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ABSTRACT. We explicitize the algebraic approach to the pGL2pQq,GL2pQqq-theta correspondence (of [BCG3])
using theta series in the distributional de Rham complex of the squared universal elliptic curve. As a result, we
obtain novel unsmoothed formulas for this theta lift, analogous to Siegel’s classical formulas for periods of
Eisenstein series. In the setting of CM elliptic curves, we obtain a pGL2pKq,Kˆq theta lift formula, which
earlier was obtained analytically by Ito. We discuss some applications to formulas for L-values.

1. INTRODUCTION

In the article [BCG1] and its sequel [BCG3], the authors construct a theta lift from the pn ´ 1q-homology
of GLn to modular forms for GL2. This construction uses an equivariant polylogarithm class; in particular,
when n “ 2, the class in question corresponds to the algebraic GL2-action on the squred universal elliptic
curve over the upper half-plane (or its modular curve quotients). This class can be computed by various
means: in [BCG1], the lifts of certain modular geodesics are computed via the seesaw principle, while in
[BCG3], certain stabilizations of the lift are computed by relating them to values “at the boundary,” i.e. by
partial modular symbols. Related cocycles valued in K-theory were constructed in [SV] and [BPPS] (for
general n; the regulators of these cocycles these correspond to parabolic stabilizations of the theta lift.

In [X2], we constructed explicit elements in the GL2-equivariant distributional de Rham complex of a torus
to re-derive classical “unstabilized” formulas for periods of weight-2 Eisenstein series. In cohomology, these
Eisenstein series arise as pullbacks of an equivariant class on pS1q2, allowing us to compute them by explicat-
ing equivariant cohomology via geometrically-defined complexes. In this note, we apply the same technique
to the squared universal elliptic curve, and in turn obtain novel explicit formulas for the pGL2,GL2q-theta
lift. These formulas especially shed light on the Eisenstein component of the lift, exhibiting the particular
combiniation of weight-2 Eisenstein series which arise from specializations at parabolic matrices.

Due to the nature of the theta lift’s construction, instead of the equivariant distributional de Rham complex of
[X2], we will use the equivariant weight-2 distributional Dolbeault complex of our squared universal elliptic
curve. The explicit elements in loc. cit. were comprised of weight-1 and weight-2 Bernoulli polynomials
B1pzq and B2pzq; these will be replaced with theta series E1pτ, zq and E2pτ, zq interpolating weight-1 and 2

Eisenstein series. To find the explicit forms of these elements, as in loc. cit., we will need to use an explicit
version of the Bruhat decomposition of

GL2pQq “ BwB
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where

w “

˜

0 1

1 0

¸

represents a Weyl element, andB Ă GL2pQq is the upper triangular Borel subgroup. In particular, we recover
the following explicit formula:

Theorem 1.1 (Theorem 3.7). Let Γ Ă GL2pZq be an arithmetic subgroup, and consider any Γ-fixed linear
combination

D “
ÿ

i

tirpui, viqs,

of nonzero torsion sectionspui, viq of the squared universal elliptic curve E ˆH E, endowed with the block
scalar action of M2pZq. Let

Θ
pcq

τ,D : Γ Ñ modular forms of weight 2

be the associated Eisenstein theta lift for pGL2,GL2q defined by (3.15). Define a function parameterized by
elements γ P GL2pQq by the formula
(1.1)

θτ rγspz1, z2q :“

$

’

’

’

&

’

’

’

%

4b
d
E2pτ, z2q if c “ 0, else

¨

˝

a 1

c 0

˛

‚

˚

4d
cdet γ

E2pτ, z2q ` 1
c

¨

˝

1 a

0 c

˛

‚

˚

E1pτ, z1qE1pτ, z2q ` 4a
c
E2pτ, z2q

where E1 and E2 are specializations in weights 1 and 2 of the classical Kronecker-Eisenstein series, defined
in Section 3.1. Then we have

Θ
pcq

τ,Dpγq “
ÿ

i

ciθτ rγspui, viq P C.

Here, ci are integer coefficients, and ui and vi are elements of pZ{Nq2 ´ tp0, 0qu, thought of as N -torsion
sections on Eτ .

In Section 4.3, we outline also that the same methods yield an almost identical formula (4.2) for subgroups
of GL2pKq for K an imaginary quadratic field, valued in CM specializations (for the field K) of E1 and
E2. This formula was previously obtained analytically by Ito [Ito], who related it also to L-values of the
corresponding CM fields.

Correspondingly, by evaluating the pGL2pQq,GL2pQqq theta lift on primitive hyperbolic matrices, a seesaw
diagram (as in [BCG1, §13]) shows that we obtain formulas for diagonal restrictions of Hilbert-Eisenstein
series:

Theorem 1.2 (Theorem 4.2). Let G1p1, 1
´,ppq

ras
q be the diagonal restriction of a weight-1 Hilbert-Eisenstein

series for a real quadratic field F , corresponding to the p-stabilized indicator function of a wide ideal class
2
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ras. Then we have the identity of level-Γ0ppq modular forms

G1p1, 1
´,ppq

ras
q “

dF
p2rOˆ

F : Ups

ÿ

xPErps2´K2
p

«

4pa ` dq

c
E2pτ, x2q `

1

c

#˜

1 a

0 c

¸

˚

E1pτ, z1qE1pτ, z2q

+

z“x

ff

whereE1 andE2 are classical weight-1 and 2 Eisenstein series as before, andKp is a Γ0ppq-fixed combination
of torsion sections of the universal elliptic curve.

1.1. Related work. A similar computation of equivariant cohomology was completed in [KS, §3], using
generalized Kronecker-Eisenstein series. Our calculation can be considered as a more explicated form of the
calculation there, for the self-product of the universal elliptic curve with trivial coefficients, except that:

(1) we treat the entire action of GL2 at once, instead of just working with the equivariance under one
subtorus at a time;

(2) we construct also a cocycle for a larger group with no geometric action on the fibers (GL2pQq instead
of GL2pZq, or GL2pKq in the CM case);

(3) we do not rely on any stabilization or smoothing coming from translations by torsion sections.

We restrict to this setting both because it is particularly arithmetically rich, and allows for a considerably
simpler and less technical exposition. Futhermore, by eschewing smoothing, the resulting formulas are more
transparently related to classical objects such as classical holomorphic Eisenstein series or the period formu-
las of Siegel (as in [X2]), and corresponds directly to the theta kernel of integration of [BCG1]. Furthermore,
our formulas can be specialized (with cohomological meaning) at arbitrary non-zero torsion points, thanks to
Theorem 3.5. As we noted in our previous article [X2] in a simpler setting, our same methods should pro-
duce analogous formulas with twisted coefficients corresponding to higher-weight automorphic sheaves; the
resulting formulas will involve progressively more complicated combinations of higher-weight specializa-
tions of Kronecker-Eisenstein series. Another natural generalization would be to use the more complicated
decomposition of parabolic subgroups for GLn and n-fold products of elliptic curves; in this setting, our
unsmoothed formulas grow in complexity very quickly with n.

