RIGID ANALYTIC EISENSTEIN COCYCLES FOR SL,(Z[1/p])
MARTI ROSET AND PETER XU

ABSTRACT. We study the Eisenstein class of a torus bundle and explore its application in
constructing p-adic rigid analytic classes for SL,,. Using an explicit symbol-based approach
to this class, we obtain a new construction of an Eisenstein group cohomology class for SL,
valued on distributions on Z; — pZ,. By integrating these distributions, we are lead to the
desired rigid analytic classes for SL,. Finally, we explore the relation between the values
of these classes at points attached to totally real fields and Gross—Stark units, suggesting
they provide a generalization of the modular side of the theory of complex multiplication to
totally real fields where p is inert. We confirm this relationship in certain cases when F' is

Galois over Q by using the Brumer—Stark conjecture.
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1. INTRODUCTION

If F is an imaginary quadratic field, then the theory of modular functions for (subgroups
of) SLy(Z) acting on the complex upper-half plane .7 offers an explicit analytic approach
to understanding abelian extensions of F', or in other words a solution to Hilbert’s twelfth

problem. Namely, there exist certain invertible holomorphic functions
c9a,p € 0’ ,

called modular (or Siegel) units, invariant under arithmetic subgroups of SLa(Z), such that
the values .go g(7) at imaginary quadratic points lying in F' generate such extensions; these
values are called elliptic units for the field, and have rich internal arithmetic structure.

A naive analogue of this theory for real quadratic fields F is not possible: for example,
because .7 does not contain real quadratic points. However, Darmon and Dasgupta [DD06]
proposed a conjectural construction of “elliptic units for real quadratic fields” using a p-
adic limiting process involving periods of logarithmic derivatives of modular units along real
quadratic geodesics, and conjectured that they enjoyed analogous properties (above all, being

algebraic and generating abelian extensions) as classic elliptic units.
1
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Dasgupta suggested an alternate approach to constructing conjectural elements in these
extensions, using p-adic integrals against distributions constructed from Shintani’s method
of calculating L-values of F. Using this, he gave conjectural p-adic analytic formulas for
p-units in abelian extensions of general totally real fields F' [Das08]. Recently, the remark-
able work of Dasgupta and Kakde confirmed this conjecture; more precisely, they proved
that their resulting objects are precisely the p-units satisfying the conjectures of Gross-Stark
and Brumer-Stark [DK23] [DKSW23]. This furnishes a complete p-adic analytic solution to
Hilbert’s twelfth problem for totally real fields.

The first steps of a program towards a “modular” framework for understanding these con-
structions, more closely analogous to the classical theory of modular units, appeared in the
work of Darmon, Pozzi, and Vonk [DPV21], who constructed analogs of modular functions
which can be evaluated at real quadratic points in the p-adic upper half-plane 7,. In fact,
their construction produces what they term a rigid analytic cohomology class in

H'(SLn(Z[1/p]), A /p"),

for which a structure theory was developed in [DV21]; here, A* := O% denotes the invertible
rigid analytic functions. The evaluation of these classes involves a specialization and cap
product in addition to the usual evaluation of functions. They then expressed the original
construction of [DDO06] as the value of a rigid class in [DPV], and gave a new proof of the
conjecture of [DDO06] in this setting.

More broadly, one hopes and expects that the setting of rigid analytic classes/cocycles
for p-arithmetic groups will give a conceptual geometric framework for understanding p-adic
limiting constructions in arithmetic in general, beyond the case of SLs. In this paper, for any

positive integer n we construct a rigid analytic “Eisenstein” class in
H" " (SLo(Z[1/p]), A /p"),

where now we write A* = Oé’p for Z, Drinfeld’s p-adic symmetric domain for SL,,, general-
izing ¢, in the case n = 2. (We always work with one fixed n at a time, so do not decorate
our notation for A* with n.) We then study its values at points attached to totally real
fields where p is inert; we will show that the norms of these units agree with the norms of
Gross-Stark units. We conjecture that the values are in fact Gross—Stark units without taking
norms, and provide some theoretical evidence, including a proof of some cases when F/Q is
Galois using the recently-proved Brumer—Stark conjecture. (In forthcoming work, by compar-
ing formulas with the seminal work of [DK23] and [DKSW23] this conjecture, we will prove
this conjecture.) Our classes therefore continue the program of establishing the arithmetic
significance of rigid analytic classes, showing they give a “p-modular” or “p-automorphic”
answer to (a portion of) Hilbert’s twelfth problem for totally real fields.

The key ingredients in our construction are the Eisenstein class of a torus bundle of Berg-
eron, Charollois and Garcia [BCG20] that replaces the role of the modular units in [DDO06] and
[DPV], which we study from the point of view of singular cohomology and via a symbol-based
approach, inspired by the circular chains symbol complex used in [SV24, §5].
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This article is a continuation of [RX25], where we produced a class in
H" Y (SLn(Z), Az),

by purely topological methods, where A, denotes the log-rigid analytic functions on Z,,, i.e.
functions which are the composition of invertible rigid analytic functions with the Iwasawa
logarithm. This class should be! the restriction to SL,(Z) of the logarithm of our p-arithmetic
class; consequently, in loc. cit., we showed its specializations are closely related to p-adic
logarithms of Gross—Stark units. The contribution of the present article can be viewed as

refining this purely topological construction in several ways:

e We provide a means of finding explicit cocycle representatives symbolically.

e We obtain canonical cohomology classes valued in mass-zero measures with integer
coeflicients.

e We are able to construct cocycles for p-arithmetic (or even S-arithmetic) groups, and

not just arithmetic ones, fully generalizing the original construction of [DPV].

Though we view this article as a refinement of [RX25], we do not prove that the “big”
cohomology classes we obtain actually refine the ones in loc. cit.; only that certain families of
their specializations coincide after extending scalars (which is enough for our applications).
We do believe that the “big” classes do also coincide, but this would require the introduction

of additional technical tools; see Remark 3.18.
1.1. Summary of article and methods.

1.1.1. Equivariant and symbolic approaches to Fisenstein cocycles. Denote by T = R"™/Z™ an
n-torus. Let D% be the space of real valued smooth i-currents on 7', i.e. the linear dual of
(compactly supported) smooth (n — i) forms on 7. We then have the distributional de Rham
complex

DY — Dy — ... — Di.
The double complex C*(I", DY) computes I'-equivariant cohomology of T', for a group I' acting
onT.

In the previous article [RX25], we considered classes
czrry € H'H(T(T) = T(T)[c], Z[1/c])

in the cohomology of a universal torus bundle with I'-level structure, determined uniquely by
their residues along T'[c| and their invariance under scalar pushforwards [a]. for a € Z coprime

to ¢. These classes correspond to analogous classes we notate
cor € HE YT - Tle), Z[1/¢])

in equivariant cohomology, via a standard geometric-equivariant dictionary, and our primary
construction will be to parametrize explicit cocycles representing (refinements of) these classes
using special elements in the double complex C*(T', D).

1See Remark 3.18; we do not actually prove this comparison in this article, but we do prove the analogous
comparison of specializations.
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To accomplish this, we will define a (homologically-indexed) complex of symbols: to sketch
a simplified idea, in degree k > 0, it will generated by sums

ZCP[ED' . '7616]]3
P

where cp € 7Z are constants, [{1,...,£] is an oriented c-unimodular set of lines in Z", P
ranges over points of (Z/c)", and the sum must satisfy the condition that the total degree
along each ¢;[c] orbit of a c-torsion point is zero, i.e. for each 1 <1i < k:

Z cp = 0,
PePy+4;[d]
for every Py € %Z”/Z”. The differentials are given by the alternating sum of forgetting
each line. In degree zero, with no lines to speak of, we impose only the condition that the
coefficients of all points sum to zero.

In practice, we cannot quite prove the above “naive” complex is exact, only that its homol-
ogy is c-torsion; thus, we will actually use a more technical “Pontryagin/Fourier-dual” varia-
tion of the above construction, which we call c]?&'(n) (and whose precise definition is given in
Section 3.2). The theory of matroids allows us to prove that its homology is supported in de-
gree n, whence we construct the fully exact modification .Ber(n) := .Ber(n)/H,(.Ber(n)).
We have a map of complexes

Ber(n)e — D;° (1)

induced by the map (written in terms of our naive symbols from above)

[81, Ce ,Ek]p — (—1)k(tp)*L*Bl (Zl)Bl(ZQ) e B1 (Zk),

where L is a matrix whose ¢th column is given by a generator of the line ¢;, viewed as a map
L:RF/ZF — R"/Z", and tp denotes the translation-by-P map.
To simplify the exposition, suppose that p =1 mod c. Consider

T|c] — ¢{0} € .Ber(n)j.

From there and using the exactness of .Ber(n), we produce a class in H" (T, .Ber(n),).
Denote by Bp(n) the image of .Ber(n),, by the realization map (1). On the other hand, let

«Bp(n) be the space of functions of the form

> (=1)*ep(tp)«LeBi(21)Bi1(22) ... Bi(z). (2)
>

where the cp are as above, but now the pushforward L, is viewed as a pushforward on
functions. Using the @-summation trick of Sczech [Scz93], we show that we have an SL,,(Z)-
equivariant isomorphism

eBy(n) = By(n).
Hence, we obtain a class in H" (T, .B,(n)). Using the values of these functions at p” torsion

sections, yields a class
pr € H' (T, Do(X, Z)).
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The formalism described above is not restricted to I' which act geometrically on the torus:
p-arithmetic (or even S-arithmetic, though we do not use this) groups also act on the symbol

complexes we consider. Thus, we obtain a refinement:
Theorem 1.1. There exists a class
p € H" ' (SLn(Z[1/p]), Do(Qy, 2)P)),

where Do (Qy, Z[1/p])P)) denotes the space of p-invariant distributions such that the mass of
X is equal to 0, and whose restriction to the subgroup I'1(p") fixing the open set

(1/p",0,...,0) + Z;
and then evaluated on this open set yields the corresponding Fisenstein class
vjczr € Hnilajl(p?’)”@)
up to torsion. (See Theorem 3.16 for a more precise statement.)

Now, let F' be a totally real field of degree n, with totally positive units Up. Suppose we
have a coordinatization Z"™ = a for an ideal a C F', equivariant for an associated embedding
Up < SL,(Z). As in [RX25, Proposition 6.8], we will show that the restriction of pu to Up
can be used to recover the Deligne-Ribet partial zeta function attached to F' and a (Corollary
5.7).

Remark 1.2. There are many prior constructions of closely related “Eisenstein cocycles” in
the literature, among which we highlight [CDG15], [BKL18], [GS24], [BCG20], and [BCG23];
see the review in our prior article [RX25, §1.4] for more details on the relationship between
these constructions and ours. We will also make use of pioneering work of Sczech [Scz93] on
Eisenstein cocycles in the present work. The method of constructing cocycles using symbol
complexes was inspired by the work of Sharifi-Venkatesh [SV24] on Eisenstein cocycles in a
motivic setting. The second author generalized this approach in [Xu24], both in the motivic
as well the differential-forms setting; the current article’s symbols are closely related to the
ones used in that article. In a sequel, we will show the precise relation between our cocycles
and those in [Xu24], which turn out to encode essentially the same information.

