is still uniquely determined. The important new
phenomenon for us is that if I' fixes the torsion cycle D < T disjoint from Hp, then there is a composite

pullback map
el el
2,0 . 2 0z1 < Bz D*
DTTyHF — 1lm QT-,——H OTT_H — (C

H

which induces the composite (3.15).

We now concern ourselves with the case that D is supported on N-torsion for an integer N > 1. From the

preceding discussion, we can conclude that
[D*([e]* = 6] = 05,

so long as D is disjoint from Hp. Note that if ¢ = 1 (mod N), we can write the left-hand side as (1 —
¢")[D*(.]. The restriction on D is rather irritating, as it depends on the arbitrary choice of coordinates zy, 2o
we used to choose our lift ¢%!: for any given torsion section, we could simply start with a different lift to
obtain formulas for the pullback. However, this would result in a somewhat unsatisfying lack of unity in our
formulas. Luckily, we can use a trick to bypass this issue entirely, and make the formulas valid even for “bad”

torsion sections:

Theorem 3.5. Suppose c =1 (mod N). Then for any N-torsion cycle D disjoint from the identity, we have

that )
D) - et

The proof consists of “bootstrapping” from torsion points disjoint from Hp to all of them. In order to do this,

we will need the following lemma allowing us to “improve” our current-valued cocycles to be form-valued:

Lemma 3.6. There is an injection
M — (D%TO,HF>(O)
13



EXPLICIT FORMULA FOR THETA LIFT VIA BRUHAT DECOMPOSITION PETER XU
where M, is defined to be the module of (2,0)-forms on T, — {0} spanned by the GLy(Q)-orbit of F5(z2) dzo
and Ey(7,21)FE1 (T, z3) dz; A dzo, given by sending

e o)

Proof of lemma. The only non-formal assertion here is that this map is injective. Notice that the map consid-
ering smooth forms (i.e. the map vr_ defined before) as currents via kernels of integration, or even continuous
forms, is clearly injective: by integrating against dz; A dz» times a bump function on any small open set, we
see that the zero current can only come from a form which vanishes almost everywhere, which hence must
be zero by continuity. Thus, the depth of this lemma’s assertion comes precisely from the discontinuities of
the forms in the orbit of F (7, z;)E1 (T, 23) dz1 A dz, along codimension-1 sub-elliptic curves.’

We note the following property of E; (7, z1)F1(T, z2) dz; A dzp: suppose x = (x1,x5) € T is a point lying
on one of the subcurves of discontinuity S < 7, (so x; = 0 or x5 = 0) but not equal to zero. Then take any
small v = (v, v9) € C? not parallel to the curve of discontinuity of x, so that z 4 v does not lie in S. By the
oddness of £, we find that the average of the translates by +v vanishes as we shrink v:

el_iggr %(El(r, 21 + €v)Ey (T, 29 + €vg) + E1 (7,21 — €v1) By (T, 29 — €v9)) = 0

as an equality of coefficients of dz; A dzs.

By moving this argument around by the general linear action, this applies to any nonzero point on a codi-

mension 1 discontinuity stratum of a function in the orbit of £ (7, z1) E1 (7, 29) dz; A dzs.

Now consider an arbitrary w € M., and suppose that w gives the trivial (2, 0)-current when considered as a
kernel of integration. Then, w must be identically zero outside a finite union of sub-elliptic curves through
the identity. Consider an arbitrary nonzero point = on one of these subcurves S < T, and pick some
decomposition

W= Wi + wsy

where w; consists of a sum of terms in the orbit of Fy(7, 29) dz; A dzy or Ey (7, 21) E1(T, 22) dz1 A dze which
do not have a discontinuity along .S, and ws consists of a sum of terms from the latter orbit which do have a
discontinuity along S. Pick now some vector v € C' such that the the line segment between the points = + v
intersects no other discontinuity locus of any term in w; or wy; this is always possible since v is nonzero and

there are only finitely many terms to consider (and hence subcurves to avoid).