The pGL2,GL2q-theta lift is closely related to Gross-Stark units for real quadratic fields, and to Stark-Heegner
points, via the p-adic Kudla program approach of [DPV1]; this is the subject of work in preparation, both
independently and with Marti Roset Julia. However, in these works, we always use smoothed versions of the
formulas, since they are easier to describe in more generality, and result in p-adic interpolability.

2. EISENSTEIN THETA LIFT FOR pGL2,GL2q

The theta lift we are considering was originally constructed purely analytically in [BCG1], but we will find
the algebraic construction of [BCG3] more useful; the comparison between the two is also proven in loc. cit.
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To begin, we consider the complex upper half-plane H, and the universal elliptic curve over it given by the
complex uniformization

E :“ pH ˆ Cq{tpτ,Z ` τZqu.

Here, we will write τ “ x ` yi for the coordinate on the base, and z for the fiberwise coordinate on C. This
fiber bundle has the complex analytic action (as a fiber bundle) of GL2pZq by

˜

a b

c d

¸

pτ, zq “

ˆ

aτ ` b

cτ ` d
,

z

cτ ` d

˙

.

We will also write z “ u´ τv for u, v P R; this then allows GL2pZq to act on the column vector pu, vq by the
standard left action. The principal space we will work on is the self-product T :“ E ˆH E, which we will
coordinatize by τ on the base, and z1 and z2 on the two elliptic curves. For us, the important property of T
is that it has a fiberwise action by endomorphisms of M2pZq, coming from the endomorphism action of Z on
any elliptic scheme by isogenies, i.e. the integer a P Z acts by the finite multiplication-by-a isogeny ras˚ of
degree a2. In particular, the group GL2pZq acts by automorphisms on T .

For any torsion-free subgroup H Ă GL2pZq, the Y pHq :“ HzH can be equipped with an algebraic structure
making it the fine moduli space of elliptic curves over C-schemes with H-level structure. There is also the
corresponding universal elliptic curve

EpHq :“ HzpH ˆ pC{Z2
qq.

and its square
T pHq :“ EpHq ˆY pHq EpHq,

whose fiber over a point of the moduli space is the square of the corresponding elliptic curve. In this article,
for technical reasons, we will primarily work over H rather than after quotient by H; however, the output of
our construction will visibly descend through these quotients.

Let Γ Ă GL2pZq be any subgroup; we will work with the Γ-equivariant cohomology of Γ-subspaces of T . In
this article, we will follow the approach pioneered by [KS] to define the theta lift algebraically in coherent
cohomology of relative sheaves of differentials over H; see the author’s thesis [X] for details about how this
relates to the algebraic construction of [BCG3].

Following [KS], if we fix an auxiliary integer c ą 1, there is a unique (“polylogarithm”) cohomology class

z
pcq

Γ P H1
ΓpT ´ T rcs,Ω2

T´T rcs{Hq
p0q

characterized (as indicated by the superscript p0q) by being invariant by ras˚ for all integers a relatively prime
to c, and having residue

rT rcs ´ c2t0us P H2
Γ,T rcspT,Ω

2
T {Hq
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where H‚
Γ,T rcs

denotes the equivariant cohomology with support. Let S Ă T be a nonempty Γ-fixed arrange-

ment of T rcs-translates of elliptic subgroups of T ; we restrict the class zpcq

Γ to

H1
ΓpT ´ S,Ω2

T´S{Hq
p0q :“ lim

ÝÑ
SfĂS

H1
ΓpT ´ Sf ,Ω

2
T´Sf {Hq

p0q

where the limit is over finite subarrangements. The various T ´ Sf are cofinally fiberwise Stein manifolds
over the contractible base H, so have vanishing higher coherent cohomology; thus, in the Hochschild-Serre
spectral sequence we have a Hochschild-Serre edge map

e : H1
ΓpT ´ S,Ω2

T´S{Hq
p0q

Ñ H1
pΓ, H0

pT ´ S,Ω2
T´S{Hqq :“ H1

pΓ, lim
ÝÑ

H0
pT ´ Sf ,Ω

2
T´Sf {Hqq

p0q

where here we use the exactness of filtered colimits.

Thanks to a similar argument as the one to uniquely define zpcq

Γ , using projectors built from isogenies, epzpcq

Γ q

can be refined to a class which we denote

Z
pcq

Γ P H1
pΓ, H0

pT ´ S,Ω2
T´S{Hq

p0q
q

i.e. a cohomology class valued in prime-to-c isogeny-fixed forms (instead of being isogeny-fixed only up to
coboundary).

This group cohomology class valued in 2-forms on (an open subspace of) the bundle T parameterizes a family
of theta lifts: if one contracts with the GL2pZq-fixed vector field Bz1 b Bz2 and pulls back by any Γ-fixed
torsion section x disjoint from S, then

Θ
pcq

Γ,x :“ x˚
pZ

pcq

Γ X Bz1 b Bz2q P H1
pΓ, H0

pH, ωb2
qq

can be viewed via integration as a map from H1pΓq to a weight-2 modular form inside H0pH, ωb2q, as the
values of the integral will be fixed by any level structure H stabilizing the section x. Note that for any
given nonzero x, one can always find a disjoint S Ă T invariant by its stabilizer, so all torsion sections have
associated pullbacks. Furthermore, since one can always restrict away from the union of two different S, it
is clear the pulled back class is independent of the choice of removed sub-elliptic curves. If we fix any point
of the base τ P H, we can similarly define the fiberwise version of these cycles by restriction,

Zpcq
τ P H1

pΓ, H0
pTτ ´ Sτ ,Ω

2
Tτ´Sτ

q
p0q

q,Θpcq
τ,x :“ x˚

pZpcq
τ X Bz1 b Bz2q P H1

pΓ,Cq

where the subscript τ refers to the fiber over that point. (We here omit the Γ from the notation for brevity,
since these classes are compatible under restriction of Γ in any case.)

Out of technical convenience, we will obtain our explicit formulas for the fiberwise classes Θpcq
τ,x. Since the

action of Γ is trivial for these classes, however, this will also imply formulas for the classes Θpcq

Γ,x.1

1With a little extra work, one can also prove similar formulas for the “spread out” classes Z
pcq

Γ , but this is not the focus of this
article.
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2.1. Computing with complexes. We now define the main tool we need, in this setting: the weight-2 distri-
butional Dolbeault complex. Let X be a complex manifold of complex dimension d, and write Ap,q

X for the
sheaves of smooth complex differentials on X of holomorphic degree p and antiholomorphic degree q; these
sheaves are flabby on X , so we (a bit abusively) use this same notation for their global sections. These forms
support the pair of anti-commuting Dolbeault differentials

B : Ap,q
X Ñ Ap`1,q

X , B : Ap,q
X Ñ Ap,q`1

X

which are square zero, satisfy the Leibniz rule, and sum to the usual exterior derivative on differential forms.
For an integer w ě 0, we recall that the holomorphic pw, 0q-differentials are precisely the kernel of B inside
Aw,0

X .