1.1.2. Rigid analytic cocycles and their values. Let %, := P"}(C,) — UyH, be Drinfeld’s
p-adic symmetric domain, where o runs over all Q,-rational hyperplanes. It admits an action
of SL,(Q). The points in X = Z7 — pZj, given the equation of a Q-rational hyperplanes.
This suggests the study of the following function

(Cp —UaHo) x X = CX, (1,2) = 7" .
Integrating this function with respect to the variable in X leads to the following lift.

ST : Do(XP,Z)P) — AX, X\ <T l—)][ Tt-di) : (3)
X

where we are considering a multiplicative integral in the previous expression. This map is
SL,,(Z)-equivariant, and it is SL,,(Z[1/p])-equivariant after replacing A* by A*/p%. We can
then define the desired rigid analytic classes for SL,,:
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Definition 1.3. Let Jg € H" '(SL,(Z[1/p]), A*/p”) be the image of p by (3).

We are interested in values of this cocycle: again, let F' be a totally real field of degree n,
and suppose p is inert in F'. Let 7 € F™ be such that its coordinates give an oriented Z-basis
of a™!, for a an ideal of Op. Since p is inert, it follows that 7 € 2},. Moreover, T is a special
point in 2, in the sense that its stabilizer in SL,(Q) is isomorphic to the norm 1 elements
of F. In particular, its stabilizer in I' is a group of rank n — 1. Following a similar recipe to
the case n = 2, we define an evaluation of any J € H" Y(SL,(Z[1/p]), A*/p?) at T € Z,,
which we denote J[r] € C,. From our construction, one readily deduces that Jg[r] € F),
where the evaluation is well-defined by first restricting to Oy and taking the cap product
with a degree-(n — 1) fundamental class of this rank-(n — 1) (virtually) free abelian group (as
in [DPV]).

We conjecture that these values, as in loc. cit., coincide with the Brumer—Stark units con-
structed by [DK23] in the narrow Hilbert class field H/F; this is a multiplicative refinement of
the analogous conjecture of [RX25]. Some evidence is provided by the following multiplicative
analogue of [RX25, Theorem 1.6]:

Theorem 1.4. Forn >2, Ng o, Je[T] = Ng, g, log,(u®) in H* /p”, where

ue Opl/p* ®Q
is the Gross—Stark unit given above and o, € Gal (H/F) is the Frobenius corresponding to a.

Following the same form of argument as [RX25, §7.2], for certain totally real fields, one
can remove the norms from this result and prove the comparison without norms. This is the

multiplicative analogue of [RX25, Theorem 7.7]:

Theorem 1.5. Let F be a cyclic extension of Q and p an inert prime in F', and let T € F"
be a modulus corresponding to an ideal a whose class is fixred by Gal(F/Q) in the narrow
class group. Then we have Jgis[T] = uj® in H*/p% (mod roots of unity), where u, is the

Brumer—Stark unit attached to p and o4 is as previously.

In forthcoming work, we will explore further the relation between our conjectural formula
and the one proven by Dasgupta—Kakde and collaborators [DK23]. We will also treat the
more general case where p is not inert, which will necessitate considering finer properties of

our cocycles to work at the boundary of the p-adic symmetric space.

1.2. Acknowledgements. We would first and foremost like to thank our advisor Henri Dar-
mon, whose suggestion to generalize the rigid analytic Dedekind-Rademacher cocycle was
the origin of this project. We would also like to thank Nicolas Bergeron and Romyar Sharifi
for their helpful discussions and guidance during the process of finding the correct symbol
complexes. Finally, we would like to thank Pierre Charollois for his invaluable feedback and

comments, as well as Luis Garcia.

2. COHOMOLOGICAL SETUP

2.1. Equivariant cohomology via double complexes. We will take a naive approach to

(Borel) equivariant cohomology in this paper. Let G be a discrete group, acting on the left a
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smooth manifold M, and let C'}; be a cohomologically-indexed complex computing the usual
(singular/de Rham) cohomology H®(M) of M, either with integer or real coefficients, with
suitable functorial properties: in practice, the complexes we consider will at minimum be

covariantly functorial for proper maps; i.e. equipped with natural maps
for Oyt oy

for a relative dimension-d proper map f : Z — M, but have varying contravariance properties.
However, pullback by an isomorphism ¢ can always be defined as the pushforward ¢4, so that
group actions can equivalently be viewed covariantly/contravariantly.

Then we define the equivariant cohomology

HE (M)
of the G-space M to be the total cohomology of the double complex
C*(G,Cyy)

where G acts by pushforwards on C3;: in other words, we apply the exact functor C*(G, —)
of taking G-cochains to our cohomology complex.

We will really only use a single “model” for equivariant cohomology in this article, using a
chain complex of smooth currents; however, we write down a slightly more flexible framework
below for potential future uses: suppose we have two such “models” for equivariant cohomol-
ogy, coming from functorial complexes B}, and C}, satisfying the above conditions. Then
if there is a natural transformation B}, — C%, which is a quasi-isomorphism for each M
(maybe after extension of scalars), then this induces an isomorphism between the associated
equivariant theories as well (after extension of scalars).

This construction has the following properties/extensions:

e Via the action on the coefficients of the cochains, it has the same covariance/contravariance
properties for maps of G-spaces as the original cohomology complex had for maps of
spaces.

e There is a Grothendieck spectral sequence with CP(T',CY,) as its E}? term, and Ej
page

EY? = HP(G, H'(M))
where the action of G on H?(M) is by pushforward.
o If j : Z — M is a closed G-submanifold of codimension d, with complementary

inclusion ¢ : M — Z — M, then then the homological mapping cone construction
Cz[—d] = Cu — C(j)

is such that the natural composition map
Cri—z = Cur — C(j)

is a quasi-isomorphism, and thus the distinguished triangle above induces the long
exact localization sequence for (M, Z) in cohomology. Applying the (exact) G-cochains
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functor, this induces equally a long exact localization sequence in G-cohomology
o= HEYZ) = HE(M) — Ho(M — Z) — HTV7YZ) — L

In cases with good contravariance, there is a direct restriction map Cpy N Crvi—z
completing the distinguished triangle (which then has a natural quasi-isomorphism
to the mapping cone by its universal property), and one may define the localization
sequences without reference to the mapping cone. In general, even without such
contravariance, we can also use the natural maps C,, — C(j) to define contravariant
functoriality of (equivariant) cohomology for open immersions.

o If M; — M is a G-projective system of immersed submanifolds as ¢ ranges over the
objects of some indexing diagram I, with final structure maps j; : M; — M, then we

define the ith equivariant cohomology of this pro-system as the cohomology of
hﬂC'(G, C}y,) or MQC'(G, Cs)

depending on whether we have contravariance functoriality for open immersions. In

either case, we then also have a Grothendieck spectral sequence with second page
E} = HP (G, i HY(M,))
by exactness of direct limits and of the cochains functor.

All of these similarly are compatible for a pair of “models” which are naturally quasi-isomorphic.
See the second author’s thesis [Xu23] for more details.

Remark 2.1. The preponderance of pushforward actions is a little unusual for cohomology:
this is because in practice, our complexes will all actually be computing Borel-Moore homol-
ogy. For manifolds, reversing the indices identifies Borel-Moore homology canonically with

cohomology by Poincaré duality, so this is not a very important distinction for us.

2.2. An Eisenstein class in equivariant cohomology. From this section onwards, for
convenience we will write V, or Vz, for the defining representation of GL,(Z), and Vy for
Vz ® R for any Z-module R. We define the torus T, as a GL,(Z)-space, as the smooth
quotient Vg/Vz; then Vz,. can be naturally be identified with the torsion points T[c|, by
viewing Z/c as Z[1/c]/Z. (The earlier notation X can then also be identified with Vz, —pVz,,
for example.)

Let I' < GL,(Z) be any subgroup. We have the localization sequence associated to the
closed T'-fixed subspace T'[c] C T

o HYNT) = H YT = Tle) S HY(T[d]) — HMT) — ...

Just as in [BCG20, §3], the I'-equivariant scalar pushforwards [a]. for all integers a with
(a,c) = 1 act on this sequence, and in particular act on H" '(T) only by the eigenvalues
a,a?,...,a". As explained in [RX25, §2], if ¢ is invertible the coefficients, we can as a result

construct a unique lift of
[Tlc] - ¢"{0}] € HO(T[e])",
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which we call
cor € HE YT —Tle), Z[1/d))
characterized by its invariance by all [a]. for a prime to c¢. This construction is precisely the
analogue of [RX25, §2].
In particular, following the conventions of that previous article, we set I', C GL,(Z) to be
the subgroup fixing (1,0,...,0) € Vz/,-, and v, € Tp"] to be the corresponding point in our
torus. Then we have a pullback

Uye2r, € Hltl;l(*) = Hn_l(rr)

which is the same class as vj .2, of loc. cit., which we showed there is given by taking periods
of a weight-2 level-I",. holomorphic Eisenstein series.

2.3. Equivariant distributional de Rham cohomology. In this section, we introduce the
distributional de Rham complex, which will be our primary model for equivariant cohomology
(with real coefficients).

Write D% for the real-valued smooth i-currents on 7, i.e. the linear dual of the compactly-
supported smooth (n — ¢)-forms Q%‘C’ The exterior derivative d : D — D! is defined as

the graded adjoint of the exterior derivative on forms, via
(de)(w) = (=1)95e(dw).
With this differential, the currents form a complex
DY —» DL — ... > Dh,

functorial for flat pullback and finite pushforward, computing the real cohomology of T'. There
is a quasi-isomorphism from the usual de Rham complex

v = Dy w i <77 > / (—1)”_i77Aw> . (4)
T

Via this map, we can and will implicitly view smooth forms as currents.

We would like to say that the map v is a natural isomorphism, but this functoriality
actually fails, because the integral over T' depends on its orientation, and so is reversed in
sign by orientation-reversing maps. Consequently, for orientation-reversing maps, the action
on currents can fail to give the correct action on cohomology. For example, on S, pushforward
by the inverse map [—1]. sends the 1-form dz +— —dz, as it does for the associated cohomology
class, but if we take the “natural” adjoint action, we have:

1) (u(@=) ) = @) = [ Fnads = [ a(=2)de= [ ) dz = @)

for a compactly supported smooth 0-form (i.e. function on S') 7, so we see that [—1], actually
fixes the associated current.?

2Philoso~phically, this is coming from the distinction between Borel-Moore homology and cohomology: the
PoincarA(©) duality identification depends on a choice of orientation.
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This subtlety addressed, we now introduce an important class of currents: associated to

closed oriented submanifolds Z C T of codimension s, we have a closed current of integration

5262)}

6z(w) iz/ZW'

In line with our discussion above, reversing the orientation of Z turns §z into —J_z. Further,

defined by

a current w € D% having residue C € H%(Tc]) along the residue map
H" T —T[e],R) — H'(T[c))

is equivalent to dw = ¢ (where this is interpreted as a suitable linear combination of the
currents of integration along points in the support of C); see for example [Xu23, (3.3)] from
the author’s thesis. In general, [Xu23, §3.2.2] contains more details on the distributional de
Rham complex along with proofs (or references to original proofs).