5Indeed, to appreciate the delicacy, observe if we change T — {0} to T in its statement, the statement becomes false: see [BG,
Proposition 3.7] for an example of a relation between the weight-1 and weight-2 series everywhere except the zero section.

14
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Then we find that

1/, 1/
(317) 5 (51_1,1(%— W2|x+ev + W2|a:—ev) = 5 (61_1)%’5_ w‘x+ev - [w1]|x+ev + w|:v—ev - [w1]|x—5v>
1 .
(3.18) =3 (613(% —[wi]leter — [w1]|m_w)

since w is identically zero on a neighborhood of x in 7}, — S. But w; is continuous in a neighborhood of = by
assumption, so this expression is just —wq|,—,. On the other hand, the average of the two limits we started
with is zero from the preceding discussion, so we conclude that w; |,—, = 0. We also have ws|,—, = 0 because
forms in the orbit of F; (7, 21) F1(T, 22) dz1 A dzy are zero along their discontinuity loci by construction. We
hence conclude that w|,—, = 0; since this applies to any nonzero point z;, we conclude that w is the zero form

on T, — {0}. This concludes the proof of injectivity. O

Proof of theorem. Thanks to the lemma, we can consider ¢, to be a cocycle valued in M,. Let T,[ N]’ denote
the primitive N-torsion, and let S < 7’ be a sub-elliptic curve which is not the vanishing locus of either z; or
29. Let 79 € S[N]’ be any point, and write I'; (z¢) < GLy(Z) for its stabilizer. By construction, = ¢ Hr, (5),
and so by the previous discussion,

I o©

1 _ C4 7,20

(3.19) [5¢r] =

for any ¢ = 1 (mod N). In fact, noticing that I';(z() must stabilize the entire elliptic sub-curve S, this

formula holds for any point z € S[N]'.

We now observe that zﬁc) N a—’zl ® 9_22 induces, by restriction, a class
(3.20) 0\ € Hiy, ) (T;[N],C) = H'(GLy(Z), hom(T,[N], C))

where the isomorphism comes from the fact that 7,,[ V']’ is a union of contractible spaces, causing the collapse
of the Hochschild-Serre spectral sequence. By functoriality of this spectral sequence, for any cycle D <

T, [N] stabilized by I'( D), the image of 9(:3\[ under the composite of restriction and evaluation
H'(GLy(Z), hom (T, [N, C)) = H'((D), hom(T;[N],C)) 2 H'(I(D),C)
yields @g).
Observe that there is a GLo(Z)-equivariant map
M, — hom(T,[N],C), fdz A dzy — (x — f(2)).

We claim that the pushforward of ([c]* — ¢*)(, under this map can be identified with @(TC;V which would then

imply the desired result for arbitrary primitive /NV-torsion cycles.
Indeed, there is an isomorphism of GLs(Z)-modules

hom(T+[N], C) — Indp 2% hom(S[N],C), f — (v~ foy7")
15
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where hom(S[N]’, C) has, naturally, a trivial action of GL2(Z). Hence, by Shapiro’s lemma it suffices to

show that ([c]* — ¢*)¢, and @ﬁv agree upon restriction to I'; (x() under the quotient
hom(T,[N]’,C) — hom(S[N]',C)

dual to the obvious inclusion. But this is precisely (3.19), which we have already established. Assembling
these identifications together for all N > 1 yields the full theorem. 0

Thus, from (3.14), when specialized at any nonzero torsion sections (or combination thereof), yields the

following formula for the Eisenstein theta lift of [ 1:

Theorem 3.7. Let

(3.21)
LB (T, 20) o= 0 ele
0-[7](z1,22) == { [a 1 Loa
0 4Py (r, 29) + L 0 Ev(7,21) E\(7, 22) + ¢ E(7, 2)
c C

Then given any I'-fixed combination of nonzero torsion sections
D= Zci[(ui, vi),
i

we have

0 (7) = Y e, [7)(us, vs) € C.

Here, c; are integer coefficients, and u; and v; are elements of (Z/N)* — {(0,0)}, thought of as N-torsion

sections on E ..