Ordinarily, the Dolbeault resolution of Ω2
X is constructed from these sheaves, but instead, we dualize: first,

write Ap,q
X,c for the space of compactly supported relative pp, qq-differentials on X , carrying the same differ-

entials as the usual ones (though they do not form a sheaf). Then we define

Dp,q
X “ hompAd´p,d´q

X,c ,Cq

which we call the space of pp, qq-currents on X . Unlike the compactly supported forms, these do form a
sheaf, since they can be restricted along inclusions of opens in adjunction to the pushforward of compactly
supported forms. Since these pushforwards are injective, the sheaf restrictions maps are surjective and thus
each Dp,q

X is flabby. We therefore again abusively use the same notation for the sheaf and its global sections.
For these properties of currents, the original reference is [dR].

The Dolbeault operators
B : Dp,q

X Ñ Dp`1,q
X , B : Dp,q

X Ñ Dp,q`1
X

are defined as the graded adjoints of the exterior derivative on forms, i.e.

pBcqpηq :“ p´1q
deg ccpBηq, pBcqpηq :“ p´1q

deg ccpBηq

where deg refers to the total degree (i.e. p ` q for a pp, qq-current).

There is a natural inclusion
νX : Ap,q

X Ñ Dp,q
X{

given by

ω ÞÑ

ˆ

η ÞÑ

ż

X

ω ^ η

˙

where η is a compactly supported smooth pd ´ p, d ´ qq-form; the integral makes sense and is finite since
the wedge product is also compactly supported, and of degree pd, dq. It is clear that νX commutes with
the Dolbeault differentials B and B. Furthermore, since pp, qq-compactly supported forms have covariant
functoriality by flat holomorphic maps and contravariant by proper holomorphic maps, by adjunction, pp, qq-
relative currents can be pulled back by flat maps and pushed forward by proper ones. One can check that the

6
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push-pull formula for differential implies that νX is functorial for flat pullback and proper pushforward of
complex manifolds.2

There exists a B-Poincaré (or Dolbeault-Grothendieck) lemma due to [Skoda] for these currents; the analo-
gous result for differential forms can be found in [Serre]. As with the classical Poincaré lemma, these are
cohomologically useful when stated in the following form:

Lemma 2.1. The complex

(2.1) Ωw
X ãÑ Dw,0

X
B
ÝÑ Dw,1

X
B
ÝÑ . . .

is an acyclic resolution of sheaves. Further, the map of B-complexes induced by νX

(2.2) Aw,‚
X Ñ Dw,‚

X

is a quasi-isomorphism for each degree w.

In particular, for 2-dimensional X and w “ 2, the complex

D2,0
X

B
ÝÑ D2,1

X
B
ÝÑ D2,2

X

is functorial in X (in the sense described previously) and computes the coherent cohomology of Ω2
X . (Here,

we recall that X is assumed to be relative dimension 2, so there are no further terms.)

We now introduce an important class of currents: associated to closed complex submanifolds Z Ă X of
codimension r, we have a closed current of integration

δZ P Dr,r
X

defined by

δZpωq :“

ż

Z

ω.

Now consider a fixed squared elliptic fiber Tτ “ Eτ ˆEτ . Then the class of a closed current ω P D2,1
Tτ

having
residue C P H0pTτ rcsq along the residue map

H1
pTτ ´ Tτ rcs,Ω2

Tτ´Tτ rcsq Ñ H0
pTτ rcsq

is equivalent to dω “ δC (where this is interpreted as a suitable linear combination of the currents of integra-
tion along points in the support of C); see for example [X, (3.3)] from the author’s thesis.

Since the distributional Dolbeault complex is a functorial complex computing the coherent cohomology of
holomorphic differentials, the coresponding equivariant coherent cohomology of Ω2

X can thus be computed

2For orientation-reversing maps, one has to be careful about this comparison map, since they introduce an extra sign; this was an
issue we had to work with in [X2]. However, all of our maps will be morphisms of complex manifolds, and hence orientation-
preserving.
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by the double complex C‚pΓ,D2,‚
X q, where Γ Ă GL2pZq acts on the currents by pushforward; see, for exam-

ple, the author’s thesis [X, §3.1].

Analogously to the non-equivariant case, then, an element ω of this double complex for T restricts to a
representative of a class in H1

ΓpTτ ´ Tτ rcs,Ω2
Tτ´Tτ rcs

q with residue

rTτ rcs ´ c4t0us P H0
pTτ rcsqΓ

if and only if the total differential of ω is δTτ rcs ´ c4δ0 P C0pΓ,D2,2
Tτ

q. In particular, if we can find such a
class which is in the trace-fixed part pD2,‚

Tτ
qp0q, this notation meaning the part which is invariant by ras˚ for all

integers a relatively prime to c, then it will represent the class

Zpcq
τ P H1

ΓpTτ ´ Tτ rcs,Ω2
Tτ´Tτ rcsq.

3. CONSTRUCTING THE LIFT

3.1. Kronecker-Eisenstein series as theta functions. We now know that in principle, one can compute
Eisenstein classes by finding suitable lifts inside the distributional de Rham complex. It remains to find
currents realizing these lifts.

Recall the Kronecker-Eisenstein series [Weil]

(3.1) Kaps, τ, z, uq “

1
ÿ

ωPZ`Zτ

pω ` zqa

|ω ` z|2s
exp

ˆ

2πi
ωu ´ ωu

τ ´ τ

˙

for τ P H, z, u P C, and a P Z; the superscript apostrophe denotes that the sum omits any term where
ω` z “ 0. This series is convergent for Re s ą 1` a{2, but has meromorphic continuation to all s P C, with
simple poles possibly only at s “ 0 (when z P Z ` Zτ and a “ 0) s “ 1 (when u P Z ` Zτ and a “ 0). We
define special notations, following [BCG1, §9], for the specializations we need:

E1pτ, zq :“
i

2π
K1p1, τ, z, 0q,(3.2)

E2pτ, zq :“ ´
1

4πy
K2p1, τ, z, 0q.(3.3)

Since these functions are manifestly pZ`Zτq-periodic in z for fixed τ , we can considerE1pτ, zq andE2pτ, zq

as functions on Eτ . Further, E1pτ, zq is odd and E2pτ, zq is even in z, for any τ ; in particular, we see that
E1pτ, 0q “ 0. As noted in [Weil], these two functions specialize at torsion points

E1pτ, α ´ βτq, E2pτ, α ´ βτq; pα, βq P pQ{Zq
2
ztp0, 0qu

to holomorphic modular forms in τ of weight 1, respectively 2, which are the classical Eisenstein series of
those weights, of level corresponding to the stabilizer of pα, βq in SL2pZq.

