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Abstract. We study the Eisenstein class of a torus bundle and explore its application in

constructing p-adic rigid analytic classes for SLn. Using an explicit symbol-based approach

to this class, we obtain a new construction of an Eisenstein group cohomology class for SLn

valued on distributions on Zn
p − pZn

p . By integrating these distributions, we are lead to the

desired rigid analytic classes for SLn. Finally, we explore the relation between the values

of these classes at points attached to totally real fields and Gross–Stark units, suggesting

they provide a generalization of the modular side of the theory of complex multiplication to

totally real fields where p is inert. We confirm this relationship in certain cases when F is

Galois over Q by using the Brumer–Stark conjecture.
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1. Introduction

If F is an imaginary quadratic field, then the theory of modular functions for (subgroups

of) SL2(Z) acting on the complex upper-half plane H offers an explicit analytic approach

to understanding abelian extensions of F , or in other words a solution to Hilbert’s twelfth

problem. Namely, there exist certain invertible holomorphic functions

cgα,β ∈ O×
H ,

called modular (or Siegel) units, invariant under arithmetic subgroups of SL2(Z), such that

the values cgα,β(τ) at imaginary quadratic points lying in F generate such extensions; these

values are called elliptic units for the field, and have rich internal arithmetic structure.

A naive analogue of this theory for real quadratic fields F is not possible: for example,

because H does not contain real quadratic points. However, Darmon and Dasgupta [DD06]

proposed a conjectural construction of “elliptic units for real quadratic fields” using a p-

adic limiting process involving periods of logarithmic derivatives of modular units along real

quadratic geodesics, and conjectured that they enjoyed analogous properties (above all, being

algebraic and generating abelian extensions) as classic elliptic units.
1
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Dasgupta suggested an alternate approach to constructing conjectural elements in these

extensions, using p-adic integrals against distributions constructed from Shintani’s method

of calculating L-values of F . Using this, he gave conjectural p-adic analytic formulas for

p-units in abelian extensions of general totally real fields F [Das08]. Recently, the remark-

able work of Dasgupta and Kakde confirmed this conjecture; more precisely, they proved

that their resulting objects are precisely the p-units satisfying the conjectures of Gross-Stark

and Brumer-Stark [DK23] [DKSW23]. This furnishes a complete p-adic analytic solution to

Hilbert’s twelfth problem for totally real fields.

The first steps of a program towards a “modular” framework for understanding these con-

structions, more closely analogous to the classical theory of modular units, appeared in the

work of Darmon, Pozzi, and Vonk [DPV21], who constructed analogs of modular functions

which can be evaluated at real quadratic points in the p-adic upper half-plane Hp. In fact,

their construction produces what they term a rigid analytic cohomology class in

H1(SLn(Z[1/p]),A×/pZ),

for which a structure theory was developed in [DV21]; here, A× := O×
Hp

denotes the invertible

rigid analytic functions. The evaluation of these classes involves a specialization and cap

product in addition to the usual evaluation of functions. They then expressed the original

construction of [DD06] as the value of a rigid class in [DPV], and gave a new proof of the

conjecture of [DD06] in this setting.

More broadly, one hopes and expects that the setting of rigid analytic classes/cocycles

for p-arithmetic groups will give a conceptual geometric framework for understanding p-adic

limiting constructions in arithmetic in general, beyond the case of SL2. In this paper, for any

positive integer n we construct a rigid analytic “Eisenstein” class in

Hn−1(SLn(Z[1/p]),A×/pZ),

where now we write A× = O×
Xp

for Xp Drinfeld’s p-adic symmetric domain for SLn, general-

izing Hp in the case n = 2. (We always work with one fixed n at a time, so do not decorate

our notation for A× with n.) We then study its values at points attached to totally real

fields where p is inert; we will show that the norms of these units agree with the norms of

Gross-Stark units. We conjecture that the values are in fact Gross–Stark units without taking

norms, and provide some theoretical evidence, including a proof of some cases when F/Q is

Galois using the recently-proved Brumer–Stark conjecture. (In forthcoming work, by compar-

ing formulas with the seminal work of [DK23] and [DKSW23] this conjecture, we will prove

this conjecture.) Our classes therefore continue the program of establishing the arithmetic

significance of rigid analytic classes, showing they give a “p-modular” or “p-automorphic”

answer to (a portion of) Hilbert’s twelfth problem for totally real fields.

The key ingredients in our construction are the Eisenstein class of a torus bundle of Berg-

eron, Charollois and Garćıa [BCG20] that replaces the role of the modular units in [DD06] and

[DPV], which we study from the point of view of singular cohomology and via a symbol-based

approach, inspired by the circular chains symbol complex used in [SV24, §5].
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This article is a continuation of [RX25], where we produced a class in

Hn−1(SLn(Z),AL),

by purely topological methods, where AL denotes the log-rigid analytic functions on Xp, i.e.

functions which are the composition of invertible rigid analytic functions with the Iwasawa

logarithm. This class should be1 the restriction to SLn(Z) of the logarithm of our p-arithmetic

class; consequently, in loc. cit., we showed its specializations are closely related to p-adic

logarithms of Gross–Stark units. The contribution of the present article can be viewed as

refining this purely topological construction in several ways:

• We provide a means of finding explicit cocycle representatives symbolically.

• We obtain canonical cohomology classes valued in mass-zero measures with integer

coefficients.

• We are able to construct cocycles for p-arithmetic (or even S-arithmetic) groups, and

not just arithmetic ones, fully generalizing the original construction of [DPV].

Though we view this article as a refinement of [RX25], we do not prove that the “big”

cohomology classes we obtain actually refine the ones in loc. cit.; only that certain families of

their specializations coincide after extending scalars (which is enough for our applications).

We do believe that the “big” classes do also coincide, but this would require the introduction

of additional technical tools; see Remark 3.18.

1.1. Summary of article and methods.

1.1.1. Equivariant and symbolic approaches to Eisenstein cocycles. Denote by T = Rn/Zn an

n-torus. Let Di
T be the space of real valued smooth i-currents on T , i.e. the linear dual of

(compactly supported) smooth (n− i) forms on T . We then have the distributional de Rham

complex

D0
T → D1

T → . . . → Dn
T .

The double complex C•(Γ,D•
T ) computes Γ-equivariant cohomology of T , for a group Γ acting

on T .

In the previous article [RX25], we considered classes

czT (Γ) ∈ Hn−1(T (Γ)− T (Γ)[c],Z[1/c])

in the cohomology of a universal torus bundle with Γ-level structure, determined uniquely by

their residues along T [c] and their invariance under scalar pushforwards [a]∗ for a ∈ Z coprime

to c. These classes correspond to analogous classes we notate

czΓ ∈ Hn−1
Γ (T − T [c],Z[1/c])

in equivariant cohomology, via a standard geometric-equivariant dictionary, and our primary

construction will be to parametrize explicit cocycles representing (refinements of) these classes

using special elements in the double complex C•(Γ,D•
T ).

1See Remark 3.18; we do not actually prove this comparison in this article, but we do prove the analogous
comparison of specializations.
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To accomplish this, we will define a (homologically-indexed) complex of symbols: to sketch

a simplified idea, in degree k ≥ 0, it will generated by sums∑
P

cP [ℓ1, . . . , ℓk]P

where cP ∈ Z are constants, [ℓ1, . . . , ℓk] is an oriented c-unimodular set of lines in Zn, P

ranges over points of (Z/c)n, and the sum must satisfy the condition that the total degree

along each ℓi[c] orbit of a c-torsion point is zero, i.e. for each 1 ≤ i ≤ k:∑
P∈P0+ℓi[c]

cP = 0,

for every P0 ∈ 1
cZ

n/Zn. The differentials are given by the alternating sum of forgetting

each line. In degree zero, with no lines to speak of, we impose only the condition that the

coefficients of all points sum to zero.

In practice, we cannot quite prove the above “naive” complex is exact, only that its homol-

ogy is c-torsion; thus, we will actually use a more technical “Pontryagin/Fourier-dual” varia-

tion of the above construction, which we call cB̃er(n) (and whose precise definition is given in

Section 3.2). The theory of matroids allows us to prove that its homology is supported in de-

gree n, whence we construct the fully exact modification cBer(n) := cB̃er(n)/Hn(cB̃er(n)).

We have a map of complexes

Ber(n)• → Dn−•
T (1)

induced by the map (written in terms of our naive symbols from above)

[ℓ1, . . . , ℓk]P 7→ (−1)k(tP )∗L∗B1(z1)B1(z2) . . . B1(zk),

where L is a matrix whose ith column is given by a generator of the line ℓi, viewed as a map

L : Rk/Zk → Rn/Zn, and tP denotes the translation-by-P map.

To simplify the exposition, suppose that p ≡ 1 mod c. Consider

T [c]− cn{0} ∈ cBer(n)Γ0 .

From there and using the exactness of cBer(n), we produce a class in Hn−1(Γ, cBer(n)n).

Denote by cBp(n) the image of cBer(n)n by the realization map (1). On the other hand, let

cBp(n) be the space of functions of the form∑
P

(−1)kcP (tP )∗L∗B1(z1)B1(z2) . . . B1(zk). (2)

where the cP are as above, but now the pushforward L∗ is viewed as a pushforward on

functions. Using the Q-summation trick of Sczech [Scz93], we show that we have an SLn(Z)-
equivariant isomorphism

cBp(n)
∼−→ cBp(n).

Hence, we obtain a class in Hn−1(Γ, cBp(n)). Using the values of these functions at pr torsion

sections, yields a class

µΓ ∈ Hn−1(Γ,D0(X,Z)).
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The formalism described above is not restricted to Γ which act geometrically on the torus:

p-arithmetic (or even S-arithmetic, though we do not use this) groups also act on the symbol

complexes we consider. Thus, we obtain a refinement:

Theorem 1.1. There exists a class

µ ∈ Hn−1(SLn(Z[1/p]),D0(Qn
p ,Z)(p)),

where D0(Qn
p ,Z[1/p])(p)) denotes the space of p-invariant distributions such that the mass of

X is equal to 0, and whose restriction to the subgroup Γ1(p
r) fixing the open set

(1/pr, 0, . . . , 0) + Zn
p

and then evaluated on this open set yields the corresponding Eisenstein class

v∗r czr ∈ Hn−1(Γ1(p
r),Q)

up to torsion. (See Theorem 3.16 for a more precise statement.)

Now, let F be a totally real field of degree n, with totally positive units UF . Suppose we

have a coordinatization Zn ∼= a for an ideal a ⊂ F , equivariant for an associated embedding

UF ↪→ SLn(Z). As in [RX25, Proposition 6.8], we will show that the restriction of µ to UF

can be used to recover the Deligne–Ribet partial zeta function attached to F and a (Corollary

5.7).