Noticing that 0, transforms like a weight-2 modular form in 7, we can consider its specialization at torsion
sections as a section of the weight-2 automorphic line bundle w? on any open modular curve over which the
torsion sections are defined. It immediately follows:

Corollary 3.8. If H is any level structure fixing the torsion cycle D, then with the same notation as above,
we have
@1(“6,)13(7) = Zci‘%[ﬂ(%ﬁ v;) € H(Y (H),w?).

where Y (H) is the open modular curve of level H.°

These formulas are workable, but the presence of the pushforward matrices (which can be evaluated as finite
sums over preimage torsion sections) make them slightly unwieldy. Analogously to the classical setting of

1t is also true that 6, represents cocycles over distributions of torsion sections, where I' now acts nontrivially by permuting the
sections. Because of the way we set up our machinery in this article, this is not immediate; however, it can be proven with only a
little extra work.

16
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periods of Eisenstein series [ X2], the first term

4d a 1
> by (ui, vi) = cdetvzci [( 0) By (7, Z2)]
* (ui,vi)

- - C
i i

can be simplified if we assume that v € SLy(Z):

4d 1 d |
(3.22) mzcika 0>*E2(T,z2)]( .)=4EZCZ~ Y B <T,ui—%(vi+(j,k))>

i ¢ i jke(z/o)?

d 1 ,
(3.23) = 4EZCZ» | > B (T, i+, k))>
i j,ke(Z/c)?
(324) = 4—d CZ‘EQ (7', Uz’)

Cc =
7

(3.25)

Here, we use the distribution property of F,, along with the fact that ~* stabilizes D. This latter fact implies
that for all 7 € 1,

aV; — CU; = Ug(3)

for some permutation o of the index set I such that ¢; = c,(;) forall s € 1.

Unfortunately, we do not see a natural way to simplify the F; /4 term in any generality, analogously to the

classical formulas for Eisenstein periods we discussed in [X2].

Remark 3.9. Note that the value at 7 = oo theta lift 8, yields precisely the classical formula for the weight-2
Eisenstein cocycle reproven in loc. cit; this follows immediately from the fact that at 7 = oo, the series
E;(1, z) degenerates to the periodic Bernoulli polynomial B;—(Z.z): this is immediate from the description of
both functions by Hecke regularized (analytic continuation in s), since it holds for s with large enough real
part that the Fourier series are absolutely convergent.

Hence as expected, the (GL2, GLy)-Eisenstein theta lift’s degeneration at a cusp yields the (GLy, GL;) theta
lift (in the sense described in [ , $13)).

Remark 3.10. Instead of a formula, one can obtain a more efficient ”continued fraction” algorithm for com-
puting the lifts for matrices in STy (Z) = GL2(Q) by using its famous generators S and 7" and the recursion
principle (3.9): this is presented for Eisenstein cocycles presented in [ , §2.4], but works identically here
by replacing the Bernoulli polynomials with our Eisenstein-Kronecker series. The outputs of this algorithm

will coincide with the preceding formulas by uniqueness of C%’TO, though this is not obvious.
17
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4. SOME PROPERTIES AND EXTENSIONS

4.1. Hecke equivariance. As one expects for a theta lift, the cocycles 6., considered for the group SLy(Z),
satisfy a compatbility property between two kinds of Hecke operators: geometric Hecke operators coming
from the variable 7 in the upper half-plane with its SL,(Z)-action, and a cohomological Hecke action coming

from the matrix action fiberwiise.

Using our algebraic approach, one could prove this compatibility analogously to the approach in [SV, §6].
However, since a form of Hecke compatibility was already proven in [ , Théoreme 2.8] for a closely

related cocycle, it is much easier for us to simply to import this result using our already-proven comparison.

To fix ideas, in this section we will consider the restriction of 6, to I' := I';(N) < SLy(Z) for some integer
N > 1, and a torsion section z = (0, z9) : H — E? which descends to level Y; (N ). The below approach can

be applied to broader contexts, but in this article we will remain in this setting.

We recall the definition of two kinds of Hecke operators for GL, acting on [0, ]: a fiberwise action coming

from group cohomology, and a geometric action coming from the M&bius action on 7.