8
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From [BCG1, (9.6)] together with [BCG1, Proposition 20], we observe that we have the distribution relations
as functions

ras˚pE1pτ, zq dzq “ E1pτ, zq dz,(3.4)

ras˚E2pτ, zq “ E2pτ, zq(3.5)

for any integer a P Zzt0u. Further, [BCG1, Theorem 19] and [BCG1, §9.4] together imply that, considered
as a current on Eτ ,

BE1pτ, zq dz “ δ0 ´ volEτ “ δ0 ´
2idz ^ dz

y

where here we give the formula for the normalized volume form onEτ . Away from the zero section (ignoring
the current of integration δ0), this derivative holds on the level of functions. Furthermore, [Weil, (35)] says
that

BE2pτ, zq “
i

2y
¨ E1pτ, zq dz

as functions (and hence currents) on Eτ . Thus, both E1 and E2 are smooth away from the zero section, where
E2 is once-differentiable and E1 has a singularity. Note that the formulas in [BCG1, §9.4] imply that on a
punctured neighborhood of the zero section, E1 looks like it has a simple log pole (even though its actual
value at zero is 0). It therefore makes sense to consider forms like E1pτ, zq dz and E2pτ, zq dz as p1, 0q-
currents on Eτ by considering them as kernels of integration as in the map νX we defined for smooth forms,
since the corresponding integrals will converge for compactly supported smooth forms.

3.2. Explicit isogeny-fixed currents. We now construct a certain element of total degree 1 (or 3, if one adds
in the Hodge weight 2)

ζτ P C‚
pGL2pQq, pD2,‚

Tτ
q

p0q
q

whose total differential is the cocycle

δ0 ´ volTτ P Z0
pΓ, pD2,2

Tτ
q

p0q
q “ rpD2,‚

Tτ
q

p0q
s
Γ

Lemma 3.1. If we construct such a ζτ , then for any integer c ą 1, the restriction of prcs˚ ´ c4qζτ to any
Γ Ă GL2pZq and Tτ ´ Tτ rcs Ă Tτ represents the class Zpcq

τ .

Proof. If the total differential of ζτ is δ0 ´ volE , then the total differential of prcs˚ ´ c4qζτ is δTτ rcs ´ c4δ0.
Furthermore, it remains invariant by all isogenies prime to c; hence by the discussion at the end of the previous
section, the result follows. □

To construct this lift, we must specify ζ0,1τ P C0pGL2pQq, pD2,1
Tτ

qp0qq and ζ1,0τ P C1pGL2pQq, pD2,0
Tτ

qp0qq such
that Bζ1,0τ “ BGL2pQqζτ0,1 where the latter differential refers to the group coboundary map.

We therefore fix the choice

ζ0,1τ :“ E1pτ, z1q dz1 δz2“0 ` E1pτ, z2q dz2 ^ volz1“0

9



EXPLICIT FORMULA FOR THETA LIFT VIA BRUHAT DECOMPOSITION PETER XU

whose image under B is can be computed as

Bζ0,1τ “ BrE1pτ, z2q dz2 δz2“0 ` E1pτ, z1q dz1 ^ volz1“0s(3.6)

“ pδ0 ´ volz1“0 δz2“0q ` pvolz1“0 δz2“0 ´ volz1“0 ^ volz2“0q(3.7)

“ δ0 ´ volTτ(3.8)

It remains therefore to find, for each γ P GL2pQq, a lift to pD2,0
Tτ

qp0q of

pγ˚ ´ 1qζ0,1τ “ pγ˚ ´ 1qrE1pτ, z2q dz2 δz2“0 ` E1pτ, z1q dz1 ^ volz1“0s.

We observe that there are no more choices to be made; these lifts are unique:

Lemma 3.2. The trace-fixed complex

0 Ñ pD2,0
Tτ

q
p0q

Ñ pD2,1
Tτ

q
p0q

Ñ pD2,2
Tτ

q
p0q

is left-exact.

Proof. This can be proven identically to [SV, Lemma 6.2.1], as the only trace-fixed cohomology of Ω2
Tτ

is
in top degree, coming from the form yielding the fundamental class of the 4-torus Tτ in the Hodge-de Rham
spectral sequence.3 □

To find formulas for these lifts for a fully general matrix γ is complicated if approached directly: the push-
forward action on currents can yield expressions with arbitrarily many terms. Instead, we decompose our
matrices to simplify the calculation.

3.3. Telescoping with the Bruhat decomposition. The main observation we need is that we have the “tele-
scoping” relation

(3.9) pγ2γ1 ´ 1qζ0,1Tτ
“ γ2pγ1 ´ 1qζ0,1Tτ

` pγ2 ´ 1qζ0,1Tτ

reducing the problem of finding a lift for the product of matrices to the problem for the individual matrices.
Thus, the problem of finding lifts can be reduced to a set of generators of GL2pQq.

We recall that the Bruhat decomposition says that

GL2pQq “ BwB “

˜

˚ ˚

0 ˚

¸ ˜

0 1

1 0

¸ ˜

˚ ˚

0 ˚

¸

3In fact, one can show using Fourier series that this complex is almost right-exact as well, except for one dimension of cohomology
on the right. This is unnecessary for us, so we omit it.

10
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where B denotes the upper triangular Borel subgroup, and w the antidiagonal Weyl element. We can make
this more explicit by writing

γ :“

˜

a b

c d

¸

“

˜

1 a

0 c

¸ ˜

0 1

1 0

¸ ˜

1 d{c

0 ´
det γ
c

¸

(3.10)

“

˜

1 a{c

0 1

¸ ˜

1 0

0 c

¸ ˜

0 1

1 0

¸ ˜

1 ´ d
det γ

0 1

¸ ˜

1 0

0 ´
det γ
c

¸

(3.11)

whenever c ‰ 0, for an arbitrary matrix γ P GL2pQq. Here, we have further decomposed the appearing upper
triangular matrices by factoring them into a diagonal times a unipotent matrix. When c “ 0, our matrix is
already in the Borel, so we can directly write

˜

a b

0 d

¸

“

˜

1 b{d

0 1

¸ ˜

a 0

0 d

¸

The point of this is that w, diagonal, and unipotent matrices all act in very computable ways on ζ0,1Tτ
, enabling

us to find lifts:

(1) All diagonal matrices act trivially on ζ0,1τ , by the isogeny properties of E1 we proved earlier together
with the fact that the volume form of a torus is isogeny-invariant. Hence the corresponding lifts are
zero.

(2) For the element w, we can write pw ´ 1qζTτ as

E1pτ, z2q dz2 δz1“0 ` E1pτ, z1q dz1 ^ volz1“0 ´ E1pτ, z1q dz1 δz2“0 ´ E1pτ, z2q dz2 ^ volz2“0

“ BrE1pτ, z1qE1pτ, z2q dz1 ^ dz2s

which is a very simple lift.

(3) For a unipotent matrix γu with upper-right entry u, we find that the term with the current δz2“0 cancels
in pγu ´ 1qζTτ (since the coordinate z1 is fixed), and what remains is

(3.12)
2iu

y
E1pτ, z2q dz1 ^ dz2 ^ dz2 “ B r4uE2pτ, z2q dz1 ^ dz2s

Combining these with our explicit Bruhat decomposition, we find the following formulas: in the case when
c “ 0, we obtain

(3.13) ζ1,0Tτ
pγq “

4b

d
E2pτ, z2q dz1 ^ dz2.