Remark 1.2. There are many prior constructions of closely related “Eisenstein cocycles” in

the literature, among which we highlight [CDG15], [BKL18], [GS24], [BCG20], and [BCG23];

see the review in our prior article [RX25, §1.4] for more details on the relationship between

these constructions and ours. We will also make use of pioneering work of Sczech [Scz93] on

Eisenstein cocycles in the present work. The method of constructing cocycles using symbol

complexes was inspired by the work of Sharifi–Venkatesh [SV24] on Eisenstein cocycles in a

motivic setting. The second author generalized this approach in [Xu24], both in the motivic

as well the differential-forms setting; the current article’s symbols are closely related to the

ones used in that article. In a sequel, we will show the precise relation between our cocycles

and those in [Xu24], which turn out to encode essentially the same information.

1.1.2. Rigid analytic cocycles and their values. Let Xp := Pn−1(Cp) − ∪αHα be Drinfeld’s

p-adic symmetric domain, where α runs over all Qp-rational hyperplanes. It admits an action

of SLn(Q). The points in X = Zn
p − pZn

p , given the equation of a Qp-rational hyperplanes.

This suggests the study of the following function(
Cn
p − ∪αHα

)
× X → C×

p , (τ, x) 7→ τ t · x.

Integrating this function with respect to the variable in X leads to the following lift.

ST : D0(Xp,Z)(p) → A×, λ 7→
(
τ 7→ ×

∫
X
τ t · x dλ

)
, (3)

where we are considering a multiplicative integral in the previous expression. This map is

SLn(Z)-equivariant, and it is SLn(Z[1/p])-equivariant after replacing A× by A×/pZ. We can

then define the desired rigid analytic classes for SLn:



6 MARTI ROSET AND PETER XU

Definition 1.3. Let JE ∈ Hn−1(SLn(Z[1/p]),A×/pZ) be the image of µ by (3).

We are interested in values of this cocycle: again, let F be a totally real field of degree n,

and suppose p is inert in F . Let τ ∈ Fn be such that its coordinates give an oriented Z-basis
of a−1, for a an ideal of OF . Since p is inert, it follows that τ ∈ Xp. Moreover, τ is a special

point in Xp in the sense that its stabilizer in SLn(Q) is isomorphic to the norm 1 elements

of F . In particular, its stabilizer in Γ is a group of rank n− 1. Following a similar recipe to

the case n = 2, we define an evaluation of any J ∈ Hn−1(SLn(Z[1/p]),A×/pZ) at τ ∈ Xp,

which we denote J [τ ] ∈ Cp. From our construction, one readily deduces that JE [τ ] ∈ Fp,

where the evaluation is well-defined by first restricting to O×
F and taking the cap product

with a degree-(n− 1) fundamental class of this rank-(n− 1) (virtually) free abelian group (as

in [DPV]).

We conjecture that these values, as in loc. cit., coincide with the Brumer–Stark units con-

structed by [DK23] in the narrow Hilbert class field H/F ; this is a multiplicative refinement of

the analogous conjecture of [RX25]. Some evidence is provided by the following multiplicative

analogue of [RX25, Theorem 1.6]:

Theorem 1.4. For n ≥ 2, NFp/Qp
JE [τ ] = NFp/Qp

logp(u
σa) in H×/pZ, where

u ∈ OH [1/p]×− ⊗Q

is the Gross–Stark unit given above and σa ∈ Gal (H/F ) is the Frobenius corresponding to a.

Following the same form of argument as [RX25, §7.2], for certain totally real fields, one

can remove the norms from this result and prove the comparison without norms. This is the

multiplicative analogue of [RX25, Theorem 7.7]:

Theorem 1.5. Let F be a cyclic extension of Q and p an inert prime in F , and let τ ∈ Fn

be a modulus corresponding to an ideal a whose class is fixed by Gal(F/Q) in the narrow

class group. Then we have JEis[τ ] = uσa
p in H×/pZ (mod roots of unity), where up is the

Brumer–Stark unit attached to p and σa is as previously.

In forthcoming work, we will explore further the relation between our conjectural formula

and the one proven by Dasgupta–Kakde and collaborators [DK23]. We will also treat the

more general case where p is not inert, which will necessitate considering finer properties of

our cocycles to work at the boundary of the p-adic symmetric space.

1.2. Acknowledgements. We would first and foremost like to thank our advisor Henri Dar-

mon, whose suggestion to generalize the rigid analytic Dedekind–Rademacher cocycle was

the origin of this project. We would also like to thank Nicolas Bergeron and Romyar Sharifi

for their helpful discussions and guidance during the process of finding the correct symbol

complexes. Finally, we would like to thank Pierre Charollois for his invaluable feedback and

comments, as well as Luis Garćıa.

2. Cohomological setup

2.1. Equivariant cohomology via double complexes. We will take a naive approach to

(Borel) equivariant cohomology in this paper. Let G be a discrete group, acting on the left a
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smooth manifold M , and let C•
M be a cohomologically-indexed complex computing the usual

(singular/de Rham) cohomology H•(M) of M , either with integer or real coefficients, with

suitable functorial properties: in practice, the complexes we consider will at minimum be

covariantly functorial for proper maps; i.e. equipped with natural maps

f∗ : C
•+d
Z → C•

M

for a relative dimension-d proper map f : Z → M , but have varying contravariance properties.

However, pullback by an isomorphism ι can always be defined as the pushforward ι∗, so that

group actions can equivalently be viewed covariantly/contravariantly.

Then we define the equivariant cohomology

H•
G(M)

of the G-space M to be the total cohomology of the double complex

C•(G,C•
M )

where G acts by pushforwards on C•
M : in other words, we apply the exact functor C•(G,−)

of taking G-cochains to our cohomology complex.

We will really only use a single “model” for equivariant cohomology in this article, using a

chain complex of smooth currents; however, we write down a slightly more flexible framework

below for potential future uses: suppose we have two such “models” for equivariant cohomol-

ogy, coming from functorial complexes B•
M and C•

M satisfying the above conditions. Then

if there is a natural transformation B•
M → C•

M which is a quasi-isomorphism for each M

(maybe after extension of scalars), then this induces an isomorphism between the associated

equivariant theories as well (after extension of scalars).

This construction has the following properties/extensions:

• Via the action on the coefficients of the cochains, it has the same covariance/contravariance

properties for maps of G-spaces as the original cohomology complex had for maps of

spaces.

• There is a Grothendieck spectral sequence with Cp(Γ, Cq
M ) as its Ep,q

0 term, and E2

page

Ep,q
2 = Hp(G,Hq(M))

where the action of G on Hq(M) is by pushforward.

• If j : Z ↪→ M is a closed G-submanifold of codimension d, with complementary

inclusion i : M − Z ↪→ M , then then the homological mapping cone construction

CZ [−d] −→ CM → C(j)

is such that the natural composition map

CM−Z
i∗−→ CM → C(j)

is a quasi-isomorphism, and thus the distinguished triangle above induces the long

exact localization sequence for (M,Z) in cohomology. Applying the (exact)G-cochains
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functor, this induces equally a long exact localization sequence in G-cohomology

. . . → H i−d
G (Z) → H i

G(M) → H i
G(M − Z) → H i+1−d(Z) → . . .

In cases with good contravariance, there is a direct restriction map CM
i∗−→ CM−Z

completing the distinguished triangle (which then has a natural quasi-isomorphism

to the mapping cone by its universal property), and one may define the localization

sequences without reference to the mapping cone. In general, even without such

contravariance, we can also use the natural maps Cm → C(j) to define contravariant

functoriality of (equivariant) cohomology for open immersions.

• If Mi → M is a G-projective system of immersed submanifolds as i ranges over the

objects of some indexing diagram I, with final structure maps ji : Mi → M , then we

define the ith equivariant cohomology of this pro-system as the cohomology of

lim−→
i

C•(G,C•
Mi

) or lim−→C•(G,C•
ji)

depending on whether we have contravariance functoriality for open immersions. In

either case, we then also have a Grothendieck spectral sequence with second page

Ep,q
2 = Hp(G, lim−→Hq(M•))

by exactness of direct limits and of the cochains functor.

All of these similarly are compatible for a pair of “models” which are naturally quasi-isomorphic.

See the second author’s thesis [Xu23] for more details.

Remark 2.1. The preponderance of pushforward actions is a little unusual for cohomology:

this is because in practice, our complexes will all actually be computing Borel–Moore homol-

ogy. For manifolds, reversing the indices identifies Borel–Moore homology canonically with

cohomology by Poincaré duality, so this is not a very important distinction for us.

2.2. An Eisenstein class in equivariant cohomology. From this section onwards, for

convenience we will write V , or VZ, for the defining representation of GLn(Z), and VR for

VZ ⊗ R for any Z-module R. We define the torus T , as a GLn(Z)-space, as the smooth

quotient VR/VZ; then VZ/c can be naturally be identified with the torsion points T [c], by

viewing Z/c as Z[1/c]/Z. (The earlier notation X can then also be identified with VZp − pVZp ,

for example.)

Let Γ ≤ GLn(Z) be any subgroup. We have the localization sequence associated to the

closed Γ-fixed subspace T [c] ⊂ T

. . . → Hn−1(T ) → Hn−1(T − T [c])
∂−→ H0(T [c]) → Hn(T ) → . . .

Just as in [BCG20, §3], the Γ-equivariant scalar pushforwards [a]∗ for all integers a with

(a, c) = 1 act on this sequence, and in particular act on Hn−1(T ) only by the eigenvalues

a, a2, . . . , an. As explained in [RX25, §2], if c is invertible the coefficients, we can as a result

construct a unique lift of

[T [c]− cn{0}] ∈ H0(T [c])Γ,
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which we call

czΓ ∈ Hn−1
Γ (T − T [c],Z[1/c])

characterized by its invariance by all [a]∗ for a prime to c. This construction is precisely the

analogue of [RX25, §2].
In particular, following the conventions of that previous article, we set Γr ⊂ GLn(Z) to be

the subgroup fixing (1, 0, . . . , 0) ∈ VZ/pr , and vr ∈ T [pr] to be the corresponding point in our

torus. Then we have a pullback

v∗r czΓr ∈ Hn−1
Γr

(∗) ∼= Hn−1(Γr)

which is the same class as v∗r czr of loc. cit., which we showed there is given by taking periods

of a weight-2 level-Γr holomorphic Eisenstein series.

2.3. Equivariant distributional de Rham cohomology. In this section, we introduce the

distributional de Rham complex, which will be our primary model for equivariant cohomology

(with real coefficients).

Write Di
T for the real-valued smooth i-currents on T , i.e. the linear dual of the compactly-

supported smooth (n − i)-forms Ωn−i
T,c . The exterior derivative d : Di

T → Di+1
T is defined as

the graded adjoint of the exterior derivative on forms, via

(dc)(ω) := (−1)deg cc(dω).