We note that because compactly supported forms can be pushed forward by arbitrary
smooth maps and pulled back along proper ones, currents have proper pushforward func-
toriality and arbitrary pullback functoriality. Thus, the localization sequence for a relative
dimension-d pair j : Z < X arises from the distinguished triangle

Dz[d] J—*> DX — DX—Z-

Note that the pushforward of the O-current 1 under j, is simply the current of integration §.
More generally, we can think of the pushforward of a function f on Z (viewed as a 0-current)
as a weighted current of integration fdz.

In particular, we observe that an element w of the double complex C*(I', DY) restricts to a

representative of a class in H* (T — T/[c]) with residue
T[] - ¢"{0}] € H(T[e))"

if and only if the total differential of w is 7 — c"dp € CO(T,D%). In particular, if we can

find such a class which is invariant by [a], for a € N, it will represent the class
czr € HE YT - Te),R).

2.4. An equivariant-geometric dictionary. We recall the setup of [RX25]: let I' < SL,,(Z),
such that it acts freely and discontinuously on the symmetric space X for GL,,(R). Then we
have a torus bundle over the classifying space BI' := '\ X

Tr :=T\(X xT),
and a class in the cohomology of the open
cory € H' Ty — Tr[e), Z[1/d])

characterized by being trace-fixed for prime-to-c isogenies and having residue T'[c] — ¢"{0},
i.e. by a formally identical construction to our class .2r € H{ (T — T[c],Z[1/c]). We wish
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to compare this construction with our equivariant class
cor € HE YT —Td, Z[1/d)),

after extending scalars to R. Indeed, for any oriented manifold M with I'-action, we have the

chain of quasi-isomorphisms
° v ° ° Ux ° °
Qlrxxyr — C*(I, Q) — C*(I', Dyy)

where v is the quasi-isomorphism of de Rham complexes defined previously, and the 7 is
defined (and proven to be a weak equivalence) in [BCG23, Appendice A]: here, we make use
of the fact that taking geodesic simplices for I' makes X a smooth model for ET, up to finite
order stabilizers (whose contribution to rational cohomology vanishes; e.g., by passing to a

finite index torsion-free subgroup and taking norms).

Proposition 2.2. For any oriented G-manifold M, the above zigzag induces natural isomor-
phisms

HL(M,R) = H' (M x X)/T,R).

Since the formal properties characterizing them in cohomology are identical, we can imme-
diately deduce the corollary:

Corollary 2.3. Under the isomorphism of the preceding proposition, the class .zt is identified
with .z after extending scalars to R (and therefore also after extending scalars to Q, by
flatness).

2.5. Trace-fixed parts of the distributional de Rham complex. We now will need the
following codification of our previously-used notions of being fixed under various pushforward
isogenies [a],: fix an auxiliary integer ¢ > 1 which we omit from the notation, and let M be
a module for the monoid N*, i.e. a module with commuting actions of [a] for a € N(®) such
that [a][b] = [ab]. We write M(©) for the submodule of M on which [a] = 1 for all a € N(©),
In particular, via the pushforward action, spaces of currents on T all have an action of N*.

The aim of this section is to prove the following proposition:
Proposition 2.4. The subcomplex of the distributional de Rham complex of T

(DO = (DO ... > (D)) (5)
s exact except for at the final place, where it has cohomology R, realized by the map

(DM SR, w w(ly)
where 17 is the constant function on T.
Let us describe the strategy for the proof: we will find idempotent projection maps
¢i: Dy — (D7) (6)

intertwining the differentials and thus giving a map of complexes. We therefore obtain maps

on cohomology
Hi(D3)®) = Hi(D3)© 122 pi((ps) )
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with the first map induced by the natural inclusion of complexes, such that the composition

is the identity. We conclude that the first map is an injection. However,
' (D}) = HY(T,R)

vanishes except when i = n [BCG20, §3], in which case it is spanned by the class of the volume
form dzy A...Adz, (viewed as a current via the inclusion of smooth forms). Since this volume
form is fixed by [a]. for all @ € N, the result follows.

To construct the projections ¢;, we will use Fourier analysis. Under the description
T = Vr/Vz, write z1, 29, ..., z, for the standard coordinates on Vg = R", so that Vz-periodic
functions (forms, etc.) in the z; yield functions on the torus. Then define the Fourier coeffi-
cients of a distribution w € D7 by

gy, k(W) = w(exp(2mi(k1, ..., kn) - (21, .., 2n))-
for (ki,...,k,) € Vz; this extends the definition of the Fourier coefficients of a function.
We have the following characterization [RT10, §3.1] of smooth distributions on the torus:
Proposition 2.5. The Fourier transform
Friwer (k.o k) & agy, kg, (W)
defines an isomorphism
D% — S/(Vz)
where 8'(Vz) is the set of tempered, or slowly-increasing, functions on Vy; i.e, functions with

at most polynomial growth at infinity.

Recall, by contrast, that smooth functions map onto rapidly-decreasing functions on V7, i.e.
functions decaying faster than the inverse of any polynomial. Note that the standard definition
of the Fourier series of a function is consistent with the definition for its corresponding current.

Example 2.6. For an example of the Fourier transform of a current which is not a smooth
function, the Fourier transform of the current of integration at the identity Jg is the constant
function 1, since every character of the torus takes the value 1 at the identity. Similarly,
Fourier transforms of currents of integration on a subtorus embedded as a subgroup will have
all 1s along some corresponding linear subspace of Z"™ (corresponding to the subgroup of

characters vanishing on that torus) and 0 otherwise.

We can extend this result to currents of arbitrary degree, generalizing how one can take
Fourier series of differential forms of arbitrary degree on T by writing them as linear combi-

nations of the basis elements dz;:
Corollary 2.7. Define the Fourier transform

Fr:ww— ([(k1,...,kn),dzr] = w(exp2mi(ky, ..., kn) - (21,...,2n))dz21)),
where I C {1,2,...,n} is a subset of cardinality n — i, and

dzr = [\ dz € Q7.
il



RIGID ANALYTIC EISENSTEIN COCYCLES 13

Then Fr yields an isomorphism

Vv
D — 8'(Vz) ® (Ame ).

For endomorphisms v : T — T with v € M, (Z) N GL,(Q), one can check that the natural
(non-square bracket) endomorphism -, of currents corresponds to the pullback action v* on
S'(Z™) and the natural action v, on the Lie algebra.

One can compute that under the identifications given by the Fourier transform, the ith

differential in the distributional de Rham complex is given by the map

n—i Vv n—i—1 Vv
Sl(Vz) & </\ Lie(VR)V> - & (Vz)® < /\ Lie(VR) ) (7)
sending

O ® Ozr > 2mi Z Sgn (1,9) (0ip) ® 82’[\{i} (8)
=1
where here 0z is the dual basis element to dzr, dzp ;) is to be interpreted as zero if i ¢ I,

sgn(/,4) is +1 if the ordinal place of ¢ inside I (under the usual ordering of integers) is odd
and —1 if even, and
ai(p = ((k)l, c. ,kn) — ki(p(kl, R ,kn))

Another important computation is the fact that the pushforward on i-currents [a], sends
¢ © 21 = a" " ([a]"p) ® Dz1. (9)

This applies for all a € Z, not just a € N.

Proof of Proposition 2.4. We now turn to the construction of ¢; on the level of the Fourier
transforms. Write P C Z" for the set of c-primitive vectors such that their greatest common

denominator is divisible only by primes dividing ¢; for any vector

ke Vz\{(0,...,0)},

write P(k) for the unique vector in P dividing k.
We define ¢; by sending
YR Oz — ¢ ® 0z
where ¢ is defined by

k— | — P(k

o (pg)  ePW)

for k # (0,...,0), and sending (0,...,0) — ¢(0,...,0) if i = n and (0,...,0) — 0 otherwise.
From the formula (9), one immediately sees that the image of ¢; is fixed by [a]. for all a € N(©).
From (8), it is also a short computation to verify ¢; commutes with the exterior derivative.

Proposition 2.4 therefore follows. O

Remark 2.8. By picking larger and larger ¢, one can assemble the results of this section into the
result that the distributional de Rham complex is exact even if one passes to the subcomplex
of elements invariant under all but finitely many [a] € N, which is a nicer formulation since
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it does not depend on the auxiliary c¢. For our purposes, taking some fixed c suffices, so we

omit this extra argument.

2.6. Some equivariant algebra. Let us now describe the upshot of Proposition 2.4. We

have the exact complex
(DD = () — ... = (D), (10)

where (D%ﬁ)(O) is defined as the kernel of its natural map to R. since [a]. acts trivially for
all @ € N, this complex has an action by pushforward of not just GL,(Z), but even of
GL(Z()), a necessary extension for our desired p-arithmetic applications. This allows us
to construct (n — 1)-cocycles for this latter group, by the following lemma from homological
algebra:

Lemma 2.9. If a group G acts on an exact complex Cy supported in degrees [0,n], then we

have a natural map on cohomology
C§ — H Y@, )

inhomogenous cocycle representatives of which can be constructed as follows: associated to

ee€ C(?, pick a lift c1 of e to C1, and consider the 1-cochain
v (y—1e € CHG, CY).

By exactness, this is the boundary of an element co € C1(G, Cy); we take the chain coboundary
dcy € C?*(G,Cy) which again lifts to c3 € C*(G,C3), ete. The lift ¢, € C"YG,Cy) is a

cocycle representing the image of e in H" (G, C,,).
Proof. See [Xu24, Lemma 2.5]. O

Suppose I' C GLy(Z ) fixes the c-torsion cycle T'[c] — {0} of degree zero, with associated
current of integration dp(g — c"dg € (Dr_’ﬁo)(o). We deduce an element Zl(f) as its image under
the map

((D)®) = 50, (D))
of the above lemma; further, if we can find suitable lifts in the trace-fixed complex, we would
be able to find cocycle representatives for Zl(f), and in principle be able to explicitly control
their various properties, e.g. rationality/integrality or various relations they satisfy.

As such, this construction will be our primary approach to the construction of Eisenstein
classes in the remainder of this article. However, it is important that we can relate this
construction to the previously constructed Eisenstein classes zl(f); we conclude the section by
showing this is indeed the case: for I' C GL,(Z), the lifting process described in Lemma 2.9
associated to

e = oy — "0 € (Dfo)

produces elements
¢ € OHT, (D))

fori=1,2,...,n.
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Proposition 2.10. In the setting described above, the sum
c1+...+c, €C(T, D7)
is a representative for the equivariant Eisenstein class .zr € Hp (T — Tlc]).