In the case when c ‰ 0, we use the full Bruhat decomposition to obtain the following:

11
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Proposition 3.3. The unique lift ζ1,0Tτ
on a matrix γ P GL2pQq is given by the expression4

(3.14)

«˜

a 1

c 0

¸

˚

4d

c det γ
E2pτ, z2q `

1

c

˜

1 a

0 c

¸

˚

E1pτ, z1qE1pτ, z2q `
4a

c
E2pτ, z2q

ff

dz1 ^ dz2.

We therefore have obtained full formulas for ζTτ , whose c-stabilizations yield the kernel classes Zpcq
τ for

the Eisenstein theta lift after restriction to GL2pZq. For a general matrix γ, there does not appear to be a
substantial further simplification of the preceding formulas, besides writing out the pushforwards as sums.

3.4. Specializations at torsion points. The actual “theta lift” for pGL2,GL2q is generally taken to be valued
after contraction pullback by torsion sections. Fix an arithmetic subgroup Γ Ă GL2pZq; in order to compare
our results with the cohomological theta lift, we will restrict ζτ to Γ.

Remark 3.4. This arithmeticity hypothesis is only necessary to compare with the cohomological construction
of the theta lift: one can still obtain pulled-back cocycles on, say, S-arithmetic subgroups for some set of
inverted places S, so long as they fix some torsion sections (of order necessarily prime to the places in S).
We do not write down this extension here, but the formulas can be obtained by our same methods.

In this context, we wish to consider the image of Zpcq
τ under the composite

(3.15) H1
ΓpTτ ´ Tτ rcs,Ω2

Tτ´Tτ rcsq
X B

Bz1
b B

Bz2
ÝÝÝÝÝÝÑ H1

ΓpTτ ´ Tτ rcs,OTτ´Tτ rcsq
D˚

ÝÝÑ H1
Γptτu,Cq “ H1

pΓ,Cq

where D is any Γ-fixed torsion cycle D disjoint from Tτ rcs. (Here, we are slightly abusive in writing the
pullback D˚; this is actually a sum of pullbacks over the various torsion sections in the support of D.)
Analogous to the case of a single torsion section, we will write Θpcq

τ,D for this image. We wish to interpret this
composite in terms of the explicit double complex representative ζτ ; the main issue is that currents cannot in
general be pulled back by closed immersions.

The technical tool we need to remedy this is the introduction of a variant of the distributional Dolbeault
complex: For any Γ Ă GL2pQq, let HΓ Ă Tτ be the Γ-orbit of the lines tz1 “ 0u and tz2 “ 0u and their
translates by c-torsion sections inside Tτ ; this is a union of infinitely many elliptic subschemes (and their
c-torsion translates). For any finite subarrangement H Ă HΓ, we define a complex D2,‚

Tτ ,H
via the pullback

square

(3.16)

D‚
Tτ ,H

D2,‚
Tτ

A2,‚
Tτ´H D2,‚

Tτ´H

4Notice that here, we have to introduce factors coming from the determinants of the matrices to go from pushforwards of forms to
pushforwards of functions.

12
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which results in an identification of D2,i
Tτ ,H

with the p2, iq-currents such that their restriction to Tτ ´ H are
given by smooth p2, iq-forms. Here, the bottom horizontal map is the earlier-defined inclusion, and the right
vertical map is the restriction dual to the pushforward of compactly-supported differential forms. We define
then

D2,‚
Tτ ,HΓ

:“ lim
ÝÑ
H

D2,‚
Tτ ,H

where the limit runs over H finite subarrangements of HΓ, along the natural inclusion maps. The group Γ

permutes the pullback diagrams for each H (sending it to that of γH), and these assemble to give a pushfor-
ward action on D2,‚

Tτ ,HΓ
. Further, because the bottom row in each pullback diagram is a quasi-isomorphism,

we see that D2,‚
Tτ ,HΓ

computes the cohomology of Ω2
Tτ

, just as D2,‚
Tτ

does. Furthermore, analogously to the full
distributional de Rham complex, we have a left exact sequence

0 Ñ pD2,0
Tτ ,HΓ

q
p0q

Ñ pD2,1
Tτ ,HΓ

q
p0q

Ñ pD2,2
Tτ ,HΓ

q
p0q

meaning that ζτ , considered in this more refined complex, is still uniquely determined. The important new
phenomenon for us is that if Γ fixes the torsion cycle D Ă Tτ disjoint from HΓ, then there is a composite
pullback map

D2,0
Tτ ,HΓ

Ñ lim
ÝÑ
H

Ω2
Tτ´H

X B
Bz1

b B
Bz2

ÝÝÝÝÝÝÑ OTτ´H
D˚

ÝÝÑ C

which induces the composite (3.15).

We now concern ourselves with the case that D is supported on N -torsion for an integer N ą 1. From the
preceding discussion, we can conclude that

rD˚
prcs˚

´ c4qζτ s “ Θ
pcq

τ,D

so long as D is disjoint from HΓ. Note that if c ” 1 pmod Nq, we can write the left-hand side as p1 ´

c4qrD˚ζτ s. The restriction on D is rather irritating, as it depends on the arbitrary choice of coordinates z1, z2
we used to choose our lift ζ0,1τ : for any given torsion section, we could simply start with a different lift to
obtain formulas for the pullback. However, this would result in a somewhat unsatisfying lack of unity in our
formulas. Luckily, we can use a trick to bypass this issue entirely, and make the formulas valid even for “bad”
torsion sections:

Theorem 3.5. Suppose c ” 1 pmod Nq. Then for any N -torsion cycle D disjoint from the identity, we have
that

rD˚ζτ s “
1

1 ´ c4
Θ

pcq

τ,D

The proof consists of “bootstrapping” from torsion points disjoint from HΓ to all of them. In order to do this,
we will need the following lemma allowing us to “improve” our current-valued cocycles to be form-valued:

Lemma 3.6. There is an injection
Mτ ãÑ pD2,0

Tτ ,HΓ
q

p0q

13
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where Mτ is defined to be the module of p2, 0q-forms on Tτ ´ t0u spanned by the GL2pQq-orbit of E2pz2q dz2

and E1pτ, z1qE1pτ, z2q dz1 ^ dz2, given by sending

ω ÞÑ

ˆ

η ÞÑ

ż

T

ω ^ η

˙

.