With this differential, the currents form a complex

D0
T → D1

T → . . . → Dn
T ,

functorial for flat pullback and finite pushforward, computing the real cohomology of T . There

is a quasi-isomorphism from the usual de Rham complex

υ : Ωi
T → Di

T , ω 7→
(
η 7→

∫
T
(−1)n−iη ∧ ω

)
. (4)

Via this map, we can and will implicitly view smooth forms as currents.

We would like to say that the map υ is a natural isomorphism, but this functoriality

actually fails, because the integral over T depends on its orientation, and so is reversed in

sign by orientation-reversing maps. Consequently, for orientation-reversing maps, the action

on currents can fail to give the correct action on cohomology. For example, on S1, pushforward

by the inverse map [−1]∗ sends the 1-form dz 7→ −dz, as it does for the associated cohomology

class, but if we take the “natural” adjoint action, we have:

[−1]∗(υ(dz))(η) = (υ(dz))([−1]∗η) =

∫
S1

[−1]∗η∧dz =

∫
S1

η(−z) dz =

∫
S1

η(z) dz = (υ(dz))(η)

for a compactly supported smooth 0-form (i.e. function on S1) η, so we see that [−1]∗ actually

fixes the associated current.2

2Philosophically, this is coming from the distinction between Borel-Moore homology and cohomology: the
PoincarÃ© duality identification depends on a choice of orientation.
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This subtlety addressed, we now introduce an important class of currents: associated to

closed oriented submanifolds Z ⊂ T of codimension s, we have a closed current of integration

δZ ∈ Ds
T

defined by

δZ(ω) :=

∫
Z
ω.

In line with our discussion above, reversing the orientation of Z turns δZ into −δ−Z . Further,

a current ω ∈ Dn−1
T having residue C ∈ H0(T [c]) along the residue map

Hn−1(T − T [c],R) → H0(T [c])

is equivalent to dω = δC (where this is interpreted as a suitable linear combination of the

currents of integration along points in the support of C); see for example [Xu23, (3.3)] from

the author’s thesis. In general, [Xu23, §3.2.2] contains more details on the distributional de

Rham complex along with proofs (or references to original proofs).

We note that because compactly supported forms can be pushed forward by arbitrary

smooth maps and pulled back along proper ones, currents have proper pushforward func-

toriality and arbitrary pullback functoriality. Thus, the localization sequence for a relative

dimension-d pair j : Z ↪→ X arises from the distinguished triangle

DZ [d]
j∗−→ DX → DX−Z .

Note that the pushforward of the 0-current 1 under j∗ is simply the current of integration δZ .

More generally, we can think of the pushforward of a function f on Z (viewed as a 0-current)

as a weighted current of integration fδZ .

In particular, we observe that an element ω of the double complex C•(Γ,D•
T ) restricts to a

representative of a class in Hn−1
Γ (T − T [c]) with residue

[T [c]− cn{0}] ∈ H0(T [c])Γ

if and only if the total differential of ω is δT [c] − cnδ0 ∈ C0(Γ,Dn
T ). In particular, if we can

find such a class which is invariant by [a]∗ for a ∈ N(c), it will represent the class

czΓ ∈ Hn−1
Γ (T − T [c],R).

2.4. An equivariant-geometric dictionary. We recall the setup of [RX25]: let Γ ≤ SLn(Z),
such that it acts freely and discontinuously on the symmetric space X for GLn(R). Then we

have a torus bundle over the classifying space BΓ := Γ\X

TΓ := Γ\(X × T ),

and a class in the cohomology of the open

czTΓ
∈ Hn−1(TΓ − TΓ[c],Z[1/c])

characterized by being trace-fixed for prime-to-c isogenies and having residue T [c] − cn{0},
i.e. by a formally identical construction to our class czΓ ∈ Hn−1

Γ (T − T [c],Z[1/c]). We wish
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to compare this construction with our equivariant class

czΓ ∈ Hn−1
Γ (T − T [c],Z[1/c]),

after extending scalars to R. Indeed, for any oriented manifold M with Γ-action, we have the

chain of quasi-isomorphisms

Ω•
(M×X)/Γ

I−→ C•(Γ,Ω•
M )

υ∗−→ C•(Γ,D•
M )

where υ is the quasi-isomorphism of de Rham complexes defined previously, and the I is

defined (and proven to be a weak equivalence) in [BCG23, Appendice A]: here, we make use

of the fact that taking geodesic simplices for Γ makes X a smooth model for EΓ, up to finite

order stabilizers (whose contribution to rational cohomology vanishes; e.g., by passing to a

finite index torsion-free subgroup and taking norms).

Proposition 2.2. For any oriented G-manifold M , the above zigzag induces natural isomor-

phisms

H i
Γ(M,R) ∼= H i((M ×X)/Γ,R).

Since the formal properties characterizing them in cohomology are identical, we can imme-

diately deduce the corollary:

Corollary 2.3. Under the isomorphism of the preceding proposition, the class czTΓ
is identified

with czΓ after extending scalars to R (and therefore also after extending scalars to Q, by

flatness).

2.5. Trace-fixed parts of the distributional de Rham complex. We now will need the

following codification of our previously-used notions of being fixed under various pushforward

isogenies [a]∗: fix an auxiliary integer c > 1 which we omit from the notation, and let M be

a module for the monoid N×, i.e. a module with commuting actions of [a] for a ∈ N(c) such

that [a][b] = [ab]. We write M (0) for the submodule of M on which [a] = 1 for all a ∈ N(c).

In particular, via the pushforward action, spaces of currents on T all have an action of N×.

The aim of this section is to prove the following proposition:

Proposition 2.4. The subcomplex of the distributional de Rham complex of T

(D0
T )

(0) → (D1
T )

(0) → . . . → (Dn
T )

(0) (5)

is exact except for at the final place, where it has cohomology R, realized by the map

(Dn
T )

(0) → R, ω 7→ ω(1T )

where 1T is the constant function on T .

Let us describe the strategy for the proof: we will find idempotent projection maps

ϕi : Di
T → (Di

T )
(0) (6)

intertwining the differentials and thus giving a map of complexes. We therefore obtain maps

on cohomology

H i((D•
T )

(0)) → H i(D•
T )

(0) (ϕi)∗−−−→ H i((D•
T )

(0))
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with the first map induced by the natural inclusion of complexes, such that the composition

is the identity. We conclude that the first map is an injection. However,

H i(D•
T )

(0) ∼= H i(T,R)(0)

vanishes except when i = n [BCG20, §3], in which case it is spanned by the class of the volume

form dz1∧ . . .∧dzn (viewed as a current via the inclusion of smooth forms). Since this volume

form is fixed by [a]∗ for all a ∈ N, the result follows.

To construct the projections ϕi, we will use Fourier analysis. Under the description

T = VR/VZ, write z1, z2, . . . , zn for the standard coordinates on VR = Rn, so that VZ-periodic

functions (forms, etc.) in the zi yield functions on the torus. Then define the Fourier coeffi-

cients of a distribution ω ∈ Dn
T by

ak1,...,kn(ω) := ω(exp(2πi(k1, . . . , kn) · (z1, . . . , zn)).

for (k1, . . . , kn) ∈ VZ; this extends the definition of the Fourier coefficients of a function.

We have the following characterization [RT10, §3.1] of smooth distributions on the torus:

Proposition 2.5. The Fourier transform

FT : ω 7→ ((k1, . . . , kn) 7→ ak1,...,kn(ω))

defines an isomorphism

Dn
T → S ′(VZ)

where S ′(VZ) is the set of tempered, or slowly-increasing, functions on VZ; i.e, functions with

at most polynomial growth at infinity.

Recall, by contrast, that smooth functions map onto rapidly-decreasing functions on VZ, i.e.

functions decaying faster than the inverse of any polynomial. Note that the standard definition

of the Fourier series of a function is consistent with the definition for its corresponding current.

Example 2.6. For an example of the Fourier transform of a current which is not a smooth

function, the Fourier transform of the current of integration at the identity δ0 is the constant

function 1, since every character of the torus takes the value 1 at the identity. Similarly,

Fourier transforms of currents of integration on a subtorus embedded as a subgroup will have

all 1s along some corresponding linear subspace of Zn (corresponding to the subgroup of

characters vanishing on that torus) and 0 otherwise.

We can extend this result to currents of arbitrary degree, generalizing how one can take

Fourier series of differential forms of arbitrary degree on T by writing them as linear combi-

nations of the basis elements dzi:

Corollary 2.7. Define the Fourier transform

FT : ω 7→ ([(k1, . . . , kn), dzI ] 7→ ω(exp(2πi(k1, . . . , kn) · (z1, . . . , zn)) dzI)) ,

where I ⊂ {1, 2, . . . , n} is a subset of cardinality n− i, and

dzI :=
∧
i∈I

dzi ∈ Ωn−i
T .
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Then FT yields an isomorphism

Di
T → S ′(VZ)⊗

(
n−i∧

Lie(VR)
∨

)∨

.

For endomorphisms γ : T → T with γ ∈ Mn(Z) ∩GLn(Q), one can check that the natural

(non-square bracket) endomorphism γ∗ of currents corresponds to the pullback action γ∗ on

S ′(Zn) and the natural action γ∗ on the Lie algebra.

One can compute that under the identifications given by the Fourier transform, the ith

differential in the distributional de Rham complex is given by the map

S ′(VZ)⊗

(
n−i∧

Lie(VR)
∨

)∨

→ S ′(VZ)⊗

(
n−i−1∧

Lie(VR)
∨

)∨

(7)

sending

φ⊗ ∂zI 7→ 2πi
n∑

i=1

(−1)sgn(I,i)(∂iφ)⊗ ∂zI\{i} (8)

where here ∂zI is the dual basis element to dzI , dzI\{i} is to be interpreted as zero if i ̸∈ I,

sgn(I, i) is +1 if the ordinal place of i inside I (under the usual ordering of integers) is odd

and −1 if even, and

∂iφ := ((k1, . . . , kn) 7→ kiφ(k1, . . . , kn))

Another important computation is the fact that the pushforward on i-currents [a]∗ sends

φ⊗ ∂zI 7→ an−i([a]∗φ)⊗ ∂zI . (9)

This applies for all a ∈ Z, not just a ∈ N.

Proof of Proposition 2.4. We now turn to the construction of ϕi on the level of the Fourier

transforms. Write P ⊂ Zn for the set of c-primitive vectors such that their greatest common

denominator is divisible only by primes dividing c; for any vector

k ∈ VZ \ {(0, . . . , 0)},

write P (k) for the unique vector in P dividing k.