Proof. Restricted to T'— T'[c], the element ¢; + ... + ¢, is an element closed under the total
differential, hence representing an equivariant cohomology class. Further, it is a trace-fixed
class which is the restriction of a class from C*(I", D7.) whose total differential there is o) —

c"dp, and these two properties characterize the cohomology class .zr. O

We would like relate the group cohomology class [¢,] to the equivariant cohomology class
(c)

2 in a purely algebraic way. Consider the Hochschild-Serre spectral sequence
H?(G,HY(X)) = HYM(X)

for a group G acting on a space X. Note that if the G-equivariant cohomology of X is defined
by the double complex C*(G, D% ), then the above spectral sequence is precisely the spectral
sequence of this double complex.

We apply this to our setting G = I' and X = T as follows: suppose we have some lifts
c1,C,...,Cn as in Lemma 2.9 such that each ¢; is a closed current upon restriction to some
acyclic I'-subspace U C T (or I'-projective system of subspaces, as the case may be). For this

U there then exists a generalized edge map
Ey : HY(U) — H YT, HO(U))

since U has no higher cohomology, e.g. as constructed in [BCG23, Annexe A.3].3 From that
construction, we see that if some equivariant class ¢ € HF_I(U ) is represented by
> e @ oy
i+j=n—1 i+j=n—1
such that each component of w®*® is closed under the de Rham differential on U, then the

image Ey(c) is represented by [w" 1] (and in particular independent of choices).

Lemma 2.11. Suppose, in the context of the discussion following Lemma 2.9, that the lifts
¢ for 1 < i < n are all closed under the de Rham differential after restriction to some
U — T —Tlc]. Then viewed as a cocycle valued in H*(U), ¢, represents the image of the
restriction of .zr under Ey.

Proof. By Proposition 2.10, ¢1 +. ..+ ¢, represents zl(f) in C'(SLn(Z[l/p])D%iT[c]). Then the
result follows by the preceding discussion. (|

We will find such suitable lifts c1,..., ¢, using complexes of symbols which map to the
distributional de Rham complex, in the context of the equivariant Eisenstein class. The
resulting formula for ¢, will then give explicit representatives of the Eisenstein classes in
group cohomology, by the preceding discussion.
3There, the edge map is constructed specifically for the double complex of simplicial differential forms, but

it is easy to see the construction is formal and applies to any first quadrant cohomologically indexed double
complex with vanishing in some right half-plane.
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3. SYMBOL CONSTRUCTION OF COCYCLES VALUED IN LOCALLY CONSTANT FUNCTIONS

3.1. Bernoulli polynomials and their locally constant stabilizations. We now know
that in principle, one can compute Eisenstein classes by finding suitable lifts inside the trace-
fixed distributional de Rham complex. In particular, if we can find lifts providing a co-
cycle representative ¢, of .Zr valued in smooth functions (considered inside the space of
O-distributions) when restricted to some subspace containing I'-fixed torsion points, we will
be able to evaluate at these points to obtain group cocycles. By [Xu23, Lemma 2.2], these
cocycles will then represent the classical Eisenstein classes of the form v} zr (for example,
when I' =T, = I'1(p")). However, the problem remains of finding candidates for what these
explicit lifts should be: this will be the goal of this section.

The explicit elements in the trace-fixed complex will be built out of the periodic weight-1
Bernoulli polynomial

Bi(z) =z} — 5
where {z} is the fractional part of z, i.e. its unique representative in [0, 1) modulo 1, for all
z & 7. We set the value at all integers n to be Bi(n) = 0.

Clearly, this function is not smooth, or even continuous; its graph is in the shape of a
sawtooth, with a two-sided jump discontinuity at every integer. However, it has two good
properties: it is periodic, meaning it can be considered as a function on the circle, and as a
function on the circle it satisfies the distribution property [a]+B1(z) = Bi(z) for all a € N.

Despite not being smooth as a function, Bj(z) can be considered as a O-current on the
circle, in the sense that it yields a well-defined functional

> Bi(z)a
S1

on smooth 1-forms o on S!. Considered as a current, we have that
dBl =dz — 50,

which can be verified by their Fourier series as in Example 2.6, recalling that dg is the current
of integration at the identity section.
We want to work with not the Bernoulli polynomial itself, but instead stabilized versions:

associated to a degree-zero torsion cycle

C= Y awweZ{S"[c]}!*",

z€S1[c]

we define

Bi[Cl(2) := > —a.Bi(z—x).

z€S1[c]

Considered as a function on the complement of its discontinuity set, B1[C] is now locally
constant, and it is easy to see that its values are in %Z. Considered as a current we find that

dBi[C]=bc= ) aubs.
zeStc]

Further, we have the following distribution property:
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Lemma 3.1. For all a € Z(9, we have the distribution property
[a]. B1[C] = Bi[[a]C]

where [a]« is the pushforward of 0-currents. The same holds for the pushforward of functions

for a > 0, and with reversed signs for a < 0.

Proof. It suffices to prove the statement for a € N(©) (where we can treat it as the pushforward
of functions) and for a = —1 separately.

For a > 0, we have

(BN = Y > —aBi(Z+y—a) (11)

yeSt[a] zeStc]

= > Y —awB (z _am + y) (12)

y€S1[a] z€S1[]

= Y —au([al.B1)(z - ax) (13)

z€S1(c]

= Z —ayB1(z — ax) (14)
zeStc]

— By[[al.C). (15)

For a = —1, we have for any smooth test 1-form n = f(z) dz that

([=1:B1[C))(n) = Bi[Cl(—f (=) dz) (16)
= —/ Z —az f(—2)Bi(z — x) dz (17)
st zeS1(c]

= _/51 f(2) Z —a;B1(—z —x)dz (18)

zeS1[(]

:/Slf(z) S —a.Bi(z+x)dz (19)

zeS1[]
= (Bu[[-1]«C)(n) (20)

where the second-to-last step follows from {y} = 1 — {—y} for all y € R, together with the
constant terms 1 cancelling out since ) a, = 0.
O

We now pass from S' back to the n-torus T, where we need to consider more general
combinations of Bernoulli currents. For a concrete example, given an integral linear form

L(z1,...,2n), we have on T' a function-qua-current B1[C|(L(z1,. .., 2,)) with
dB1[Cl(L(z1,-..,2n)) = 0p-1¢,

where L is interpreted as a map 7 — S' (i.e. a map R"/Z" — R/Z) and C is a degree-
zero c-torsion cycle on S'. The opposite functoriality will be more relevant for our purposes:

if M : T — T is an invertible (over Q) linear transformation, then we can also take the
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pushforward
M, B1[C1)(21) B1[Ca](22) . . . B1[Cn](2n),

which will have differential

o —

M, Z )'B1]C1](21) B1[Ca](22) - - - B1[Cn)(2n) - - - B1[Cn] (20)((—=1)"0,,=¢, + degCi dz;) (21)

where
C=CN..KC, € Z[T[]] £ Z[S'[]] @ ... @ Z[S"[c]]

and we use 0,,—¢, to mean the weighted sum of the currents over the values in the cycle C;,
with weights the associated coefficients.

The currents we will consider for the lifts in (10) will be exactly pushforwards by products
of By’s as above, though we will also consider pushforwards from subtori (whose associated
currents will then be supported on that subtorus). The derivative of such a current will be
another current of this form, as these derivatives yield currents of integration along subgroup
tori translated by c-torsion points, which is also the result of pushforwards from subtori.

In general, we will think of these objects as currents, rather than functions. Note that
because the discontinuity locus is of measure zero, the values of these functions on this locus
cannot a priori be recovered from the corresponding currents. However, it will be important
later that when we restrict to a certain subspace of combinations of these currents, these “bad
values” on the discontinuity locus will turn out to be recoverable; see Lemma 5.3.

We end the section by extending our trace-equivariance result to the more general products

of Bernoulli functions:

Proposition 3.2. For any a € Z\{0},

[a)u B1[C1](21) - - - BlCul(20) = Bi[[a]«Ci](21) - .. Bi[[al«Cn](2n) € DY

as currents, where C;, 1 < i < n, are degree-zero torsion cycles on S'. As functions, this

remains true except when n is odd and a < 0, in which case this is wrong by a sign.

Proof. This is basically is an immediate consequence of the 1-dimensional case, since we have
that

[al« Bi[C1](21) .. Bi[Cul(z) = ) BilCi](21) .. B1[Cal(2,) (22)

=11 S miede) (23)

Notice that for any k,j € N and “linear* map L : (S')¥ — (S')/, i.e. a map induced by a
linear map Z¥ — 77, [a] commutes with L. Hence similar equivariance results also hold for
the pushforward by L of any current of the form Bi[C1](z1) ... B1[Cn](2n)-
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3.2. Matroid symbol complexes. To understand these elements, we will parameterize
them with with a complex of symbols defined using linear-algebraic data.

In this subsection we construct this complex; in the next, we will define the GL,(Z))-
equivariant realization map to (10) valued in products of stabilized Bj’s and currents of
integration as mentioned above.

The idea for us is that any product of Bernoulli polynomials like Bj(z1)Bi(22) (or one
of its GLa(Q)-translates) can be associated to a decomposition of T into S'-“lines”. The
non-smooth loci of the Bis are exactly on codimension-1 embedded subtori (e.g. in this case
z1 = 0 and 22 = 0), which become currents of integration upon differentiating. Thus, the
exterior derivative of such a product essentially comes from an alternating sum of restrictions
to each of these “hyperplanes” in turn, i.e, an alternating sum of forgetting each of the lines in
turn. This suggests that a combinatorially-defined complex capturing the notion of “k-sets of
independent lines in 7”7 with its (k — 1)-simplices could be used to parameterize our products
of Bernoulli polynomials.

Unfortunately, the above story is not exactly true, as there are additional terms (coming
from forms like dz; and dzz) in addition to the currents of integration along “hyperplane”
subtori, because the Bernoulli polynomials are not locally constant. However, the stabilized
versions B [C] are constant outside of their discontinuity loci, so the dz; terms cancel in their
(current-wise) derivatives and leave behind only the currents of integration. However, these
currents of integration are along not just embedded subtori through the identity, but also
their c-torsion translates.

With this rough framework in mind, we turn to the definition of the complexes necessary
to capture the c-stabilized products of Bernoulli polynomials: recall that a matroid is a
combinatorial structure abstracting the notion of linear independence:

Definition 3.3. A matroid is a set M and a collection E C P(M) of finite subsets of M (i.e.
elements of the power set P(M)), called independent sets, satisfying the properties:

e There is at least one independent set.

e If s € F is independent, every subset of s is as well.

o (augmentation property) If s and ¢ are in E and |t|> |s|, then there exists an element
m € t such that s U {m} € E.

The independence complex IC(M) of a matroid (M, E) is the simplicial complex with
vertex set M such that there is a unique simplex with vertex set s for each s € E. A matroid
with maximal independent set of size r has independence complex homotopy equivalent to a
wedge of (r — 1)-spheres [Bjo90]; r is called the rank of the matrix. As one sees here, we often
leave the collection of independent sets implicit in the notation, since we will rarely consider
different matroids on the same base set.