Proof of lemma. The only non-formal assertion here is that this map is injective. Notice that the map consid-
ering smooth forms (i.e. the map νTτ defined before) as currents via kernels of integration, or even continuous
forms, is clearly injective: by integrating against dz1 ^ dz2 times a bump function on any small open set, we
see that the zero current can only come from a form which vanishes almost everywhere, which hence must
be zero by continuity. Thus, the depth of this lemma’s assertion comes precisely from the discontinuities of
the forms in the orbit of E1pτ, z1qE1pτ, z2q dz1 ^ dz2 along codimension-1 sub-elliptic curves.5

We note the following property of E1pτ, z1qE1pτ, z2q dz1 ^ dz2: suppose x “ px1, x2q P Tτ is a point lying
on one of the subcurves of discontinuity S Ă Tτ (so x1 “ 0 or x2 “ 0) but not equal to zero. Then take any
small v “ pv1, v2q P C2 not parallel to the curve of discontinuity of x, so that x ˘ v does not lie in S. By the
oddness of E1, we find that the average of the translates by ˘v vanishes as we shrink v:

lim
ϵÑ0`

1

2
pE1pτ, z1 ` ϵv1qE1pτ, z2 ` ϵv2q ` E1pτ, z1 ´ ϵv1qE1pτ, z2 ´ ϵv2qq “ 0

as an equality of coefficients of dz1 ^ dz2.

By moving this argument around by the general linear action, this applies to any nonzero point on a codi-
mension 1 discontinuity stratum of a function in the orbit of E1pτ, z1qE1pτ, z2q dz1 ^ dz2.

Now consider an arbitrary ω P Mτ , and suppose that ω gives the trivial p2, 0q-current when considered as a
kernel of integration. Then, ω must be identically zero outside a finite union of sub-elliptic curves through
the identity. Consider an arbitrary nonzero point x on one of these subcurves S Ă Tτ , and pick some
decomposition

ω “ ω1 ` ω2

where ω1 consists of a sum of terms in the orbit of E2pτ, z2q dz1 ^ dz2 or E1pτ, z1qE1pτ, z2q dz1 ^ dz2 which
do not have a discontinuity along S, and ω2 consists of a sum of terms from the latter orbit which do have a
discontinuity along S. Pick now some vector v P C such that the the line segment between the points x ˘ v

intersects no other discontinuity locus of any term in ω1 or ω2; this is always possible since v is nonzero and
there are only finitely many terms to consider (and hence subcurves to avoid).

5Indeed, to appreciate the delicacy, observe if we change Tτ ´ t0u to T in its statement, the statement becomes false: see [BG,
Proposition 3.7] for an example of a relation between the weight-1 and weight-2 series everywhere except the zero section.

14
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Then we find that
1

2

ˆ

lim
ϵÑ0`

ω2|x`ϵv ` ω2|x´ϵv

˙

“
1

2

ˆ

lim
ϵÑ0`

ω|x`ϵv ´ rω1s|x`ϵv ` ω|x´ϵv ´ rω1s|x´ϵv

˙

(3.17)

“
1

2

ˆ

lim
ϵÑ0`

´rω1s|x`ϵv ´ rω1s|x´ϵv

˙

(3.18)

since ω is identically zero on a neighborhood of x in Tτ ´ S. But ω1 is continuous in a neighborhood of x by
assumption, so this expression is just ´ω1|z“x. On the other hand, the average of the two limits we started
with is zero from the preceding discussion, so we conclude that ω1|z“x “ 0. We also have ω2|z“x “ 0 because
forms in the orbit of E1pτ, z1qE1pτ, z2q dz1 ^ dz2 are zero along their discontinuity loci by construction. We
hence conclude that ω|z“x “ 0; since this applies to any nonzero point x, we conclude that ω is the zero form
on Tτ ´ t0u. This concludes the proof of injectivity. □

Proof of theorem. Thanks to the lemma, we can consider ζτ to be a cocycle valued in Mτ . Let Tτ rN s1 denote
the primitive N -torsion, and let S Ă Tτ be a sub-elliptic curve which is not the vanishing locus of either z1 or
z2. Let x0 P SrN s1 be any point, and write Γ1px0q Ă GL2pZq for its stabilizer. By construction, x R HΓ1px0q,
and so by the previous discussion,

(3.19) rx˚
0ζτ s “

1

1 ´ c4
Θpcq

τ,x0

for any c ” 1 pmod Nq. In fact, noticing that Γ1px0q must stabilize the entire elliptic sub-curve S, this
formula holds for any point x P SrN s1.

We now observe that zpcq
τ X B

Bz1
b B

Bz2
induces, by restriction, a class

(3.20) Θ
pcq

τ,N P H1
GL2pZqpTτ rN s

1,Cq – H1
pGL2pZq, hompTτ rN s

1,Cqq

where the isomorphism comes from the fact that Tτ rN s1 is a union of contractible spaces, causing the collapse
of the Hochschild-Serre spectral sequence. By functoriality of this spectral sequence, for any cycle D Ă

Tτ rN s1 stabilized by ΓpDq, the image of Θpcq

τ,N under the composite of restriction and evaluation

H1
pGL2pZq, hompTτ rN s

1,Cqq
res
ÝÑ H1

pΓpDq, hompTτ rN s
1,Cqq

D
ÝÑ H1

pΓpDq,Cq

yields Θpcq

τ,D.

Observe that there is a GL2pZq-equivariant map

Mτ Ñ hompTτ rN s
1,Cq, f dz1 ^ dz2 ÞÑ px ÞÑ fpxqq .

We claim that the pushforward of prcs˚ ´ c4qζτ under this map can be identified with Θ
pcq

τ,N , which would then
imply the desired result for arbitrary primitive N -torsion cycles.

Indeed, there is an isomorphism of GL2pZq-modules

hompTτ rN s
1,Cq Ñ IndGL2pZq

Γ1px0q
hompSrN s

1,Cq, f ÞÑ
`

γ ÞÑ f ˝ γ´1
˘

15
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where hompSrN s1,Cq has, naturally, a trivial action of GL2pZq. Hence, by Shapiro’s lemma it suffices to
show that prcs˚ ´ c4qζτ and Θ

pcq

τ,N agree upon restriction to Γ1px0q under the quotient

hompTτ rN s
1,Cq ↠ hompSrN s

1,Cq

dual to the obvious inclusion. But this is precisely (3.19), which we have already established. Assembling
these identifications together for all N ą 1 yields the full theorem. □

Thus, from (3.14), when specialized at any nonzero torsion sections (or combination thereof), yields the
following formula for the Eisenstein theta lift of [BCG1]:

Theorem 3.7. Let
(3.21)

θτ rγspz1, z2q :“

$

’

’

’

&

’

’

’

%

4b
d
E2pτ, z2q if c “ 0, else

¨

˝

a 1

c 0

˛

‚

˚

4d
cdet γ

E2pτ, z2q ` 1
c

¨

˝

1 a

0 c

˛

‚

˚

E1pτ, z1qE1pτ, z2q ` 4a
c
E2pτ, z2q

Then given any Γ-fixed combination of nonzero torsion sections

D “
ÿ

i

cirpui, viqs,

we have
Θ

pcq

τ,Dpγq “
ÿ

i

ciθτ rγspui, viq P C.

Here, ci are integer coefficients, and ui and vi are elements of pZ{Nq2 ´ tp0, 0qu, thought of as N -torsion
sections on Eτ .