We define ϕi by sending

φ⊗ ∂zI 7→ φ′ ⊗ ∂zI

where φ′ is defined by

k 7→
(

k

P (k)

)i−n

φ(P (k))

for k ̸= (0, . . . , 0), and sending (0, . . . , 0) 7→ ϕ(0, . . . , 0) if i = n and (0, . . . , 0) 7→ 0 otherwise.

From the formula (9), one immediately sees that the image of ϕi is fixed by [a]∗ for all a ∈ N(c).

From (8), it is also a short computation to verify ϕi commutes with the exterior derivative.

Proposition 2.4 therefore follows. □

Remark 2.8. By picking larger and larger c, one can assemble the results of this section into the

result that the distributional de Rham complex is exact even if one passes to the subcomplex

of elements invariant under all but finitely many [a] ∈ N, which is a nicer formulation since
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it does not depend on the auxiliary c. For our purposes, taking some fixed c suffices, so we

omit this extra argument.

2.6. Some equivariant algebra. Let us now describe the upshot of Proposition 2.4. We

have the exact complex

(D0
T )

(0) → (D1
T )

(0) → . . . → (Dn
T,0)

(0), (10)

where (Dn
T,0)

(0) is defined as the kernel of its natural map to R. since [a]∗ acts trivially for

all a ∈ N(c), this complex has an action by pushforward of not just GLn(Z), but even of

GLn(Z(c)), a necessary extension for our desired p-arithmetic applications. This allows us

to construct (n − 1)-cocycles for this latter group, by the following lemma from homological

algebra:

Lemma 2.9. If a group G acts on an exact complex C• supported in degrees [0, n], then we

have a natural map on cohomology

CG
0 → Hn−1(G,Cn)

inhomogenous cocycle representatives of which can be constructed as follows: associated to

e ∈ CG
0 , pick a lift c1 of e to C1, and consider the 1-cochain

γ 7→ (γ − 1)c1 ∈ C1(G,C1).

By exactness, this is the boundary of an element c2 ∈ C1(G,C2); we take the chain coboundary

∂c2 ∈ C2(G,C2) which again lifts to c3 ∈ C2(G,C3), etc. The lift cn ∈ Cn−1(G,Cn) is a

cocycle representing the image of e in Hn−1(G,Cn).

Proof. See [Xu24, Lemma 2.5]. □

Suppose Γ ⊂ GLn(Z(c)) fixes the c-torsion cycle T [c]−cn{0} of degree zero, with associated

current of integration δT [c] − cnδ0 ∈ (Dn
T,0)

(0). We deduce an element Z(c)
Γ as its image under

the map (
(Dn

T,0)
(0)
)Γ

→ Hn−1(Γ, (D0
T )

(0))

of the above lemma; further, if we can find suitable lifts in the trace-fixed complex, we would

be able to find cocycle representatives for Z(c)
Γ , and in principle be able to explicitly control

their various properties, e.g. rationality/integrality or various relations they satisfy.

As such, this construction will be our primary approach to the construction of Eisenstein

classes in the remainder of this article. However, it is important that we can relate this

construction to the previously constructed Eisenstein classes z
(c)
Γ ; we conclude the section by

showing this is indeed the case: for Γ ⊂ GLn(Z), the lifting process described in Lemma 2.9

associated to

e = δT [c] − cnδ0 ∈ (Dn
T,0)

(0)

produces elements

ci ∈ Ci−1(Γ, (Dn−i
T )(0))

for i = 1, 2, . . . , n.
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Proposition 2.10. In the setting described above, the sum

c1 + . . .+ cn ∈ C•(Γ,D•
T )

is a representative for the equivariant Eisenstein class czΓ ∈ Hn−1
Γ (T − T [c]).

Proof. Restricted to T − T [c], the element c1 + . . . + cn is an element closed under the total

differential, hence representing an equivariant cohomology class. Further, it is a trace-fixed

class which is the restriction of a class from C•(Γ,D•
T ) whose total differential there is δT [c] −

cnδ0, and these two properties characterize the cohomology class czΓ. □

We would like relate the group cohomology class [cn] to the equivariant cohomology class

z
(c)
Γ in a purely algebraic way. Consider the Hochschild-Serre spectral sequence

Hp(G,Hq(X)) ⇒ Hp+q
G (X)

for a group G acting on a space X. Note that if the G-equivariant cohomology of X is defined

by the double complex C•(G,D•
X), then the above spectral sequence is precisely the spectral

sequence of this double complex.

We apply this to our setting G = Γ and X = T as follows: suppose we have some lifts

c1, c2, . . . , cn as in Lemma 2.9 such that each ci is a closed current upon restriction to some

acyclic Γ-subspace U ⊂ T (or Γ-projective system of subspaces, as the case may be). For this

U there then exists a generalized edge map

EU : Hn−1
Γ (U) → Hn−1(Γ, H0(U))

since U has no higher cohomology, e.g. as constructed in [BCG23, Annexe A.3].3 From that

construction, we see that if some equivariant class c ∈ Hn−1
Γ (U) is represented by∑

i+j=n−1

ωi,j ∈
⊕

i+j=n−1

Ci(Dj
U )

such that each component of ω•,• is closed under the de Rham differential on U , then the

image EU (c) is represented by [ωn−1,0] (and in particular independent of choices).

Lemma 2.11. Suppose, in the context of the discussion following Lemma 2.9, that the lifts

ci for 1 ≤ i ≤ n are all closed under the de Rham differential after restriction to some

U → T − T [c]. Then viewed as a cocycle valued in H0(U), cn represents the image of the

restriction of czΓ under EU .

Proof. By Proposition 2.10, c1+ . . .+ cn represents z
(c)
Γ in C•(SLn(Z[1/p])D•

T−T [c]). Then the

result follows by the preceding discussion. □

We will find such suitable lifts c1, . . . , cn using complexes of symbols which map to the

distributional de Rham complex, in the context of the equivariant Eisenstein class. The

resulting formula for cn will then give explicit representatives of the Eisenstein classes in

group cohomology, by the preceding discussion.

3There, the edge map is constructed specifically for the double complex of simplicial differential forms, but
it is easy to see the construction is formal and applies to any first quadrant cohomologically indexed double
complex with vanishing in some right half-plane.
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3. Symbol construction of cocycles valued in locally constant functions

3.1. Bernoulli polynomials and their locally constant stabilizations. We now know

that in principle, one can compute Eisenstein classes by finding suitable lifts inside the trace-

fixed distributional de Rham complex. In particular, if we can find lifts providing a co-

cycle representative cn of cZΓ valued in smooth functions (considered inside the space of

0-distributions) when restricted to some subspace containing Γ-fixed torsion points, we will

be able to evaluate at these points to obtain group cocycles. By [Xu23, Lemma 2.2], these

cocycles will then represent the classical Eisenstein classes of the form v∗r czΓ (for example,

when Γ = Γr = Γ1(p
r)). However, the problem remains of finding candidates for what these

explicit lifts should be: this will be the goal of this section.

The explicit elements in the trace-fixed complex will be built out of the periodic weight-1

Bernoulli polynomial

B1(z) := {z} − 1

2
where {z} is the fractional part of z, i.e. its unique representative in [0, 1) modulo 1, for all

z ̸∈ Z. We set the value at all integers n to be B1(n) = 0.

Clearly, this function is not smooth, or even continuous; its graph is in the shape of a

sawtooth, with a two-sided jump discontinuity at every integer. However, it has two good

properties: it is periodic, meaning it can be considered as a function on the circle, and as a

function on the circle it satisfies the distribution property [a]∗B1(z) = B1(z) for all a ∈ N.
Despite not being smooth as a function, B1(z) can be considered as a 0-current on the

circle, in the sense that it yields a well-defined functional

α 7→
∫
S1

B1(z)α

on smooth 1-forms α on S1. Considered as a current, we have that

dB1 = dz − δ0,

which can be verified by their Fourier series as in Example 2.6, recalling that δ0 is the current

of integration at the identity section.

We want to work with not the Bernoulli polynomial itself, but instead stabilized versions:

associated to a degree-zero torsion cycle

C =
∑

x∈S1[c]

axx ∈ Z{S1[c]}deg=0,

we define

B1[C](z) :=
∑

x∈S1[c]

−axB1(z − x).

Considered as a function on the complement of its discontinuity set, B1[C] is now locally

constant, and it is easy to see that its values are in 1
cZ. Considered as a current we find that

dB1[C] = δC =
∑

x∈S1[c]

axδx.

Further, we have the following distribution property:
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Lemma 3.1. For all a ∈ Z(c), we have the distribution property

[a]∗B1[C] = B1[[a]∗C]

where [a]∗ is the pushforward of 0-currents. The same holds for the pushforward of functions

for a > 0, and with reversed signs for a < 0.

Proof. It suffices to prove the statement for a ∈ N(c) (where we can treat it as the pushforward

of functions) and for a = −1 separately.

For a > 0, we have

([a]∗B1[C])(z) =
∑

y∈S1[a]

∑
x∈S1[c]

−axB1

(z
a
+ y − x

)
(11)

=
∑

y∈S1[a]

∑
x∈S1[c]

−axB1

(
z − ax

a
+ y

)
(12)

=
∑

x∈S1[c]

−ax([a]∗B1)(z − ax) (13)

=
∑

x∈S1[c]

−axB1(z − ax) (14)

= B1[[a]∗C]. (15)

For a = −1, we have for any smooth test 1-form η = f(z) dz that

([−1]∗B1[C])(η) = B1[C](−f(−z) dz) (16)

= −
∫
S1

∑
x∈S1[c]

−axf(−z)B1(z − x) dz (17)

= −
∫
S1

f(z)
∑

x∈S1[c]

−axB1(−z − x) dz (18)

=

∫
S1

f(z)
∑

x∈S1[c]

−axB1(z + x) dz (19)

= (B1[[−1]∗C])(η) (20)

where the second-to-last step follows from {y} = 1 − {−y} for all y ∈ R, together with the

constant terms 1 cancelling out since
∑

ax = 0.

□

We now pass from S1 back to the n-torus T , where we need to consider more general

combinations of Bernoulli currents. For a concrete example, given an integral linear form

L(z1, . . . , zn), we have on T a function-qua-current B1[C](L(z1, . . . , zn)) with

dB1[C](L(z1, . . . , zn)) = δL−1C ,

where L is interpreted as a map T → S1 (i.e. a map Rn/Zn → R/Z) and C is a degree-

zero c-torsion cycle on S1. The opposite functoriality will be more relevant for our purposes:

if M : T → T is an invertible (over Q) linear transformation, then we can also take the
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pushforward

M∗B1[C1](z1)B1[C2](z2) . . . B1[Cn](zn),

which will have differential

M∗

n∑
i=1

(−1)iB1[C1](z1)B1[C2](z2) . . . ̂B1[Cn](zn) . . . B1[Cn](zn)((−1)iδzi=Ci + deg Ci dzi) (21)

where

C = C1 ⊠ . . .⊠ Cn ∈ Z[T [c]] ∼= Z[S1[c]]⊗ . . .⊗ Z[S1[c]]

and we use δzi=Ci to mean the weighted sum of the currents over the values in the cycle Ci,
with weights the associated coefficients.