Write V7, /e for the Pontryagin dual of V.. It can be identified GL;(Z)-equivariantly (for
the usual right pullback action on both) with the Z/c-linear dual VZV/C via the map

VZ\//C — VZ/C, © = (v = exp(2mip(v)/c))

We will henceforth implicitly make this identification.
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For each x € VZ/C \ {1}, we define (M[x], E[x]) to be the matroid of lines in V7. (with
the obvious independence condition) such that the corresponding hyperplanes in VZV/C do not
pass through y. We will informally say that these lines “avoid” x for brevity, even though it
is technically their corresponding dual hyperplanes which literally avoid the point in the dual
space corresponding to Y.

Let Co(M|x]) be the reduced simplicial homology complex of IC(M[x]); by the previously-
cited theorem of Bjorn, it is acyclic outisde degree n — 1.

We define also the free complexes Fy and Fy. to be the reduced homology complexes of the
full combinatorial simplicial complexes on the set of lines in V,* respectively V4, /e~ These are
exact by the principle of inclusion-exclusion (or because combinatorial simplicial complexes
are contractible).

Define now a complex c]?e?r(n). via the GL;(Z))-equivariant pullback diagram

Ber(n)[~1]e — @, Co(M[x])

l | ®

D (Fv)e ——— D (Fv/c)e

Here, the direct sums are over all y € Vj, /C\{l}, and the group action simultaneously permutes

1 and acts in the usual way on sets of lines in V. The

the x, via the usual left action xy — xog~™
right vertical and bottom horizontal arrows are the obvious inclusions given by “forgetting”
the conditions on the lines with respect to linear independence and avoiding y, respectively

by reduction modulo c.

Proposition 3.4. The homology of .Ber(n)[—1] is concentrated in degree n — 1; i.e., the

homology of clggr(n) is concentrated in degree n.

Proof. The pullback diagram defining c]?ér(n). leads to a long exact sequence in reduced

homology

... = Hy(:Ber(n)[~1]s) = Hi(EP Ce(M[x]) & H; (@ (Fv)e) = Hi(ED(Frye)s) = -

X X

from which the result is immediate from the acyclicity of the other three complexes, outside
degree n — 1 in the case of @@ Co(M[x]). O

Our shift was chosen so that the lowest degree is cﬁ\&(n)o, given by the free module on
VZ/C \ {1}. For degrees d > 0, .Ber(n)y is generated by one copy, for each y € VZ/C \ {1}, of
the free module on c-unimodular sets of lines in V' of size d avoiding ¥, i.e. sets of lines which

remain independent after reduction modulo c.

3.3. The realization map. We now define a GL,(Z))-equivariant realization map, on the

“alternate integral structure” we just constructed.

AThat is, the simplicial complex on the prescribed set of vertices such that every (k + 1)-set of vertices forms
a unique simplex.
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Theorem 3.5. There exists a GLy(Z(.))-equivariant morphism of complezes

U : Ber(n)s — DI*
defined by sending

e, el (CDF YT Xk (i) - xn(z) Bilxal(21) - Brlxal (21)05 40 = =20=0

Zk41,--32n €L/ C

for the standard basis (e1,...,e,) and a character
VZ/CBX:)(Ig--'E]Xm
and extended by GLy,(Q)-equivariance.

Proof. First note that the definition is independent of the choices of vectors representing the
lines ¢;, because Bj(z) is invariant by scalar pushforwards prime to ¢ and thus the constituent
terms Bi(z1)B1(22) ... Bi(zx) is invariant by diagonal matrices with entries prime to c.

The well-definedness and GL,(Z.))-equivariance of U is then formal; and commutation
with the differential follows by the earlier computation (21). O

We now discuss the issue of trace-invariance. If we consider the multiplicative monoid of
prime-to-c integers (Z— {0}, x)(©) to act on both source and target of ¥ via the corresponding
diagonal matrix, we have seen that U is equivariant for this action. By Proposition 3.2 and the
following discussion, it is then immediate that the target of U is contained in the submodules
(D)), where

(D)@ (D)) Dy
is defined as the subrepresentation on which (Z — {0}, x)(® acts via the quotient (Z —
{0}, x)© = (Z/c)*.

The proof of Proposition 2.4 applies with little modification to the trace-finite setting. As

such, we obtain the following modification of the realization map on the exact quotient of our

symbol complex:
Proposition 3.6. The map ¥ factors through Ber(n). We call this map
U: Ber(n)e — (D?")(f).
Proof. This is immediate from Proposition 2.4 and Proposition 3.2. U

Remark 3.7. The realization map ¥ actually also factors through a corresponding Orlik-
Solomon compler defined from our matroids (see [OT92]), which can be proven using the
exactness of (10) in a similar way, though with some additional technicalities. This symbol
complex captures more of the relations between products of Bernoulli polynomials (in fact, all
such relations), but we saw no benefit to proving this for the purposes of the present article.
One can observe that these relations are c-stabilized version of the classical “reciprocity laws”
for higher Dedekind(-Rademacher) sums.

3.4. Integral cocycles representing the Eisenstein class. We now come to the main

construction: let I' < GLn(Z(C)) be a subgroup, and suppose we have a I'-fixed c-torsion cycle

C € Ber(n)y = Z[¢]{T[c]}4&=0.
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In particular, we will take
€ =Tl - {0} == 3",
where the sum is over all nontrivial characters x of V /e~ This cycle is valid for any subgroup

of GL; (Z(¢)); however, all of the following would work for more general torsion cycles.

Then Lemma 2.9 affords us a cocycle
0(n)c € C"~(SLa(Z[1/p]), Ber(n)y)
which can be pushed forward via ¥ to a cocycle
V.0(n)c € C"H(T, (D))

valued in products of ¢-stabilized weight-1 Bernoulli polynomials; these will be locally constant
functions valued in Z[(.| outside of specified hyperplanes (corresponding to the discontinuities

of the Bernoulli polynomials). To be more specific, the function-qua-0-distribution

L.Bi[xa](21) - - - Ba[xn](2n)

on T is locally constant outside of the “hyperplane” (codimension-1) locus

Hyp, = L (U LCJI{ZZ' = a/c}D ,

a
and its values on each connected component is an element of Z[(,].
We can therefore interpret the values of W,0¢ as belonging to
1 . 1
HOT = H, 2 7[¢]) = SlgH HYT = 8, T ZIC)
C

where
H:=|JH,
L

is the union of all the hyperplanes as L varies over GL;,(Z)), and S varies over finite subar-
rangements of these hyperplanes. (Here, we use the definition of equivariant cohomology of a
pro-system of open immersions we defined previously.)

This perspective leads to the following important comparison result, justifying the relation
of all our symbol constructions to Eisenstein classes:

Theorem 3.8. IfI" is a subgroup of GL,(Z), then the cocycle ¥.0(n)c, interpreted as being
a cocycle valued in HO(T — H,Z[(.]), is a c-integral representative for the image of the class
c2r under the edge map

HY YT - H,R) - H" (T, H%(T — H,R)).

Proof. As in the discussion following Lemma 2.9, take ¢1,..., ¢, to be the lifts obtained by
applying that lemma to the complex C]/B\e/r(n). Then as in Proposition 2.10, the sum of lifts
W(l1) + ...+ V(L) represents the class 2&. Further, each W(¢;) is by construction de Rham
closed upon restriction to T'— H since its locus of non-constancy is only along the hyperplanes
H. so the claimed result then follows from Lemma 2.11. O
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Example 3.9. Let us spell out how the lifting process yields a cocycle in the simplest inter-
esting case, when n =2 (so 7' = (S')?) and ¢ = 2.

We will write (a,b) for a,b € Z/2 for points in T'[2], x4, for the character in f[\2] sending
(a,b) — exp(mi(ax + by)) for z,y € Z/2, and [m : n] for the corresponding line in P*(Q). We

will denote generators of ;Ber(2); by
(Ela 627 P)

—

where /1, (5 € P1(Q) and P € T|[2] (subject to some avoidance condition).
In this case, the GLg(Z9))-fixed 2-torsion cycle T'[2] — 4{0} can be written as the sum of

characters
—X1,0 — Xo,1 — X1,1 € 2Ber(2)o.
There are many possible choices of lift to sBer(2);, but a nice one might be

= —([1:0],x10) = ([1: 1], x0,1) = ([0: 1], x1,1) € 2Ber(2)o.

—

Notice in particular that, for example, the hyperplane in T[2] = (T'[2])" corresponding to the
line [1 : 0] is span(xo,1), which does not contain the point x1,, and similarly for the other
pairs.

Then if

a b
= € GLy(Z
Y (C d) 2( (2))

is a matrix, we need then to find the lift to sBer(2)2 of
(v =Dn=([1:0Fx10) + ([1: 1;x01) + ([0 1} x1,1)
—(la: i Xap) = (la+b: e+ dl; xea) = ([b: dl; Xatepta)

Note by invertibility modulo 2 of v that the triple (a,b), (¢, d), (a 4 ¢, b+ d) must be a permu-
tation of (1,0),(0,1),(1,1). We can thus pair the lines which have the same corresponding

(26)

character. If each of these pairs of lines are 2-unimodular, then the lift is easy to find: for

(o0 1
~\-1 0/’
(v =Dmn=([1:0];x1,0) + ([L: 1];5x01) + ([0: 1]5x1,1)
—([0: 1} x0,1) — ([1: =1];x1,0) — ([1: 0]; x1,1)

example, for

we get
(27)

which has lift

(M:-1],1:0];x1,0) + ([0:1],[L:1]5x0,1) + ([1:0],[0:1]; x1,1)-
The realization of this cocycle as a locally constant function is then

1

01

Bl[x](zl)Bl[X](Z2)+< é) Bl[X](Zl)Bl[l](Z2)+<1 1) Bi[x](21) B1[1](22)



24 MARTI ROSET AND PETER XU

where here B1[x](z) means the stabilization B;(z—1/2)— By(z) corresponding to the 2-torsion
cycle (0) — (1/2) and Bi[1](z) = —Bi(z) — Bi(z — 1/2) is the stabilization corresponding to
(0) + (1/2).

In the case when the pairs of lines resulting from the ~v-action are not 2-unimodular, things
become more complicated; one must “connect” the resulting pairs of lines by intermediary
lines such that adjacent pairs are 2-unimodular, similar to the “connecting sequences” of
[SV24] (though with somewhat more complicated conditions than are considered there). This
is always possible by a geometry of numbers argument similar to that given in [AR79], but we
do not go into the details here, since we have no need to write out general explicit formulas
in the present article. Notice that our formalism hides all of this behind the exactness of

9Ber(2), proven by general topological considerations about matroids.

To conclude this section, we will also need a variant of all these constructions “with level
structure,” for technical reasons relating to the cohomological interpretation of pullbacks. As
such, we must reiterate everything preceding, with slight modifications.