Noticing that θτ transforms like a weight-2 modular form in τ , we can consider its specialization at torsion
sections as a section of the weight-2 automorphic line bundle ω2 on any open modular curve over which the
torsion sections are defined. It immediately follows:

Corollary 3.8. If H is any level structure fixing the torsion cycle D, then with the same notation as above,
we have

Θ
pcq

Γ,Dpγq “
ÿ

i

ciθτ rγspui, viq P H0
pY pHq, ω2

q.

where Y pHq is the open modular curve of level H .6

These formulas are workable, but the presence of the pushforward matrices (which can be evaluated as finite
sums over preimage torsion sections) make them slightly unwieldy. Analogously to the classical setting of
6It is also true that θτ represents cocycles over distributions of torsion sections, where Γ now acts nontrivially by permuting the
sections. Because of the way we set up our machinery in this article, this is not immediate; however, it can be proven with only a
little extra work.
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periods of Eisenstein series [X2], the first term

ÿ

i

ciθτ rγspui, viq “
4d

c det γ

ÿ

i

ci

«˜

a 1

c 0

¸

˚

E2pτ, z2q

ff

pui,viq

can be simplified if we assume that γ P SL2pZq:

4d

c det γ

ÿ

i

ci

«˜

a 1

c 0

¸

˚

E2pτ, z2q

ff

pui,viq

“ 4
d

c

ÿ

i

ci
ÿ

j,kPpZ{cq2

E2

´

τ, ui ´
a

c
pvi ` pj, kqq

¯

(3.22)

“ 4
d

c

ÿ

i

ci
ÿ

j,kPpZ{cq2

E2

ˆ

τ,
1

c
pvi ` pj, kqq

˙

(3.23)

“
4d

c

ÿ

i

ciE2pτ, viq(3.24)

(3.25)

Here, we use the distribution property of E2, along with the fact that γ´1 stabilizes D. This latter fact implies
that for all i P I ,

avi ´ cui “ vσpiq

for some permutation σ of the index set I such that ci “ cσpiq for all i P I .

Unfortunately, we do not see a natural way to simplify the E1E1 term in any generality, analogously to the
classical formulas for Eisenstein periods we discussed in [X2].

Remark 3.9. Note that the value at τ “ 8 theta lift θτ yields precisely the classical formula for the weight-2
Eisenstein cocycle reproven in loc. cit; this follows immediately from the fact that at τ “ 8, the series
Eipτ, zq degenerates to the periodic Bernoulli polynomial Bipzq

2i
: this is immediate from the description of

both functions by Hecke regularized (analytic continuation in s), since it holds for s with large enough real
part that the Fourier series are absolutely convergent.

Hence as expected, the pGL2,GL2q-Eisenstein theta lift’s degeneration at a cusp yields the pGL2,GL1q theta
lift (in the sense described in [BCG1, §13]).

Remark 3.10. Instead of a formula, one can obtain a more efficient ”continued fraction” algorithm for com-
puting the lifts for matrices in SL2pZq Ă GL2pQq by using its famous generators S and T and the recursion
principle (3.9): this is presented for Eisenstein cocycles presented in [Scz1, §2.4], but works identically here
by replacing the Bernoulli polynomials with our Eisenstein-Kronecker series. The outputs of this algorithm
will coincide with the preceding formulas by uniqueness of ζ1,0Tτ

, though this is not obvious.
17
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4. SOME PROPERTIES AND EXTENSIONS

4.1. Hecke equivariance. As one expects for a theta lift, the cocycles θτ , considered for the group SL2pZq,
satisfy a compatbility property between two kinds of Hecke operators: geometric Hecke operators coming
from the variable τ in the upper half-plane with its SL2pZq-action, and a cohomological Hecke action coming
from the matrix action fiberwiise.

Using our algebraic approach, one could prove this compatibility analogously to the approach in [SV, §6].
However, since a form of Hecke compatibility was already proven in [BCG3, Théorème 2.8] for a closely
related cocycle, it is much easier for us to simply to import this result using our already-proven comparison.

To fix ideas, in this section we will consider the restriction of θτ to Γ :“ Γ1pNq Ă SL2pZq for some integer
N ą 1, and a torsion section x “ p0, x2q : H Ñ E2 which descends to level Y1pNq. The below approach can
be applied to broader contexts, but in this article we will remain in this setting.

We recall the definition of two kinds of Hecke operators for GL2 acting on rθτ s: a fiberwise action coming
from group cohomology, and a geometric action coming from the Möbius action on τ .

We write ∆ to be the monoid of rank-2 integral matrices which stabilize p1, 0q P pZ{Nq2 for the standard left
representation, so that Γ Ă ∆. Given any double Γ-coset in ∆, we can decompose it finitely as

ΓαΓ “
ď

i

αiΓ.

As always, there are two different ∆-actions we need to consider: first, the “fiberwise” action, where γ acts
by

p| det γ|γ´1
q

˚,

this choice made so that for γ P SL2pZq it coincides with the pushforward we have heretofore been consider-
ing, and the “modular” action, which sends

γ ¨ pτ, z1, z2q :“

ˆ

aτ ` b

cτ ` d
,

z1
cτ ` d

,
z2

cτ ` d

˙

.

Then for any double coset ΓαΓ, the action of ΓαΓ on 1-cocyles can be defined as in [RW] (or [BCG3, §2.2.1])
by sending a 1-cocycle c : Γ Ñ M valued in a ∆-module M to

γ ÞÑ
ÿ

i

αicpγiq

where γi is defined by the relation αiγ “ γiασpiq for some permutation σ of the representatives αi. (Note that
our conventions differ slightly from loc. cit, both here and for the pullback action of ∆; these two changes
result in the same Hecke action.)
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On invariants (with the modular or fiberwise action), the action of ΓαΓ is simpler to define, sending an
element x P MΓ to

ÿ

i

αix.

If we denote the fiberwise Hecke operator by T pαq and the modular one by Tpαq, then (4), (5) of [BCG3,
Théorème 2.8] tell us that

T pαq ˝ θτ,D “ T pαq ˝ θτ,T pαqD,Tpαq ˝ θτ,D “ T pαq ˝ θτ,TpαqD

for any α P ∆. In particular, let Tp and Tp be the double coset operators associated to a prime p, consisting of
all matrices in ∆ with determinant p. When p is relatively prime to N , these form just a single double coset,
else they may be a sum of multiple such operators.7

Write δp for the torsion cycle comprised of all p-torsion points ppα1, β1q, pα2, β2qq P Tτ rps such that pα1, β1q

and pα2, β2q are linearly dependent over Z{p. Then we can compute that for any auxiliary integer c ą 1, we
have

TppTτ rcs ´ c4t0uq “ TppTτ rcs ´ c4t0uq “ prcs˚
´ c4qpδp ` pt0uq.

Pulling back this equality by x (since this commutes with the pullback action of ∆!), we obtain:

Proposition 4.1. We have the equality Tpθτ,x “ Tpθτ,x for all primes p, i.e.

θτ,x : H1pΓ1pNq,Zq Ñ H0
pY1pNq, ωb2

q

is equivariant for the Hecke subalgebra generated by tTpup for the fiberwise, respectively modular Hecke
actions on source and target.