The currents we will consider for the lifts in (10) will be exactly pushforwards by products

of B1’s as above, though we will also consider pushforwards from subtori (whose associated

currents will then be supported on that subtorus). The derivative of such a current will be

another current of this form, as these derivatives yield currents of integration along subgroup

tori translated by c-torsion points, which is also the result of pushforwards from subtori.

In general, we will think of these objects as currents, rather than functions. Note that

because the discontinuity locus is of measure zero, the values of these functions on this locus

cannot a priori be recovered from the corresponding currents. However, it will be important

later that when we restrict to a certain subspace of combinations of these currents, these “bad

values” on the discontinuity locus will turn out to be recoverable; see Lemma 5.3.

We end the section by extending our trace-equivariance result to the more general products

of Bernoulli functions:

Proposition 3.2. For any a ∈ Z\{0},

[a]∗B1[C1](z1) . . . B1[Cn](zn) = B1[[a]∗C1](z1) . . . B1[[a]∗Cn](zn) ∈ D0
T

as currents, where Ci, 1 ≤ i ≤ n, are degree-zero torsion cycles on S1. As functions, this

remains true except when n is odd and a < 0, in which case this is wrong by a sign.

Proof. This is basically is an immediate consequence of the 1-dimensional case, since we have

that

[a]∗B1[C1](z1) . . . B1[Cn](zn) =
∑

az′•=z

B1[C1](z′1) . . . B1[Cn](z′n) (22)

=

n∏
i=1

∑
az′i=zi

B1[Ci](z′i) (23)

=

n∏
i=1

B1[[a]∗C1](zi). (24)

□

Notice that for any k, j ∈ N and “linear“ map L : (S1)k → (S1)j , i.e. a map induced by a

linear map Zk → Zj , [a] commutes with L. Hence similar equivariance results also hold for

the pushforward by L of any current of the form B1[C1](z1) . . . B1[Cn](zn).
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3.2. Matroid symbol complexes. To understand these elements, we will parameterize

them with with a complex of symbols defined using linear-algebraic data.

In this subsection we construct this complex; in the next, we will define the GLn(Z(c))-

equivariant realization map to (10) valued in products of stabilized B1’s and currents of

integration as mentioned above.

The idea for us is that any product of Bernoulli polynomials like B1(z1)B1(z2) (or one

of its GL2(Q)-translates) can be associated to a decomposition of T into S1-“lines”. The

non-smooth loci of the B1s are exactly on codimension-1 embedded subtori (e.g. in this case

z1 = 0 and z2 = 0), which become currents of integration upon differentiating. Thus, the

exterior derivative of such a product essentially comes from an alternating sum of restrictions

to each of these “hyperplanes” in turn, i.e, an alternating sum of forgetting each of the lines in

turn. This suggests that a combinatorially-defined complex capturing the notion of “k-sets of

independent lines in T” with its (k− 1)-simplices could be used to parameterize our products

of Bernoulli polynomials.

Unfortunately, the above story is not exactly true, as there are additional terms (coming

from forms like dz1 and dz2) in addition to the currents of integration along “hyperplane”

subtori, because the Bernoulli polynomials are not locally constant. However, the stabilized

versions B1[C] are constant outside of their discontinuity loci, so the dzi terms cancel in their

(current-wise) derivatives and leave behind only the currents of integration. However, these

currents of integration are along not just embedded subtori through the identity, but also

their c-torsion translates.

With this rough framework in mind, we turn to the definition of the complexes necessary

to capture the c-stabilized products of Bernoulli polynomials: recall that a matroid is a

combinatorial structure abstracting the notion of linear independence:

Definition 3.3. A matroid is a set M and a collection E ⊂ P(M) of finite subsets of M (i.e.

elements of the power set P(M)), called independent sets, satisfying the properties:

• There is at least one independent set.

• If s ∈ E is independent, every subset of s is as well.

• (augmentation property) If s and t are in E and |t|> |s|, then there exists an element

m ∈ t such that s ∪ {m} ∈ E.

The independence complex IC(M) of a matroid (M,E) is the simplicial complex with

vertex set M such that there is a unique simplex with vertex set s for each s ∈ E. A matroid

with maximal independent set of size r has independence complex homotopy equivalent to a

wedge of (r−1)-spheres [Bjo90]; r is called the rank of the matrix. As one sees here, we often

leave the collection of independent sets implicit in the notation, since we will rarely consider

different matroids on the same base set.

Write V̌Z/c for the Pontryagin dual of VZ/c. It can be identified GLn(Z)-equivariantly (for

the usual right pullback action on both) with the Z/c-linear dual V ∨
Z/c via the map

V ∨
Z/c → V̌Z/c, φ 7→ (v 7→ exp(2πiφ(v)/c))

We will henceforth implicitly make this identification.
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For each χ ∈ V̌Z/c \ {1}, we define (M [χ], E[χ]) to be the matroid of lines in VZ/c (with

the obvious independence condition) such that the corresponding hyperplanes in V ∨
Z/c do not

pass through χ. We will informally say that these lines “avoid” χ for brevity, even though it

is technically their corresponding dual hyperplanes which literally avoid the point in the dual

space corresponding to χ.

Let C•(M [χ]) be the reduced simplicial homology complex of IC(M [χ]); by the previously-

cited theorem of Bjorn, it is acyclic outisde degree n− 1.

We define also the free complexes FV and FV/c to be the reduced homology complexes of the

full combinatorial simplicial complexes on the set of lines in V ,4 respectively VZ/c. These are

exact by the principle of inclusion-exclusion (or because combinatorial simplicial complexes

are contractible).

Define now a complex cB̃er(n)• via the GLn(Z(c))-equivariant pullback diagram

cB̃er(n)[−1]•
⊕

χC•(M [χ])

⊕
χ(FV )•

⊕
χ(FV/c)•

(25)

Here, the direct sums are over all χ ∈ V̌Z/c\{1}, and the group action simultaneously permutes

the χ, via the usual left action χ 7→ χ◦g−1, and acts in the usual way on sets of lines in V . The

right vertical and bottom horizontal arrows are the obvious inclusions given by “forgetting”

the conditions on the lines with respect to linear independence and avoiding χ, respectively

by reduction modulo c.

Proposition 3.4. The homology of cB̃er(n)[−1] is concentrated in degree n − 1; i.e., the

homology of cB̃er(n) is concentrated in degree n.

Proof. The pullback diagram defining cB̃er(n)• leads to a long exact sequence in reduced

homology

. . . → H̃i(cB̃er(n)[−1]•) → H̃i(
⊕
χ

C•(M [χ]))⊕ H̃i(
⊕
χ

(FV )•) → H̃i(
⊕
χ

(FV/c)•) → . . .

from which the result is immediate from the acyclicity of the other three complexes, outside

degree n− 1 in the case of
⊕

C•(M [χ]). □

Our shift was chosen so that the lowest degree is cB̃er(n)0, given by the free module on

V̌Z/c \ {1}. For degrees d > 0, cB̃er(n)d is generated by one copy, for each χ ∈ V̌Z/c \ {1}, of
the free module on c-unimodular sets of lines in V of size d avoiding χ, i.e. sets of lines which

remain independent after reduction modulo c.

3.3. The realization map. We now define a GLn(Z(c))-equivariant realization map, on the

“alternate integral structure” we just constructed.

4That is, the simplicial complex on the prescribed set of vertices such that every (k + 1)-set of vertices forms
a unique simplex.
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Theorem 3.5. There exists a GLn(Z(c))-equivariant morphism of complexes

Ψ̃ : cB̃er(n)• → Dn−•
T

defined by sending

[e1, . . . , ek]χ 7→ (−1)k
∑

zk+1,...,zn∈Z/c

χk+1(zk+1) . . . χn(zn)B1[χ1](z1) . . . Bk[χk](zk)δzk+1=...=zn=0

for the standard basis (e1, . . . , en) and a character

V̌Z/c ∋ χ = χ1 ⊠ . . .⊠ χn,

and extended by GLn(Q)-equivariance.

Proof. First note that the definition is independent of the choices of vectors representing the

lines ℓi, because B1(z) is invariant by scalar pushforwards prime to c and thus the constituent

terms B1(z1)B1(z2) . . . B1(zk) is invariant by diagonal matrices with entries prime to c.

The well-definedness and GLn(Z(c))-equivariance of Ψ̃ is then formal; and commutation

with the differential follows by the earlier computation (21). □

We now discuss the issue of trace-invariance. If we consider the multiplicative monoid of

prime-to-c integers (Z−{0},×)(c) to act on both source and target of Ψ̃ via the corresponding

diagonal matrix, we have seen that Ψ̃ is equivariant for this action. By Proposition 3.2 and the

following discussion, it is then immediate that the target of Ψ̃ is contained in the submodules

(D•
T )

(f), where

(D•
T )

(0) ⊂ (D•
T )

(f) ⊂ D•
T

is defined as the subrepresentation on which (Z − {0},×)(c) acts via the quotient (Z −
{0},×)(c) → (Z/c)×.

The proof of Proposition 2.4 applies with little modification to the trace-finite setting. As

such, we obtain the following modification of the realization map on the exact quotient of our

symbol complex:

Proposition 3.6. The map Ψ̃ factors through cBer(n). We call this map

Ψ : cBer(n)• → (Dn−•
T )(f).

Proof. This is immediate from Proposition 2.4 and Proposition 3.2. □

Remark 3.7. The realization map Ψ actually also factors through a corresponding Orlik-

Solomon complex defined from our matroids (see [OT92]), which can be proven using the

exactness of (10) in a similar way, though with some additional technicalities. This symbol

complex captures more of the relations between products of Bernoulli polynomials (in fact, all

such relations), but we saw no benefit to proving this for the purposes of the present article.

One can observe that these relations are c-stabilized version of the classical “reciprocity laws”

for higher Dedekind(-Rademacher) sums.

3.4. Integral cocycles representing the Eisenstein class. We now come to the main

construction: let Γ ≤ GLn(Z(c)) be a subgroup, and suppose we have a Γ-fixed c-torsion cycle

C ∈ cBer(n)0 = Z[ζc]{T [c]}deg=0.
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In particular, we will take

C = T [c]− cn{0} = −
∑

χ,

where the sum is over all nontrivial characters χ of V̌Z/c. This cycle is valid for any subgroup

of GL+
n (Z(c)); however, all of the following would work for more general torsion cycles.