Fix any prime p; eventually, we will take (¢,p) = 1, but this is not actually necessary for

what follows. Now suppose
[ CTo(p) :=Stab([0:...:0:1] € P(V),)) C GLA(Z).
Then we have a ['-equivariant pullback diagram of complexes, analogous to and building upon

(25):

P )1 —— Ber(n)[~1]a

i l (28)

D, Ce(M5)) ——— @, (Fyp)s

Ber

where M) denotes the matroid of sets of independent sets of lines in V, /p Which (n—1)-avoid
the line K = [0:...:0:1] € V3, i.e. consisting of sets of lines which have no cardinality
< n — 1 subset such that K is in their span.

It is not completely obvious that this forms a matroid:

Lemma 3.10. The subsets of lines in Vz,, described above as M) do, in fact, satisfy the

matroid conditions.

Proof. The non-obvious condition is the augmentation property: given two sets with |A|> |B|
of independent lines which (n—1)-avoid K, is there a € A such that {a}UB also (n—1)-avoids
K?

Write A, B for the sets of images of the corresponding lines in V3, /p/ K. Then we see that our
desired property is implied by the following assertion: if we have two sets of lines in V7, /K
with |A|> | B| such that both are (n — 1)-independent (i.e. every (n — 1)-set is independent),
then there exists @ € A such that {a} U B is also (n — 1)-independent.

If |A|< n — 1, this is clear: it is just the usual matroid property for all lines in Vy /p/ K.
Otherwise, we reduce to the case |A|= n. In this case, we might as well assume |B|=n — 1,

since this clearly also implies the property for smaller sets B. Then in some coordinates



RIGID ANALYTIC EISENSTEIN COCYCLES 25

on Vz,/K, B is given by the standard coordinate vectors {(1,0...,),...,(0,...,0,1)}. Our
claim then amounts to showing that there exists some vector in A with no coordinate equal
to zero.

Suppose for the sake of contradiction that each of the n vectors in A had one of their
(n — 1) coordinates equal to zero. By the pigeonhole principle, this implies there are two
vectors with zero in the same coordinate; any (n — 1)-subset containing these two then fails

to be independent, which is a contradiction. O
Corollary 3.11. The complex c]§\e/r(p) (n) has reduced homology concentrated in top degree n.

Proof. As with the diagram (25), this follows immediately from the acyclicity of €, (Fyp)e
and the fact that the other two complexes have reduced homology concentrated in degree
n — 1 (which is degree n after the shift). O

Then the restriction of ¥ to .Ber® (n),, consists of elements of the form

LiB1[xa](21) B1[xal(z2) - - - Bi[xn](2n)

where L is a matrix whose (n — 1)-subsets of columns never span K modulo p. As such, its
differential is supported on hypersurfaces inside 7' not containing the (nonzero points of) line

of p-torsion corresponding to K, implying that:

Proposition 3.12. If H, denotes the I'g(p)-orbit of the hyperplane locus

gl

where P ranges over T[c| (and tp is translation by P, as previously), then U(.Ber® (n),) is

valued in locally constant functions on T'— Hy,, hence representing classes in
0 1 . 0 1
H(T — Hy, CTLZ[Cc]) = hﬂ HY(T - S, CTLZ[CC])
ScH,
where as before the limit is over finite subarrangements contained in H,. In particular, if

(p,c) = 1, these locally constant functions(-qua-0-distributions) have the property that the
nonzero points of the line K C T[p] are in the open locus of local constancy.

Proof. By the preceding discussion, the differential of these elements is a sum of currents
supported on the hyperplane locus written above. Thus, if one restricts away from this locus,
we obtain a closed O-current, which is isomorphic to the space of locally constant functions

by the quasi-isomorphism between the smooth and distributional de Rham complexes. O

Then as with the original construction, we obtain a cocycle
b)) € C" 1 (To(p), Ber® (n),)
which can be pushed forward via ¥ to a cocycle

V.0 e (T, (D)W)
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representing the image of zl(f) in

H"(Ty(p), HO(T — Hy, R)).
Note that the restriction of
W.6(n)c € BT, HOT — H, - 7]G]))
to To(p) can be identified with
0,0 (n)e € H" (To(p), H(T — Hp, CinZ[gC])).

Formally, the restriction of this class to the sublocus ' — H C T' — H), recovers ¥,0(n)c.

3.5. Integral cocycles valued in distributions. We now wish to obtain an Eisenstein
class valued in distributions over all p-power torsion. (In fact, we could consider all prime-to-
¢ torsion, but for our purposes, one prime at a time suffices.)

First, in order for the distribution relations to hold, we need the target of ¥ to be actually
fixed under the trace by the isogeny [p], not just have finite orbit under it. Indeed, if o, is the
order of [p] € (Z/c)*, then there exists a projector ep, € éZ[(Z/c)X] such that the image of
eV is trace-fixed. (In particular, when p =1 (mod c), we can take o, = 1 and the image of
U is already always [p].-fixed. Thus for odd p, we may simply always take ¢ =2 = o0, = 1.)

Let D(Vg,, A) denote the distributions (i.e. the linear dual of locally constant functions)
on Vg, valued in an abelian group A, with an action of GL,(Q,) given by pushforward.
We also write D(Vg,, A)© for the submodule of distributions p which are [p]-invariant, i.e.
distributions p so that pu(U) = u(pU) for any open set U C Vg,. We view the previously-
defined X as embedded in Vg, as the open set

X:= U Uy,

ve %VZZD /VZ:D
v#0

and we write Do(Vg,, A) for distributions on which u(X) = 0, where here Uy := v + Zj.

Let By(n) := ep¥(cBer(n),) C DY, and analogously for the P-avoiding submodule
CBZ(;p) (n) := e[p]‘I/(CBer(p) (n)n).

Write By, (n) for the [p]-invariant submodule of the functions on T generated by functions

of the form
LyB1[x1](21) - - - Bulxn](2n)

for a c-unimodular matrix L. These are functions continuous on an open locus which is the

complement of codimension-1 subtori.

Lemma 3.13. Considering the functions in .By(n) as 0-currents by viewing them as kernels
of integration yields a GL,(Z[1/p])-equivariant isomorphism
vB : ¢Bp(n) — Bp(n)(det).

Proof. The injectivity is the only novel statement here. To obtain it, we define an explicit

inverse. The key idea is that given a current w € .By(n), it has a corresponding Fourier series
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by Proposition 2.5, which as in that proposition we encode as a tempered function
= Fr(w) € §'(Z").

Viewed as a literal series

D () exp(2mid - 2)) (29)
AEZP
with input variable z = (z1,..., 2z,) € T, ¢ will rarely be absolutely convergent; we thus cannot
in general assign an unambiguous value to its evaluation at some given z. It is therefore not
obvious how to obtain a function on 7'.

The workaround is the “@Q-summation” method of [Scz93]: one can try to sum series of the
form (29) by ordering the terms by increasing value of |Q(z1,. .., 2z,)|, where @ is a nonzero
product of linear forms in z with rationally independent coefficients.?> One denotes the Q-sum
by

> (N exp(2mil - 2)) g (30)

AEZ™
We will also write simply ¢|qg for short. If this Q-sum converges, then it is clear that for any
v € SL,,(Z) we also have

1(ele) = (V@)@ (31)

for the action on @ given in loc. cit. (specifics of this action are immaterial to us). Note also
that @-summation is additive (on series and ) for which the corresponding @) series converge),
by elementary properties of limits.

From [Scz93, Theorem 2|, we have that for the Fourier series ¢4 corresponding to the
current

Bi(z1)...Bi(zn),
the sum (¢s|g)(2) is actually independent of @ for z in the continuity locus (i.e. with no
coordinate zero), and always returns the actual value of the function Bi(z1) ... Bi(zy,) for these
z. If this were true also for the discontinuity locus, we could move this argument around by
the SL,(Z) action to obtain our equivariant inverse map B,(n) — .Bp(n). However, the
(-summation in general does have an dependence on () on the discontinuity loci: in our
language, [Scz93, Theorem 2] states that if we have our product of linear forms

Qz) = HLi -z (32)
i=1

with L; = (L;1,. .., Lin), then the Fourier series for By(z1)...Bi(z,), viewed as an element
of §'(Vz) as in the proof of Proposition 2.4,

@(k’l,,kn)%m

SNote that the rational independence is necessary for the associated ordering on lattice points to be unam-
biguous, i.e. not have any ties.
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m n

n
¢lo= g 3 | LLB1(e) ~ benti)/2) + T[54 + bsn(2)/2)

i=1 \j=1 j=1
where the terms in the square brackets are included if and only if the corresponding component
of the input z; is zero.

However, our module .B,(n) only consists of certain c-stabilized Bernoulli currents, for
which these Q-ambiguities cancel out in the corresponding series. In particular, denote the
product of Bernoulli polynomials associated to a symbol [¢1,...,¢,] by Bi[ly,...,¢n;X], so
that the associated current is precisely W([l1,...,0y]y).

By the assumptions on x, we can write y = x1 ® ... ® X, for some nontrivial characters

Xi, 1 <i <n of Z/c, meaning

X(21y oy 2n) = Xx1(21) -+ - Xn(2n)

for any (z1,...,2,) € T|c]. Then for any @ in the form (32), Sczech’s formula says that the

corresponding Fourier series has (J-sum

fT(\I/([gb v 7£”]X>)|Q
equal to

m

— H Z X5 (7 —r)—[sgn(Li;)/2]) +H Z X5 (r —7)+[sgn(Lqj)/2])

mia Jj=1reZ/c Jj=1reZ/c
(33)

Since each character y;(r) is nontrivial, we find that within each innermost sum, the terms

in square brackets cancel to zero (when they appear at all). Hence this expression reduces to

simply
n
H Z Xj(r)Bi(z; — 1) = Bile1, ..., en; X]. (34)
Jj=1reZ/c

i.e. the original Bernoulli function associated to the standard basis eq,...,e, of Vz. In

particular, the ()-sum is independent of Q).

By the equivariance property (31), we can move this argument around by the GL,,(Z[1/p])*-
action (recalling all of our functions/currents are invariant by [p].) to apply to any generator
Bi[ly, ..., ly; x]: we conclude that all of the corresponding Fourier series Q-converge to limits
independent of (), equal to the values of the original function, regardless of z lying in any
discontinuity strata.

Therefore, this “independent of ”-summation, for any generator B;[(1,. .., {y; x| of . By(n),
sends vp(Bi[l1, ..., 0n; x]) back to the function By[ly,...,l,; x| on all of T. The additivity of
(QQ-summation ensures this inverse is well-defined, since the zero Fourier series obviously maps

to the zero function regardless of @), so we are done. O

Remark 3.14. The preceding injectivity amounts to saying that no nonzero sum of functions
in .Bp(n) can be identically zero outside of its (positive codimension) discontinuity locus,
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since otherwise it would give the zero current. This really does depend on c-stabilization:
it is certainly not true for general functions locally constant on a complement of subtori
arrangements. It is even false for general sums of products of Bernoulli polynomials: for

instance, the function
2(B1(21)B1(22) + B1(22)(B1(—21 — 22)) + B1(—21 — 22) B1(21)) + Ba(21) + Ba(22) + B2(—22 — 22)

is identically zero on (S!)? outside of the identity (where it is equal to 1/6), and therefore
yields the zero current. This lack of injectivity is the reason Q-summation is necessary in
Sczech’s method in the first place.