We write A to be the monoid of rank-2 integral matrices which stabilize (1,0) € (Z/N)? for the standard left
representation, so that I' = A. Given any double ['-coset in A, we can decompose it finitely as

Fal' = | JaiT.
i
As always, there are two different A-actions we need to consider: first, the “fiberwise” action, where ~y acts
by
(| dety[y~1)",

this choice made so that for v € SLy(Z) it coincides with the pushforward we have heretofore been consider-
ing, and the “modular” action, which sends

v (7,21, 22) 1= <

Then for any double coset I'al’, the action of I'al’ on 1-cocyles can be defined as in [RW] (or [ ,$2.2.1)D

at+b 2z 29
ctr+d er+d er+d)

by sending a 1-cocycle ¢ : I' — M valued in a A-module M to
¥ Y ec(n)

where ~; is defined by the relation a;y = ;a4 (;) for some permutation o of the representatives «;. (Note that
our conventions differ slightly from loc. cit, both here and for the pullback action of A; these two changes

result in the same Hecke action.)
18
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On invariants (with the modular or fiberwise action), the action of ['al’ is simpler to define, sending an

Z ;.
If we denote the fiberwise Hecke operator by 7'(«v) and the modular one by T(«), then (4), (5) of [ ,
Théoreme 2.8] tell us that

element x € M" to

T(a)ob.p="T(a)ob:r@p, T(a)ob,p="T(x) 00 @)D

for any o € A. In particular, let 7, and T, be the double coset operators associated to a prime p, consisting of
all matrices in A with determinant p. When p is relatively prime to N, these form just a single double coset,
else they may be a sum of multiple such operators.’

Write 6, for the torsion cycle comprised of all p-torsion points ((cv, 1), (a2, £2)) € T»[p] such that (a4, 51)
and («v, 32) are linearly dependent over Z/p. Then we can compute that for any auxiliary integer ¢ > 1, we
have

Tp(Tr[c] = ¢H{0}) = Tp(Tr[c] — ¢H{0}) = ([e]* — ¢*)(3, + p{O}).

Pulling back this equality by x (since this commutes with the pullback action of A!), we obtain:

Proposition 4.1. We have the equality T,0, , = T,0. . for all primes p, i.e.
0,0 Hi(T1(N),Z) — H(Y1(N),w®?)

is equivariant for the Hecke subalgebra generated by {T,}, for the fiberwise, respectively modular Hecke

actions on source and target.

Note in particular that this includes the entire anemic Hecke algebra (all operators of level prime to V), but

does not necessarily include U, for p dividing N.

4.2. Relations between modular forms. We use the calculation of [ , §13.3] to relate our cocycle’s
values to restrictions of Hilbert—Eisenstein series, and thereby get relations between L-values. We recall the
setup in loc. cit., specialized to our case: let " be a real quadratic field, and write let U, be the group of units
of O with norm +1 which are 1 (mod p). Pick a generator u, for this group, up to torsion. Let £ be an

ideal, with coordinatization « : € = Z? associated to an algebra embedding

b
L: Op — My(Z),u, — (Z d) e ['(p).

The map ¢ also induces a map
Lt (FRgR)I/RY — GLy(R)7/SO(2) -RX =H

"Note that this is not a universal convention for p dividing the level; some authors use T}, for one of the primitive suboperators in
this case (which we call U)).
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whose image g, in the upper half-plane becomes a closed geodesic upon quotient by any arithmetic group;

this is the geodesic is preserved by the action of the positive-norm units in Oy, viewed as a subgroup of
SLy(Z).