Then Lemma 2.9 affords us a cocycle

θ(n)C ∈ Cn−1(SLn(Z[1/p]), cBer(n)n)

which can be pushed forward via Ψ to a cocycle

Ψ∗θ(n)C ∈ Cn−1(Γ, (D0
T )

(f))

valued in products of c-stabilized weight-1 Bernoulli polynomials; these will be locally constant

functions valued in Z[ζc] outside of specified hyperplanes (corresponding to the discontinuities

of the Bernoulli polynomials). To be more specific, the function-qua-0-distribution

L∗B1[χ1](z1) . . . Bn[χn](zn)

on T is locally constant outside of the “hyperplane” (codimension-1) locus

HL := L∗

(⋃
a

[
n⋃

i=1

{zi = a/c}

])
,

and its values on each connected component is an element of Z[ζc].
We can therefore interpret the values of Ψ∗θC as belonging to

H0(T −H,
1

cn
Z[ζc]) := lim−→

S⊂H

H0(T − S,
1

cn
Z[ζc])

where

H :=
⋃
L

HL

is the union of all the hyperplanes as L varies over GLn(Z(c)), and S varies over finite subar-

rangements of these hyperplanes. (Here, we use the definition of equivariant cohomology of a

pro-system of open immersions we defined previously.)

This perspective leads to the following important comparison result, justifying the relation

of all our symbol constructions to Eisenstein classes:

Theorem 3.8. If Γ is a subgroup of GLn(Z), then the cocycle Ψ∗θ(n)C , interpreted as being

a cocycle valued in H0(T −H,Z[ζc]), is a c-integral representative for the image of the class

czΓ under the edge map

Hn−1
Γ (T −H,R) → Hn−1(Γ, H0(T −H,R)).

Proof. As in the discussion following Lemma 2.9, take ℓ1, . . . , ℓn to be the lifts obtained by

applying that lemma to the complex cB̃er(n). Then as in Proposition 2.10, the sum of lifts

Ψ(ℓ1) + . . . + Ψ(ℓn) represents the class zCΓ. Further, each Ψ(ℓi) is by construction de Rham

closed upon restriction to T −H since its locus of non-constancy is only along the hyperplanes

H, so the claimed result then follows from Lemma 2.11. □
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Example 3.9. Let us spell out how the lifting process yields a cocycle in the simplest inter-

esting case, when n = 2 (so T = (S1)2) and c = 2.

We will write (a, b) for a, b ∈ Z/2 for points in T [2], χx,y for the character in T̂ [2] sending

(a, b) 7→ exp(πi(ax+ by)) for x, y ∈ Z/2, and [m : n] for the corresponding line in P1(Q). We

will denote generators of 2Ber(2)i by

(ℓ1, ℓ2;P )

where ℓ1, ℓ2 ∈ P1(Q) and P ∈ T̂ [2] (subject to some avoidance condition).

In this case, the GL2(Z(2))-fixed 2-torsion cycle T [2] − 4{0} can be written as the sum of

characters

−χ1,0 − χ0,1 − χ1,1 ∈ 2Ber(2)0.

There are many possible choices of lift to 2Ber(2)1, but a nice one might be

η := −([1 : 0], χ1,0)− ([1 : 1], χ0,1)− ([0 : 1], χ1,1) ∈ 2Ber(2)0.

Notice in particular that, for example, the hyperplane in T̂ [2] ∼= (T [2])∨ corresponding to the

line [1 : 0] is span(χ0,1), which does not contain the point χ1,0, and similarly for the other

pairs.

Then if

γ =

(
a b

c d

)
∈ GL2(Z(2))

is a matrix, we need then to find the lift to 2Ber(2)2 of

(γ − 1)η = ([1 : 0];χ1,0) + ([1 : 1];χ0,1) + ([0 : 1];χ1,1)

−([a : c];χa,b)− ([a+ b : c+ d];χc,d)− ([b : d];χa+c,b+d)
(26)

Note by invertibility modulo 2 of γ that the triple (a, b), (c, d), (a+ c, b+ d) must be a permu-

tation of (1, 0), (0, 1), (1, 1). We can thus pair the lines which have the same corresponding

character. If each of these pairs of lines are 2-unimodular, then the lift is easy to find: for

example, for

γ =

(
0 1

−1 0

)
,

we get

(γ − 1)η = ([1 : 0];χ1,0) + ([1 : 1];χ0,1) + ([0 : 1];χ1,1)

−([0 : 1];χ0,1)− ([1 : −1];χ1,0)− ([1 : 0];χ1,1)
(27)

which has lift

([1 : −1], [1 : 0];χ1,0) + ([0 : 1], [1 : 1];χ0,1) + ([1 : 0], [0 : 1];χ1,1).

The realization of this cocycle as a locally constant function is then

B1[χ](z1)B1[χ](z2) +

(
1 1

−1 0

)
∗

B1[χ](z1)B1[1](z2) +

(
0 1

1 1

)
∗

B1[χ](z1)B1[1](z2)



24 MARTI ROSET AND PETER XU

where here B1[χ](z) means the stabilization B1(z−1/2)−B1(z) corresponding to the 2-torsion

cycle (0) − (1/2) and B1[1](z) = −B1(z) − B1(z − 1/2) is the stabilization corresponding to

(0) + (1/2).

In the case when the pairs of lines resulting from the γ-action are not 2-unimodular, things

become more complicated; one must “connect” the resulting pairs of lines by intermediary

lines such that adjacent pairs are 2-unimodular, similar to the “connecting sequences” of

[SV24] (though with somewhat more complicated conditions than are considered there). This

is always possible by a geometry of numbers argument similar to that given in [AR79], but we

do not go into the details here, since we have no need to write out general explicit formulas

in the present article. Notice that our formalism hides all of this behind the exactness of

2Ber(2), proven by general topological considerations about matroids.

To conclude this section, we will also need a variant of all these constructions “with level

structure,” for technical reasons relating to the cohomological interpretation of pullbacks. As

such, we must reiterate everything preceding, with slight modifications.

Fix any prime p; eventually, we will take (c, p) = 1, but this is not actually necessary for

what follows. Now suppose

Γ ⊂ Γ0(p) := Stab([0 : . . . : 0 : 1] ∈ P(VZ/p)) ⊂ GLn(Z).

Then we have a Γ-equivariant pullback diagram of complexes, analogous to and building upon

(25):

cB̃er
(p)

(n)[−1]• cB̃er(n)[−1]•

⊕
χC•(M

(K))
⊕

χ(FV/p)•

(28)

where M (K) denotes the matroid of sets of independent sets of lines in VZ/p which (n−1)-avoid

the line K = [0 : . . . : 0 : 1] ∈ VZ/p: i.e. consisting of sets of lines which have no cardinality

≤ n− 1 subset such that K is in their span.

It is not completely obvious that this forms a matroid:

Lemma 3.10. The subsets of lines in VZ/p described above as M (K) do, in fact, satisfy the

matroid conditions.

Proof. The non-obvious condition is the augmentation property: given two sets with |A|> |B|
of independent lines which (n−1)-avoid K, is there a ∈ A such that {a}∪B also (n−1)-avoids

K?

Write Ã, B̃ for the sets of images of the corresponding lines in VZ/p/K. Then we see that our

desired property is implied by the following assertion: if we have two sets of lines in VZ/p/K

with |Ã|> |B̃| such that both are (n− 1)-independent (i.e. every (n− 1)-set is independent),

then there exists ã ∈ Ã such that {ã} ∪ B̃ is also (n− 1)-independent.

If |Ã|≤ n − 1, this is clear: it is just the usual matroid property for all lines in VZ/p/K.

Otherwise, we reduce to the case |Ã|= n. In this case, we might as well assume |B̃|= n − 1,

since this clearly also implies the property for smaller sets B̃. Then in some coordinates
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on VZ/p/K, B̃ is given by the standard coordinate vectors {(1, 0 . . . , ), . . . , (0, . . . , 0, 1)}. Our

claim then amounts to showing that there exists some vector in Ã with no coordinate equal

to zero.

Suppose for the sake of contradiction that each of the n vectors in Ã had one of their

(n − 1) coordinates equal to zero. By the pigeonhole principle, this implies there are two

vectors with zero in the same coordinate; any (n − 1)-subset containing these two then fails

to be independent, which is a contradiction. □

Corollary 3.11. The complex cB̃er
(p)

(n) has reduced homology concentrated in top degree n.

Proof. As with the diagram (25), this follows immediately from the acyclicity of
⊕

χ(FV/p)•

and the fact that the other two complexes have reduced homology concentrated in degree

n− 1 (which is degree n after the shift). □

Then the restriction of Ψ to cBer(p)(n)n consists of elements of the form

L∗B1[χ1](z1)B1[χ2](z2) . . . B1[χn](zn)

where L is a matrix whose (n − 1)-subsets of columns never span K modulo p. As such, its

differential is supported on hypersurfaces inside T not containing the (nonzero points of) line

of p-torsion corresponding to K, implying that:

Proposition 3.12. If Hp denotes the Γ0(p)-orbit of the hyperplane locus⋃
P

tP

[
n⋃

i=1

{zi = 0}

]

where P ranges over T [c] (and tP is translation by P , as previously), then Ψ(cBer(p)(n)n) is

valued in locally constant functions on T −Hp, hence representing classes in

H0(T −Hp,
1

cn
Z[ζc]) := lim−→

S⊂Hp

H0(T − S,
1

cn
Z[ζc])

where as before the limit is over finite subarrangements contained in Hp. In particular, if

(p, c) = 1, these locally constant functions(-qua-0-distributions) have the property that the

nonzero points of the line K ⊂ T [p] are in the open locus of local constancy.

Proof. By the preceding discussion, the differential of these elements is a sum of currents

supported on the hyperplane locus written above. Thus, if one restricts away from this locus,

we obtain a closed 0-current, which is isomorphic to the space of locally constant functions

by the quasi-isomorphism between the smooth and distributional de Rham complexes. □

Then as with the original construction, we obtain a cocycle

θ(n)
(p)
C ∈ Cn−1(Γ0(p), cBer(p)(n)n)

which can be pushed forward via Ψ to a cocycle

Ψ∗θ(n)
(p)
C ∈ Cn−1(Γ, (D0

T )
(f))
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representing the image of z
(c)
Γ in

Hn−1(Γ0(p), H
0(T −Hp,R)).

Note that the restriction of

Ψ∗θ(n)C ∈ Hn−1(Γ, H0(T −H,
1

cn
Z[ζc]))

to Γ0(p) can be identified with

Ψ∗θ
(p)(n)C ∈ Hn−1(Γ0(p), H

0(T −Hp,
1

cn
Z[ζc])).

Formally, the restriction of this class to the sublocus T −H ⊂ T −Hp recovers Ψ∗θ(n)C .