Note that from an identical proof, the same statement applies also for the restricted map
B (n) — BY) (n).

From this lemma, we can deduce the following: write p : Z[(.] — Z for any Z-module map
1
which splits the inclusion; we will also use the same notation for —Z[¢.] — —Z, or any
c c

similar obvious variation.® Then we have:

Proposition 3.15. There is a GL} (Z[1/p])-equivariant morphism

1
SOP : CBp(TL) — D()(VQP, ;

0
p

Z)(O)

given by

w = (Uy — (p)sz(v) vg'w)
where v € Vo, is a vector and Uy is the open set v+ Vz,, and extended by the [p]-invariance
of the distribution.” Here, v defines a p-power torsion point z(v) in T[p>] = Vo,/Vz,, and
we write m(v)*u;lw for the pullback of the function uglw € Bp(n).

Proof. The last thing that needs checking is the condition that p(X) = 0, which amounts to
the assertion that
> =0

z€T[p|\{0}
for all f € .Bp(n). Observe that

z€Tp]\{0}

so this immediately follows from the fact that .By(n) consists of [p]-fixed functions. O

3.6. Cohomological comparisons. Fix now (p,c) = 1. We now come to the importance of
defining the variant complex Ber® (n) (and the other corresponding constructions), hereto-
fore unused: it enables us to compare our Bernoulli polynomial-valued cocycles with abstract
pullbacks in cohomology.

6The necessity of this map is an unfortunate technical necessity, which has no real significance: the specialization
we will use for interpolation (and indeed, essentially all specializations of interest) will all be integer/rational-
valued, so p will act trivially on their extension of scalars. Our need for it is simply an artifact of the fact that
our c-stabilization is encoded via a Pontryagin-Fourier dual.

"Note that though these open sets do not generate a basis on their own, their [p]-translates do, so this uniquely
specifies the measure of every open set.
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Let T'1(p") be the level structure fixing a torsion point x, of order p”, for any r > 0. Then
1
for the restricted morphism ¢, : BZ(JP ) (n) — Do(Va,, —HZ)(O), by Proposition 3.12, we have
opC

the commutative diagram of specializations

1 1
HOT — Hy, —17) +—— B (n) —2 Dy(Vy,, —2)©)
OPC 0yC
= lv ) (3)
1 1 1
opc™ Z opc™ Z opc™ Z

equivariant for I';(p"), where here U, is the open set of Z; corresponding to x,T'[p].
We hence deduce:

Theorem 3.16. If we restrict our distribution-valued cocycle

1= () Wab(n)e € H'(GLE(Z01/p)), DoV, —7)®)

T

to T'1(p") and evaluate at the open set U,, then with R-coefficients, this coincides with the

sum of pullbacks of the Eisenstein class

(‘TT‘)*CZI‘l(pT) S anl(l-\l(pr)’ Z[l/c]) ®R

Proof. This essentially follows formally from the fact that pullback by z, commutes with
restriction and the Hochschild-Serre edge map, since we know from Proposition 2.10, Lemma
2.9, Lemma 2.11 that ¥.0(n)¢ represents the image of .zr under said edge map after extending
scalars to R, at any level I'.

The only non-formal thing which needs to be checked is that applying the rationalizing
projector p does not change the specialization. Indeed, the cohomological construction of the

Eisenstein class tells us that in fact
zrezr, pr) € H ' (To(p), R)

is the extension of scalars of a class with Z[1/¢| coefficients; thus, it is fixed by p. Hence if

L z1c)

’ n
opC

1(Uy)+W.8(n)c € H" ™ (To(p)

agrees with it after extending coefficients to C, then after applying p to both integral cocycles

and extending coefficients to R, the same continues to hold. O

By the equivariant-geometric comparison from Section 2.4, the classes czr,(,r) coincide
with the geometric classes .z, of [RX25]. (There, the torsion point we call z, is notated as a
torsion section v,.) Thus, the above proposition is enough to write finite-level specializations
of U,.0(n)c in terms of explicit weight-2 Eisenstein series (cf. [RX25, §2]).

Analogous to [RX25], we also have an independence-of-c result for our distribution-valued

cocycles (which we here decorate p with, but generally omit from the notation):
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Proposition 3.17. If ¢ and d are prime to p and each other, and the d-torsion cycle D is

defined analogously to C, we have

([’ = pp = ([d — d™)pe

where [a], means pushforward of distributions along the multiplication-by-a map (which is
invertible if (a,p) = 1).

Proof. By working in the cd-stabilized complex .4Ber(n),, this follows formally from the fact
that

(Ics = "D = ([d]x — d")C = ([c]+ — ")([d]« — d"){0}
and the easily checkable [c]* and [d]|*-equivariance of ¥ and ¢,. Note that [¢]* and [d]* on

functions induce [¢];! and [d];! on distributions over their torsion specializations. O

Remark 3.18. This section obtains the same finite-level specializations for our cohomology
class as the classes ug considered in [RX25]. However, this does not show they are equal as
distribution-vauled cohomology classes, and in fact we do not do so in this article. For such
a comparison, even up to torsion, we would need a model of equivariant cohomology allowing
us to identify p as the image under edge maps of integral versions of .zr, which our (real-
coefficients) distributional de Rham complex does not do. We believe this may be achievable
using locally finite cubical chains as a model for Z-coefficients equivariant cohomology (or
equivariant Borel-More homology), but since we are able to recover all the applications of
[RX25] for p below without such a comparison, we found that it did not merit the extra

technicalities involved.

4. DRINFELD’S p-ADIC SYMMETRIC DOMAIN AND RIGID COCYCLES

Let X, be Drinfeld’s p-adic symmetric domain, namely X, = P""1(C,) — UyH,, where
the union runs over all Q,-rational hyperplanes in P"~1(C,). In this section, we introduce
the multiplicative Schneider—Teitelbaum lift ST, which is an SL,(Z[1/p])-equivariant map
from Dy(X,Z) to the space A* of invertible functions on X, modulo p%. Then, we use the
distribution valued cocycles of the previous sections to construct cocycles for SL,(Z[1/p])
valued in A* /p%. Finally, we define the evaluation of these cocycles at totally real fields of

degree n where p is inert, and study properties of these values.

4.1. Schneider—Teitelbaum lift and rigid cocycles. The group SL,(Q,) acts on P"~}(C,)
by matrix multiplication and the Q,-rational hyperplanes are preserved by this action. From
there, we define a left action of SL,,(Q,) on the space of functions on X, given as follows. If
g € SL,(Qp), f is a function on X,,, and 7 € X,

(g- N)(7) = flg'r),
Let log, : C;' — C,, be the p-adic logarithm satisfying log, (p) = 0.

Definition 4.1. For a distribution A € Dy(X,Z), define by ST the function on X, given by

ST(A)([]) ::][ oz d\(z).

X
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for 7 € X,,. We will use the notation ST for the map
ST : Dy(X, Z) — A*/p”
whose target is quotiented by p%, due to its nicer equivariance properties (see below).

Remark 4.2. Consider the same notation as above. Since A has total mass zero, the integral
defining £LST(A)([7]) is independent of the choice of representative of [r] € P"~1(C,).

Proposition 4.3. The morphism ST is SL,,(Z[1/p])-equivariant.

Proof. Our proof is essentially identical to [DPV, §1.4]. Observe that if f is an integrable
function on X and 7 € SL,(Z[1/p]), we have the equality

foepa=f  sao . (36)
X ~y~1X
Furthermore, for any ~, and any p-invariant measure u, we have
][ -z du(x) E][ ' zdp(x) (mod p?) (37)
¥X X

because there exist a,b € Z for which
PX C X 'K,
so one can always find a decomposition into open sets
X=UU...uU;
for which
AX=pUU...Up"U;

for some integers 1, ..., r:, and then we have

7[ 7tz du(x) E][ b zdu(z)  (mod p?)
p"iU; U;

for each 1 <1 < t.
Now, we proceed to verify the desired equivariance. Let v € SL,(Z[1/p]), p € Do(X, Zy)
and 7 € X,,. Then,

7+ (ST)(r) = f

rzdua) = | r'adly - p)(e) = ST (7)) (mod )
X

X

where in the second to last equality we used (36) and in the last we used (37). O

We therefore obtain a A* /p?-valued cohomology class by pushing forward our previously-
defined distribution-valued class:

Definition 4.4. Define .Jp = ST.p € —2— - H"1(SL,(Z), A* /p%), where o,(c) denotes

op(c)c™
the multiplicative order of p modulo c.

We will generally work with a fixed ¢ and omit the pre-superscript ¢ as implicit. However,

we first have the following corollary of Proposition 3.17:
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Corollary 4.5. We have, for any ¢ and d prime to p and each other, that
(1—deJg =1 —-c")gJE.
In particular, (1 — c®)~t.Jg is independent of c.

Proof. This follows immediately from Proposition 3.17 and the fact that ST factors through

[c]i1 — 1, as [c]; ! preserves X and the measures involved have mass zero on X. O

4.2. Evaluation of cocycles at “real multiplication” points. Let F' be a totally real
field of degree n where p is inert. Let a be an integral ideal of F' of norm coprime to pc, and
fix {71,...,7,} an oriented Z-basis of a=!. Let 7 be the column vector of size n x 1 whose ith

entry is equal to 7;. It yields to an embedding
r Q" S F, 2 7t

By considering the action of multiplication by F* on F, which is Q-linear, we obtain an
embedding
F — M,(Q), a— A,

determined by 7'A, = at!, for every a € F. For o € F and x € Q", we have

a(th - x) =71 (Aax). (38)
Lemma 4.6. The element [r] € P"~Y(C,) belongs to X,,.

Proof. The coordinates of 7 form a Q-basis of F. Since p is inert in F', the coordinates of T
also form a Q,-basis of the completion of F' at p. This implies that they are independent over
Qp, i.e. T does not belong to any Q,-rational hyperplane in P"~1(C,). O

Note that F'* C GLy(Q) fixes 7 € X,. Let Up be the group of totally positive units in Oj;
it is a free group of rank n— 1, which we view as embedded in SL,,(Z) via the coordinatization
given by [7] (so that it is the stabilizer of this point in X),). We have a morphism in cohomology

induced by restriction and then evaluation at [7]
H" (L, (Z), A) =2 B (Up,CJ).

Denote by ¢y, € Hp,—1(Ur,Z) the fundamental class whose orientation corresponds to our
embedding into SLy,(Z) (see [BCG20, §12.4]).

Definition 4.7. Consider the same notation as above, and let J € H"~!(SL,,(Z), AX). Define
the evaluation of J at [7] € X, by

J[7] := cup Neviy(J) € Cp.
If J is installed valued in A /p?, we get an evaluation in C,/ .
We will be interested in the evaluation of the cocycles Jg defined in 4.4. We note that it

is clear from the formula for the Schneider-Teitelbaum transform that if we denote by Fj, the
completion of F at p, we in fact have J;[r] € F/ .
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We also have the a more refined kind of “evaluation at 7”7 map starting from a Up-
cohomology class valued in distributions; we call the following map D, for its similarity to
p-adic integrals considered in the work of Dasgupta (e.g. [Das08]).