Note in particular that this includes the entire anemic Hecke algebra (all operators of level prime to N ), but
does not necessarily include Up for p dividing N .

4.2. Relations between modular forms. We use the calculation of [BCG1, §13.3] to relate our cocycle’s
values to restrictions of Hilbert–Eisenstein series, and thereby get relations between L-values. We recall the
setup in loc. cit., specialized to our case: let F be a real quadratic field, and write let Up be the group of units
of OF with norm `1 which are 1 pmod pq. Pick a generator up for this group, up to torsion. Let k be an
ideal, with coordinatization α : k

„
ÝÑ Z2 associated to an algebra embedding

ι : OF ãÑ M2pZq, up ÞÑ

˜

a b

c d

¸

P Γppq.

The map ι also induces a map

ι˚ : pF bQ Rq
ˆ
`{Rˆ

` Ñ GL2pRq
`

{SOp2q ¨ Rˆ
` “ H

7Note that this is not a universal convention for p dividing the level; some authors use Tp for one of the primitive suboperators in
this case (which we call Up).
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whose image gι in the upper half-plane becomes a closed geodesic upon quotient by any arithmetic group;
this is the geodesic is preserved by the action of the positive-norm units in Oˆ

F , viewed as a subgroup of
SL2pZq.

Let 1´

ras
be the function on the narrow class group Cl`pF q whose value is sgnNt on the class rptqks for

t P F , and otherwise zero; let 1´,ppq

ras
be its pullback to the ray class group of level p; viewed as a function

on the monoid of ideals, this will now vanish at ideals divisble by p. Then specializing [DDP, (51)], there
is a diagonally restricted Hilbert-Eisenstein series G1p1, 1

´,ppq

ras
q “ G1p1

´,ppq

ras
, 1q of level Γ0ppq, coming from

the component of the Hilbert modular surface corresponding to the class of the inverse different d´1, whose
series expansion in τ P H is given by the continuation to s “ 0 of

´
dF

4π2rOˆ
F : Ups

ÿ

kPClpF q

Nk

¨

˚

˚

˝

ÿ

pm,nqPpkˆkq{Up

p∤m

1

pmτ ` nq|mτ ` n|2s

˛

‹

‹

‚

.

Here, we use the notation as in loc. cit. with dF the discriminant of F and an unwritten “norm” in the
denominators, so that for example mτ ` n means

pσ1pmqτ ` σ1pnqqpσ2pmqτ ` σ2pnqq

for the pair of real embeddings σ1, σ2 of F .

Meanwhile, the computation before [BCG1, Theorem 30] shows that

θτ pιpupqqpxq “ ´22s´2Γps ` 1q
2π´2Impτq

2sNk
ÿ

pm,nqPk2{Up

1

px ` mτ ` nq|x ` mτ ` n|2s

ˇ

ˇ

ˇ

ˇ

s“0

where x P pF {kq2, and we use the same notation otherwise as above. Comparing these two formulas, we find
that

G1p1, 1
´,ppq

ras
q “

dF
p2rOˆ

F : Ups

ÿ

xPp´1pkˆkq{pkˆkq
x1Rk

θpιpupqqpxq.

We therefore conclude:

Theorem 4.2. We have the equality of modular forms in Γ0ppq

G1p1, 1
´,ppq

ras
q “

dF
p2rOˆ

F : Ups

ÿ

xPErps2´K2
p

«

4pa ` dq

c
E2pτ, x2q `

1

c

#˜

1 a

0 c

¸

˚

E1pτ, z1qE1pτ, z2q

+

z“x

ff

where Kp Ă Erps consists of all points fixed by Γ0ppq.
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The spectral coefficients of the right-hand side of this equality are periods of cusp forms f along modular
symbols (via Rankin-Selberg formulas, cf. [Kato1, Theorem 4.6]) and of the left-hand side are partial L-
values of f over F (see [DPV1, Theorem C]). This identity can thus be thought of packaging all these period
identities together into one modular identity.

One can also make analogous computations for more general ψ of higher conductor, and obtain analogous
formulas for general ray class characters in this manner.

4.3. CM elliptic curves. Suppose now that τ satisfies a quadratic equation with rational coefficients; then
the corresponding elliptic curve Eτ has complex multiplication by an order O in K :“ Qpτq. Then we
can extend the action of GL2pZq on Tτ to an action of GL2pOq, and therefore the action of GL2pQq on the
trace-fixed distributional de Rham complex to an action of GL2pKq. Note that in this case, we can take
“trace-fixed” to include all isogenies built out of the “scalar” endomorphisms in O, because (3.4) generalizes
to these isogenies [BK, Proposition 1.1.6].

Since this latter group has a Bruhat decomposition

GL2pKq “ BK

˜

1

1

¸

BK

(where here BK denotes the upper triangular Borel of this group) exactly as over Q, the arguments of section
3 go through almost exactly as before:

Theorem 4.3. The map given by
(4.1)

γ ÞÑ θτ rγspz1, z2q :“

$

’

’

’

&

’

’

’

%

4b
d
E2pτ, z2q if c “ 0, else

¨

˝

a 1

c 0

˛

‚

˚

4d
cdet γ

E2pτ, z2q ` 1
c

¨

˝

1 a

0 c

˛

‚

˚

E1pτ, z1qE1pτ, z2q ` 4a
c
E2pτ, z2q

is a cocycle for GL2pKq valued in functions on Tτ ´ t0u, whose specialization at torsion sections gives the
theta lift of [BCG1, §13] for the dual pair pGL2pKq,GL1pKqq. Its restriction to SL2pOq can be simplified to
(4.2)

γ ÞÑ θτ rγspz1, z2q :“

$

’

’

’

&

’

’

’

%

4b
d
E2pτ, z2q if c “ 0, else

¨

˝

a 1

c 0

˛

‚

˚

4d
cdet γ

E2pτ, z2q ` 1
c

¨

˝

1 a

0 c

˛

‚

˚

E1pτ, z1qE1pτ, z2q ` 4a
c
E2pτ, z2q

Proof. The proof is exactly identical to the proof of Theorem 3.7. □

This imaginary quadratic cocycle, along with higher-weight generalizations, was also constructed analytically
in the work [BCG2]; essentially the same cocycle was also constructed by Ito [Ito] earlier. As described in
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[BCG1, §13.4], it follows from Ito’s computation that in this case we also an the L-value identity

(4.3) x˚θτ rγs “ ˘pα ´ α1
qLpγ, 1; xq.

where

γ “

˜

a b

c d

¸

P SL2pOKq

is hyperbolic with pa ` dq2 R t0, 1, 4u, stabilizing x a torsion section of E2
τ , α and α1 are the roots of

cX2 ` pd ´ aqX ´ b “ 0, and the L-function is given by

Lpγ, s; xq “

1
ÿ

pm,nqPpO2
K`xq{xγy

Qpm,nq

|Qpm,nq|2s
,

for the quadratic form Q

Qpm,nq “ pmα ` nqpmα1
` nq.
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