3.5. Integral cocycles valued in distributions. We now wish to obtain an Eisenstein

class valued in distributions over all p-power torsion. (In fact, we could consider all prime-to-

c torsion, but for our purposes, one prime at a time suffices.)

First, in order for the distribution relations to hold, we need the target of Ψ to be actually

fixed under the trace by the isogeny [p], not just have finite orbit under it. Indeed, if op is the

order of [p] ∈ (Z/c)×, then there exists a projector e[p] ∈ 1
op
Z[(Z/c)×] such that the image of

e[p]Ψ is trace-fixed. (In particular, when p ≡ 1 (mod c), we can take op = 1 and the image of

Ψ is already always [p]∗-fixed. Thus for odd p, we may simply always take c = 2 ⇒ op = 1.)

Let D(VQp , A) denote the distributions (i.e. the linear dual of locally constant functions)

on VQp valued in an abelian group A, with an action of GLn(Qp) given by pushforward.

We also write D(VQp , A)
(0) for the submodule of distributions µ which are [p]-invariant, i.e.

distributions µ so that µ(U) = µ(pU) for any open set U ⊂ VQp . We view the previously-

defined X as embedded in VQp as the open set

X :=
⋃

v∈ 1
p
VZp/VZp
v ̸=0

Uv,

and we write D0(VQp , A) for distributions on which µ(X) = 0, where here Uv := v + Zn
p .

Let cBp(n) := e[p]Ψ(cBer(n)n) ⊂ D0
T , and analogously for the P -avoiding submodule

cB(p)
p (n) := e[p]Ψ(cBer(p)(n)n).

Write cBp(n) for the [p]-invariant submodule of the functions on T generated by functions

of the form

L∗B1[χ1](z1) . . . Bn[χn](zn)

for a c-unimodular matrix L. These are functions continuous on an open locus which is the

complement of codimension-1 subtori.

Lemma 3.13. Considering the functions in cBp(n) as 0-currents by viewing them as kernels

of integration yields a GLn(Z[1/p])-equivariant isomorphism

νB : cBp(n) → cBp(n)(det).

Proof. The injectivity is the only novel statement here. To obtain it, we define an explicit

inverse. The key idea is that given a current ω ∈ cBp(n), it has a corresponding Fourier series
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by Proposition 2.5, which as in that proposition we encode as a tempered function

φ := FT (ω) ∈ S ′(Zn).

Viewed as a literal series ∑
λ∈Zn

φ(λ) exp(2πiλ · z)) (29)

with input variable z = (z1, . . . , zn) ∈ T , φ will rarely be absolutely convergent; we thus cannot

in general assign an unambiguous value to its evaluation at some given z. It is therefore not

obvious how to obtain a function on T .

The workaround is the “Q-summation” method of [Scz93]: one can try to sum series of the

form (29) by ordering the terms by increasing value of |Q(z1, . . . , zn)|, where Q is a nonzero

product of linear forms in z with rationally independent coefficients.5 One denotes the Q-sum

by ∑
λ∈Zn

φ(λ) exp(2πiλ · z))|Q. (30)

We will also write simply φ|Q for short. If this Q-sum converges, then it is clear that for any

γ ∈ SLn(Z) we also have

γ∗(φ|Q) = (γ∗φ)|γ·Q (31)

for the action on Q given in loc. cit. (specifics of this action are immaterial to us). Note also

that Q-summation is additive (on series and Q for which the corresponding Q series converge),

by elementary properties of limits.

From [Scz93, Theorem 2], we have that for the Fourier series φst corresponding to the

current

B1(z1) . . . B1(zn),

the sum (φst|Q)(z) is actually independent of Q for z in the continuity locus (i.e. with no

coordinate zero), and always returns the actual value of the function B1(z1) . . . B1(zn) for these

z. If this were true also for the discontinuity locus, we could move this argument around by

the SLn(Z) action to obtain our equivariant inverse map cBp(n) → cBp(n). However, the

Q-summation in general does have an dependence on Q on the discontinuity loci: in our

language, [Scz93, Theorem 2] states that if we have our product of linear forms

Q(z) =
m∏
i=1

Li · z (32)

with Li = (Li1, . . . , Lin), then the Fourier series for B1(z1) . . . B1(zn), viewed as an element

of S ′(VZ) as in the proof of Proposition 2.4,

φ : (k1, . . . , kn) 7→
1

k1 . . . kn

5Note that the rational independence is necessary for the associated ordering on lattice points to be unam-
biguous, i.e. not have any ties.
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has Q-sum

φ|Q=
1

2m

m∑
i=1

 n∏
j=1

(B1(zj)− [sgn(Lij)/2]) +
n∏

j=1

(B1(zj) + [sgn(Lij)/2])


where the terms in the square brackets are included if and only if the corresponding component

of the input zj is zero.

However, our module cBp(n) only consists of certain c-stabilized Bernoulli currents, for

which these Q-ambiguities cancel out in the corresponding series. In particular, denote the

product of Bernoulli polynomials associated to a symbol [ℓ1, . . . , ℓn]χ by B1[ℓ1, . . . , ℓn;χ], so

that the associated current is precisely Ψ([ℓ1, . . . , ℓn]χ).

By the assumptions on χ, we can write χ = χ1 ⊗ . . . ⊗ χn for some nontrivial characters

χi, 1 ≤ i ≤ n of Z/c, meaning

χ(z1, . . . , zn) = χ1(z1) . . . χn(zn)

for any (z1, . . . , zn) ∈ T [c]. Then for any Q in the form (32), Sczech’s formula says that the

corresponding Fourier series has Q-sum

FT (Ψ([ℓ1, . . . , ℓn]χ))|Q

equal to

1

2m

m∑
i =1

 n∏
j=1

∑
r∈Z/c

χj(r)(B1(zj−r)− [sgn(Lij)/2])+
n∏

j=1

∑
r∈Z/c

χj(r)(B1(zj−r)+[sgn(Lij)/2])


(33)

Since each character χj(r) is nontrivial, we find that within each innermost sum, the terms

in square brackets cancel to zero (when they appear at all). Hence this expression reduces to

simply
n∏

j=1

∑
r∈Z/c

χj(r)B1(zj − r) = B1[e1, . . . , en;χ]. (34)

i.e. the original Bernoulli function associated to the standard basis e1, . . . , en of VZ. In

particular, the Q-sum is independent of Q.

By the equivariance property (31), we can move this argument around by the GLn(Z[1/p])+-
action (recalling all of our functions/currents are invariant by [p]∗) to apply to any generator

B1[ℓ1, . . . , ℓn;χ]: we conclude that all of the corresponding Fourier series Q-converge to limits

independent of Q, equal to the values of the original function, regardless of z lying in any

discontinuity strata.

Therefore, this “independent ofQ”-summation, for any generatorB1[ℓ1, . . . , ℓn;χ] of cBp(n),

sends νB(B1[ℓ1, . . . , ℓn;χ]) back to the function B1[ℓ1, . . . , ℓn;χ] on all of T . The additivity of

Q-summation ensures this inverse is well-defined, since the zero Fourier series obviously maps

to the zero function regardless of Q, so we are done. □

Remark 3.14. The preceding injectivity amounts to saying that no nonzero sum of functions

in cBp(n) can be identically zero outside of its (positive codimension) discontinuity locus,
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since otherwise it would give the zero current. This really does depend on c-stabilization:

it is certainly not true for general functions locally constant on a complement of subtori

arrangements. It is even false for general sums of products of Bernoulli polynomials: for

instance, the function

2(B1(z1)B1(z2)+B1(z2)(B1(−z1−z2))+B1(−z1−z2)B1(z1))+B2(z1)+B2(z2)+B2(−z2−z2)

is identically zero on (S1)2 outside of the identity (where it is equal to 1/6), and therefore

yields the zero current. This lack of injectivity is the reason Q-summation is necessary in

Sczech’s method in the first place.

Note that from an identical proof, the same statement applies also for the restricted map

B(p)
p (n) → B(p)

p (n).

From this lemma, we can deduce the following: write ρ : Z[ζc] → Z for any Z-module map

which splits the inclusion; we will also use the same notation for
1

cn
Z[ζc] →

1

cn
Z, or any

similar obvious variation.6 Then we have:

Proposition 3.15. There is a GL+
n (Z[1/p])-equivariant morphism

φp : cBp(n) → D0(VQp ,
1

opcn
Z)(0)

given by

ω 7→
(
Uv 7→ (ρ)∗x(v)

∗ν−1
B ω

)
where v ∈ VQp is a vector and Uv is the open set v+ VZp, and extended by the [p]-invariance

of the distribution.7 Here, v defines a p-power torsion point x(v) in T [p∞] = VQp/VZp, and

we write x(v)∗ν−1
B ω for the pullback of the function ν−1

B ω ∈ cBp(n).

Proof. The last thing that needs checking is the condition that µ(X) = 0, which amounts to

the assertion that ∑
x∈T [p]\{0}

x∗f = 0

for all f ∈ cBp(n). Observe that ∑
x∈T [p]\{0}

x∗ = 0∗ ◦ ([p]∗ − 1),

so this immediately follows from the fact that cBp(n) consists of [p]-fixed functions. □

3.6. Cohomological comparisons. Fix now (p, c) = 1. We now come to the importance of

defining the variant complex Ber(p)(n) (and the other corresponding constructions), hereto-

fore unused: it enables us to compare our Bernoulli polynomial-valued cocycles with abstract

pullbacks in cohomology.

6The necessity of this map is an unfortunate technical necessity, which has no real significance: the specialization
we will use for interpolation (and indeed, essentially all specializations of interest) will all be integer/rational-
valued, so ρ will act trivially on their extension of scalars. Our need for it is simply an artifact of the fact that
our c-stabilization is encoded via a Pontryagin-Fourier dual.
7Note that though these open sets do not generate a basis on their own, their [p]-translates do, so this uniquely
specifies the measure of every open set.
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Let Γ1(p
r) be the level structure fixing a torsion point xr of order pr, for any r ≥ 0. Then

for the restricted morphism φp : B(p)
p (n) → D0(VQp ,

1

opcn
Z)(0), by Proposition 3.12, we have

the commutative diagram of specializations

H0(T −Hp,
1

opcn
Z) B(p)

p (n) D0(VQp ,
1

opcn
Z)(0)

1
opcn

Z 1
opcn

Z 1
opcn

Z

x∗
r

φp

evxr 1(Ur)
(35)

equivariant for Γ1(p
r), where here Ur is the open set of Zn

p corresponding to xrT [p].