Lemma 4.8. Let 7 € F" be as above. Then, the morphism
D, : Do(X,Z) = F, u H][ ez du()
X
1s Up-equivariant.

Proof. Let v € Up and pu € Dy(X, Z). Proceeding as in the proof of Proposition 4.3, we obtain

Jég rwd(y ) (@) = ]{g (') @ du(e).

Since v € U, it follows from (38) that 4!7 = e7 for ¢ € F a fundamental unit. Hence, the

right hand side of the equation can be written as

]i(fytT)t cxdp(z) = et -]égrt -z dp(x) :]éth ~xdp(x).
(|

Note that it is clear from the formulas that D, (x) modulo p? is equal to ST(u)[r], so this
is a refinement of the evaluation of rigid analytic functions/cocycles.

5. VALUES OF RIGID COCYCLES AND UNIT FORMULAS

We remain in the setting of our totally real field F' in which p is inert, with a, 7, etc. as

before. In this section, we prove that the value
10gNFp/@pJE[T] € Fp

is equal to a local norm of a Gross-Stark unit® in the narrow Hilbert class field of F, using
the (known) Gross—Stark conjecture. We will also conjecture a similar comparison without
the norms using the map D,, which we will be able to prove modulo p? (i.e. for the rigid

analytic cocycles) in special cases.

5.1. p-adic L-functions and Stark-type conjectures. We first briefly recall the state-
ments of the Gross—Stark and Brumer—Stark conjectures over F', specified to the setting we
will consider in our applications. To do so, we first need some background on (p-adic) L-
functions.

For a given integral ideal f, recall that G; denotes the ray class group attached to f. Then,
for € a Q-valued function on Gj, we define

L(g,s) = Z e(b)Nb™?,
(b,f)=1
where the sum is over integral ideals which are coprime to f. This sum converges for s € C such

that Re(s) > 1 and it can be extended via analytic continuation to a meromophic function at

8The “units” involved in the Gross-Stark and Brumer—Stark conjectures which we will consider are actually
p-units in general, but we will colloquially call them “units” without comment.
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C with at most a pole at s = 1. Let ¢ be a positive integer and denote by ¢, the function on
Gj given by e.(b) = e(bc). Consider then, for k > 1,

Ac(e,1 — k)= L(e,1 — k) — " L(ec, 1 — k).
Recall that a is an integral ideal of F' which is coprime to p. Let
1[a],p : Gp — Z

be the characteristic function of the pre-image of [a] € G by the natural map G, — G
and consider the L-function L(1fy, ,,s). It is a partial zeta function with the Euler factor
corresponding to p removed, which vanishes at s = 0.
By the work of Deligne-Ribet, there exists a p-adic analytic function Ly(1(, ,,s) defined
on Z, — {1} such that
Lp(l[a],p’ 1— k) = Ac(l[a],pv I k)

for every k > 1. The following congruence, which is used to prove the existence of the p-adic

L-function Ly (1], », 1 — k), will be useful for later calculations.

1,Pp?

Theorem 5.1. Consider the same notation as above. Then, we have:
(1) For alle : G; — Zy, and k > 1, we have A(1 — k,€) € Z,.
(2) Let | be divisible by p™, and let k > 1 be given. Suppose that n : Gy — Zp is such that

n=N1 mod p™,

the two functions considered as functions on the set of prime to f ideals. Then, for all
e Gf — Zp
Ac(1—k,e) = Ac(0,en) mod p™.

We now state the Gross—Stark conjecture. Let H be the narrow Hilbert class field of F,
and consider the following subgroup of the p-units

Up:={ue H"||z|]qg =1VQ1p},

where Q runs over places (archimedean and nonarchimedean). Fix 8 a prime of H dividing
p.

Proposition 5.2. There exists a unique element u € U, ® Q satisfying
ordp(u”) = L(1f,,0) for all a coprime to p,

where 1jq, denotes the characteristic function of [a] on G1 and o4 € Gal (H/F') denotes the
Frobenius element associated to

Note that, since p splits completely on H, we have H C Hy ~ F),.
Theorem 5.3 (Gross—Stark conjecture). Let u be as above. We have
Ly (1{g)p, 0) = —(1 — ") log, (N, g, u’®) for all a coprime to p.

Thus, the first derivative of a p-adic L-function is related to the norm of a virtual unit - i.e.

a formal rational power of a unit. A priori, this may not be an actual p-unit; we have only
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that some integer power of it is. On the other hand, in this same setting, the Brumer—Stark
conjecture (as proven in [DK23] and [DKSW23]) tells us that we do have a genuine unit:

Theorem 5.4. If the auxiliary smoothing integer ¢ is such that all of its prime factors are
greater than n + 1, then there is an actual unit u € Oy [1/p|* satisfying the conditions of the

Gross—Stark conjecture.

(See [RX25, Remark 6.3] for how this follows from more standard statements of the Brumer—
Stark conjecture.)
Note that the property above defines u only up to is well-defined only up to pZ and a root

of unity.

5.2. Interpolation of L-values. In this section, we give the relation of the cocycle p with
the p-adic L-function Ly(1q, 5, s) introduced above.
Let x : Z; — @; be a continuous function and fix 7 € F}' a representative of 7 € PrL(F).

Consider the map
o i D(X,Zy) = Qpy Ao /X X (N(ea)Np, g, (7' - 2)) dA(z),

which is Up-equivariant. We can then consider

prox (vesu (1)) = ory (resup (1) € H'H(Up, F).

Remark 5.5. Note that though A is only a Z,-valued distribution on locally constant functions
a priori, one can easily check that the usual definition of the integral against A via Riemann
sums converges p-adically on any uniformly continuous function so long as the values of A are

p-adically bounded, hence on any continuous function on the compact set X.

Recall that cy, is a fundamental class of H,_1(Ur,Z,). We will be interested in the

function of one p-adic variable

Zp > s = cup Ny -5 (resy, (p)) = /(N(Cﬂ)N(Tt -x)) " dp(z) ~ ey, € Fp,
X

where (-)° : Z) — Z, denotes the character z ~ x°. Observe that this function is a p-adic

analytic function on Z,.
Proposition 5.6. Let x : Z, — (Zp/p"Zp)* — Q* be a finite order character. We have
cup ~ Prx (resup (1) = Ac(1g X 0).

Proof. By Theorem 3.16, ¢y, — @7 (resy, (@) satisfies the same interpolation properties at
every finite level I'1 (p”) as the cocycle p used in [RX25, Proposition 6.9], from which we derive

the same conclusion as in loc. cit. O

Using the existence of the Deligne—Ribet L-function, we also immediately derive the ana-
logue of [RX25, Corollary 6.10]:

Corollary 5.7. For any s € Z,, we have

Lol = [ (N@Nr g, fer'-2)) ™ dute) ~ cu,
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By comparing the derivatives at s = 0 of the two sides, we hence deduce the analogue of
[RX25, Theorem 1.6]:

Corollary 5.8 (Theorem 1.4). Let u € U, ® Q be the Gross—Stark unit introduced in Propo-
sition 5.2 and denote by u, == u® ' € Up® Q. We have,

log, Nr, /0, /E [r] = log, N£, /0, (ur) € Fp

5.3. Brumer—Stark units and the cyclic Galois case. The above result gives us evidence
to conjecture that Jg[7] should in fact be equal to a genuine p-unit u, € Og[1/p]* satisfying
the Brumer—Stark conjecture. As in [RX25, §7.2], we are able to prove some cases of the weak
form of this conjecture in the Galois case: suppose that F'is Galois over Q. If the narrow ideal
class [a] is Gal (F/Q)-stable, we prove that o,u € Q, up to roots of unity. If moreover the
ideal a is Gal (F'/Q)-stable, we show that Jz[7] € Q,. Thus, the norms in Theorem 1.4 simply
become nth powers, and we are able to remove them up to an nth root of unity ambiguity.

Observe that under these assumptions, H is Galois over Q. Denote by D, C Gal (H/Q) the
decomposition group at p. Note that Gal (H/Q), and therefore also Dy, act on Og[1/p]* @ Q.
Then we have from [RX25, Lemma 7.2, Proposition 7.3]:

Lemma 5.9. Let u be the Gross-Stark unit as above and let [a] be a narrow ideal class that
is Gal (F/Q)-fized. For every n € D,, we have n(oqu) = oqu in O[l/p]" @ Q. As a result,
log,(cqu) € Q.

We proceed to study the invariant Jg[7] in the case that the ideal a is Gal (F'/Q)-stable.
In this setting, we can refine the embedding of U into SL,,(Z) to an embedding

O x Gal (F/Q) — GL,(Z)
determined by the following equations: for every x € Q", o € F* and o € Gal (F/Q),
a(rt-x) =" Agz, o(rt - x) =1t As.

Denote Dy := Dy(X). Recall that GL,(Z) acts on Dy as follows: for g € GL,(Z), A € Dy, and
U C X compact open

(9-M(U) = Ag~'U).
Consider also the GL,(Z)-module Dy(det) := Dy ®z Z(det). We use these actions and the
embedding above to describe an action of Oy and of Gal (F/Q), on Dy and Dy(det). In
particular, since {1} x Gal (F'/Q) normalizes Ur x {1}, we have natural actions of Gal (F'/Q)
on H" Y(Up,Dy(det)) as well as on the coinvariants (Dg)y,. Under these actions, Lemma

actually tells us that our construction actually lifts p = (¢p)«¥.8(n)c to a unique class in
H™ Y (GLW(Z[1/p]), Bo(Ve, Z)® (det)).
Lemma 5.10. The element cy, —~ p € (Do)v,. is fized by Gal (F/Q).

Proof. The proof is identical to [RX25, Lemma 7.4], following immediately from the fact that

the restriction

H" Y (OF x Gal (F/Q),Do(Vy,, Z)V (det)) — H" 1 (OF, Do(Va,, Z)? (det))
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lands in the Gal (F'/Q)-invariants. O
Likewise, the following can be deduced in exactly the same way as [RX25, Theorem 7.5]:

Theorem 5.11. Suppose that the coordinates of T € F™ given an oriented Z-basis of a
Gal (F/Q)-stable ideal a=t. Then Jg[r] € Qp.

‘We hence deduce:

Corollary 5.12. Suppose that F' is a totally real field that is Galois over Q and where p is
inert. Let 7 € F™ with coordinates generating a=', where a is a Gal (F/Q)-stable ideal, and
let u e O[1/p]X ® Q be the Gross—Stark unit of Proposition 5.2. We have

Je[t] =u
up to pZ and roots of unity.

This implies Theorem 1.5 of the introduction. Note that the denominator op(c)c™ occurring

in the definition of Jr does not matter, since we tolerate a root of unity ambiguity.
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