Let 1, be the function on the narrow class group C1™(F) whose value is sgn Nt on the class [(¢)€] for
t € F, and otherwise zero; let 1[;1(10 ) be its pullback to the ray class group of level p; viewed as a function
on the monoid of ideals, this will now vanish at ideals divisble by p. Then specializing [ , (51)], there
is a diagonally restricted Hilbert-Eisenstein series G (1, 1[;3(” )y = Gl(l[;j(p ) 1) of level Ty(p), coming from
the component of the Hilbert modular surface corresponding to the class of the inverse different 9!, whose

series expansion in 7 € H is given by the continuation to s = 0 of

dr 1
—_——— N¢
A2 Of U] EE§F) (m,n)E%:xE)/Up (mT 4+ n)|mr + n|?s
ptm

Here, we use the notation as in loc. cit. with dy the discriminant of /' and an unwritten ‘“norm” in the

denominators, so that for example m7 + n means
(o1(m)T 4+ o1(n))(oe(m)T 4+ 02(n))

for the pair of real embeddings o, 05 of F.

Meanwhile, the computation before [ , Theorem 30] shows that

1
0, = —2%7D(s + 1)’ *Im(r)* Nt
(1)) () (s + 1) 2Im(r) ) s e
(m.n)et?/U,, °

where x € (F/£)?, and we use the same notation otherwise as above. Comparing these two formulas, we find
that

_ dp
GiL1") = F— Y 0(w)(x).
P*[OF - U zep— 1 (Ext)/(Ext)

¢t

We therefore conclude:

Theorem 4.2. We have the equality of modular forms in T'o(p)

G (1, 1[;1(13)) ___dr 2 4((1_4”032(7’ o) + ! { <1 a> By (7,21) B (T, 22)} ]

= [OF : U] re B[Pk c c 0 ¢

Z=T

where K,,  E|[p] consists of all points fixed by I'y(p).
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The spectral coefficients of the right-hand side of this equality are periods of cusp forms f along modular
symbols (via Rankin-Selberg formulas, cf. [ , Theorem 4.6]) and of the left-hand side are partial L-
values of f over F' (see [ , Theorem C]). This identity can thus be thought of packaging all these period

identities together into one modular identity.

One can also make analogous computations for more general ¥ of higher conductor, and obtain analogous

formulas for general ray class characters in this manner.

4.3. CM elliptic curves. Suppose now that 7 satisfies a quadratic equation with rational coefficients; then
the corresponding elliptic curve F, has complex multiplication by an order O in K := Q(7). Then we
can extend the action of GLy(Z) on T to an action of GLy(©), and therefore the action of GL(Q) on the
trace-fixed distributional de Rham complex to an action of GLy(K'). Note that in this case, we can take
“trace-fixed” to include all isogenies built out of the “scalar” endomorphisms in O, because (3.4) generalizes

to these isogenies [B I, Proposition 1.1.6].

Since this latter group has a Bruhat decomposition

GLy(K) = Bk (1 1) Bk

(where here By denotes the upper triangular Borel of this group) exactly as over QQ, the arguments of section
3 go through almost exactly as before:

Theorem 4.3. The map given by

4.1)
LB (T, 22) o0 ele
Y= 00z ) = fa 1) g La ¢
|| B ) + Bi(r, 2)Bu(7, 22) + 2 Ba(T, 22)
c C

is a cocycle for GLy(K) valued in functions on T, — {0}, whose specialization at torsion sections gives the

theta lift of [ , §13] for the dual pair (GLy(K), GLy(K)). Its restriction to SLy(O) can be simplified to
4.2)
7 (7, 29) ifc =0, else
7= 0:7](21, 22) = 1 a
cdethZ(T Zg) + % 0 El(T,Zl)El(T,ZQ) + %EQ(T, 22)
c
Proof. The proof is exactly identical to the proof of Theorem 3.7. U

This imaginary quadratic cocycle, along with higher-weight generalizations, was also constructed analytically

in the work [ ]; essentially the same cocycle was also constructed by Ito [Ito] earlier. As described in
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[ , §13.4], it follows from Ito’s computation that in this case we also an the L-value identity
(4.3) 2*0.[v] = £(a — ') L(7, 1; x).
where

is hyperbolic with (a + d)? ¢ {0, 1,4}, stabilizing = a torsion section of E?, a and o' are the roots of
cX? + (d — a)X — b= 0, and the L-function is given by

Z Q(m7 n)

L(v,s;z) = W7

(m,n)e(OF +x)/{(v)
for the quadratic form ()
Q(m,n) = (ma + n)(ma’ + n).
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