We hence deduce:

Theorem 3.16. If we restrict our distribution-valued cocycle

µ := (φp)∗Ψ∗θ(n)C ∈ Hn−1(GL+
n (Z[1/p]),D0(VQp ,

1

opcn
Z)(0))

to Γ1(p
r) and evaluate at the open set Ur, then with R-coefficients, this coincides with the

sum of pullbacks of the Eisenstein class

(xr)
∗
czΓ1(pr) ∈ Hn−1(Γ1(p

r),Z[1/c])⊗ R

Proof. This essentially follows formally from the fact that pullback by xr commutes with

restriction and the Hochschild-Serre edge map, since we know from Proposition 2.10, Lemma

2.9, Lemma 2.11 that Ψ∗θ(n)C represents the image of czΓ under said edge map after extending

scalars to R, at any level Γ.

The only non-formal thing which needs to be checked is that applying the rationalizing

projector ρ does not change the specialization. Indeed, the cohomological construction of the

Eisenstein class tells us that in fact

x∗rczΓ1(pr) ∈ Hn−1(Γ0(p),R)

is the extension of scalars of a class with Z[1/c] coefficients; thus, it is fixed by ρ. Hence if

1(Ur)∗Ψ∗θ(n)C ∈ Hn−1(Γ0(p),
1

opcn
Z[ζc])

agrees with it after extending coefficients to C, then after applying ρ to both integral cocycles

and extending coefficients to R, the same continues to hold. □

By the equivariant-geometric comparison from Section 2.4, the classes czΓ1(pr) coincide

with the geometric classes czr of [RX25]. (There, the torsion point we call xr is notated as a

torsion section vr.) Thus, the above proposition is enough to write finite-level specializations

of Ψ∗θ(n)C in terms of explicit weight-2 Eisenstein series (cf. [RX25, §2]).
Analogous to [RX25], we also have an independence-of-c result for our distribution-valued

cocycles (which we here decorate µ with, but generally omit from the notation):
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Proposition 3.17. If c and d are prime to p and each other, and the d-torsion cycle D is

defined analogously to C, we have

([c]−1
∗ − cn)µD = ([d]−1

∗ − dn)µC

where [a]∗ means pushforward of distributions along the multiplication-by-a map (which is

invertible if (a, p) = 1).

Proof. By working in the cd-stabilized complex cdBer(n)•, this follows formally from the fact

that

([c]∗ − cn)D = ([d]∗ − dn)C = ([c]∗ − cn)([d]∗ − dn){0}

and the easily checkable [c]∗ and [d]∗-equivariance of Ψ and φp. Note that [c]∗ and [d]∗ on

functions induce [c]−1
∗ and [d]−1

∗ on distributions over their torsion specializations. □

Remark 3.18. This section obtains the same finite-level specializations for our cohomology

class as the classes µ0 considered in [RX25]. However, this does not show they are equal as

distribution-vauled cohomology classes, and in fact we do not do so in this article. For such

a comparison, even up to torsion, we would need a model of equivariant cohomology allowing

us to identify µ as the image under edge maps of integral versions of czΓ, which our (real-

coefficients) distributional de Rham complex does not do. We believe this may be achievable

using locally finite cubical chains as a model for Z-coefficients equivariant cohomology (or

equivariant Borel–More homology), but since we are able to recover all the applications of

[RX25] for µ below without such a comparison, we found that it did not merit the extra

technicalities involved.

4. Drinfeld’s p-adic symmetric domain and rigid cocycles

Let Xp be Drinfeld’s p-adic symmetric domain, namely Xp = Pn−1(Cp) − ∪αHα, where

the union runs over all Qp-rational hyperplanes in Pn−1(Cp). In this section, we introduce

the multiplicative Schneider–Teitelbaum lift ST, which is an SLn(Z[1/p])-equivariant map

from D0(X,Z) to the space A× of invertible functions on Xp, modulo pZ. Then, we use the

distribution valued cocycles of the previous sections to construct cocycles for SLn(Z[1/p])
valued in A×/pZ. Finally, we define the evaluation of these cocycles at totally real fields of

degree n where p is inert, and study properties of these values.

4.1. Schneider–Teitelbaum lift and rigid cocycles. The group SLn(Qp) acts on Pn−1(Cp)

by matrix multiplication and the Qp-rational hyperplanes are preserved by this action. From

there, we define a left action of SLn(Qp) on the space of functions on Xp given as follows. If

g ∈ SLn(Qp), f is a function on Xp, and τ ∈ Xp

(g · f)(τ) := f(gtτ),

Let logp : C×
p → Cp be the p-adic logarithm satisfying logp(p) = 0.

Definition 4.1. For a distribution λ ∈ D0(X,Z), define by ST the function on Xp given by

ST(λ)([τ ]) := ×
∫
X
τ t · x dλ(x).
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for τ ∈ Xp. We will use the notation ST for the map

ST : D0(X,Z) → A×/pZ

whose target is quotiented by pZ, due to its nicer equivariance properties (see below).

Remark 4.2. Consider the same notation as above. Since λ has total mass zero, the integral

defining LST(λ)([τ ]) is independent of the choice of representative of [τ ] ∈ Pn−1(Cp).

Proposition 4.3. The morphism ST is SLn(Z[1/p])-equivariant.

Proof. Our proof is essentially identical to [DPV, §1.4]. Observe that if f is an integrable

function on X and γ ∈ SLn(Z[1/p]), we have the equality

×
∫
X
(γ · f)dµ = ×

∫
γ−1X

fd(γ−1µ). (36)

Furthermore, for any γ, and any p-invariant measure µ, we have

×
∫
γX

τ t · x dµ(x) ≡ ×
∫
X
τ t · x dµ(x) (mod pZ) (37)

because there exist a, b ∈ Z for which

paX ⊆ γX ⊆ pbX,

so one can always find a decomposition into open sets

X = U1 ⊔ . . . ⊔ Ut

for which

γX = pr1U1 ⊔ . . . ⊔ prtUt

for some integers r1, . . . , rt, and then we have

×
∫
priUi

τ t · x dµ(x) ≡ ×
∫
Ui

τ t · x dµ(x) (mod pZ)

for each 1 ≤ i ≤ t.

Now, we proceed to verify the desired equivariance. Let γ ∈ SLn(Z[1/p]), µ ∈ D0(X,Zp)

and τ ∈ Xp. Then,

γ · (ST(µ))([τ ]) = ×
∫
X
τ tγx dµ(x) = ×

∫
γX

τ tx d(γ · µ)(x) ≡ ST(γ · µ)([τ ]) (mod pZ)

where in the second to last equality we used (36) and in the last we used (37). □

We therefore obtain a A×/pZ-valued cohomology class by pushing forward our previously-

defined distribution-valued class:

Definition 4.4. Define cJE = ST∗µ ∈ 1
op(c)cn

· Hn−1(SLn(Z),A×/pZ), where op(c) denotes

the multiplicative order of p modulo c.

We will generally work with a fixed c and omit the pre-superscript c as implicit. However,

we first have the following corollary of Proposition 3.17:
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Corollary 4.5. We have, for any c and d prime to p and each other, that

(1− dn)cJE = (1− cn)dJE .

In particular, (1− cn)−1
cJE is independent of c.

Proof. This follows immediately from Proposition 3.17 and the fact that ST factors through

[c]−1
∗ − 1, as [c]−1

∗ preserves X and the measures involved have mass zero on X. □

4.2. Evaluation of cocycles at “real multiplication” points. Let F be a totally real

field of degree n where p is inert. Let a be an integral ideal of F of norm coprime to pc, and

fix {τ1, . . . , τn} an oriented Z-basis of a−1. Let τ be the column vector of size n× 1 whose ith

entry is equal to τi. It yields to an embedding

ιF : Qn ∼−→ F, x 7→ τ t · x.

By considering the action of multiplication by F× on F , which is Q-linear, we obtain an

embedding

F ↪→ Mn(Q), α 7→ Aα

determined by τ tAα = ατ t, for every α ∈ F . For α ∈ F and x ∈ Qn, we have

α(τ t · x) = τ · (Aαx). (38)

Lemma 4.6. The element [τ ] ∈ Pn−1(Cp) belongs to Xp.

Proof. The coordinates of τ form a Q-basis of F . Since p is inert in F , the coordinates of τ

also form a Qp-basis of the completion of F at p. This implies that they are independent over

Qp, i.e. τ does not belong to any Qp-rational hyperplane in Pn−1(Cp). □

Note that F× ⊂ GLn(Q) fixes τ ∈ Xp. Let UF be the group of totally positive units in O×
F ;

it is a free group of rank n−1, which we view as embedded in SLn(Z) via the coordinatization

given by [τ ] (so that it is the stabilizer of this point inXp). We have a morphism in cohomology

induced by restriction and then evaluation at [τ ]

Hn−1(SLn(Z),A×)
ev[τ ]−−−→ Hn−1(UF ,C×

p ).

Denote by cUF
∈ Hn−1(UF ,Z) the fundamental class whose orientation corresponds to our

embedding into SLn(Z) (see [BCG20, §12.4]).

Definition 4.7. Consider the same notation as above, and let J ∈ Hn−1(SLn(Z),A×). Define

the evaluation of J at [τ ] ∈ Xp by

J [τ ] := cUF
∩ ev[τ ](J) ∈ C×

p .

If J is installed valued in A×/pZ, we get an evaluation in C×
p /p

Z.

We will be interested in the evaluation of the cocycles JE defined in 4.4. We note that it

is clear from the formula for the Schneider-Teitelbaum transform that if we denote by Fp the

completion of F at p, we in fact have Jµ̃[τ ] ∈ F×
p /pZ.
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We also have the a more refined kind of “evaluation at τ” map starting from a UF -

cohomology class valued in distributions; we call the following map Dτ for its similarity to

p-adic integrals considered in the work of Dasgupta (e.g. [Das08]).

Lemma 4.8. Let τ ∈ Fn be as above. Then, the morphism

Dτ : D0(X,Z) → F×
p , µ 7→ ×

∫
X
τ t · x dµ(x)

is UF -equivariant.

Proof. Let γ ∈ UF and µ ∈ D0(X,Z). Proceeding as in the proof of Proposition 4.3, we obtain

×
∫
X
τ t · x d(γ · µ)(x) = ×

∫
X
(γtτ)t · x dµ(x).

Since γ ∈ UF , it follows from (38) that γtτ = ετ for ε ∈ F a fundamental unit. Hence, the

right hand side of the equation can be written as

×
∫
X
(γtτ)t · x dµ(x) = εµ(X) · ×

∫
X
τ t · x dµ(x) = ×

∫
X
τ t · x dµ(x).

□

Note that it is clear from the formulas that Dτ (µ) modulo pZ is equal to ST(µ)[τ ], so this

is a refinement of the evaluation of rigid analytic functions/cocycles.

5. Values of rigid cocycles and unit formulas

We remain in the setting of our totally real field F in which p is inert, with a, τ , etc. as

before. In this section, we prove that the value

logNFp/Qp
JE [τ ] ∈ Fp

is equal to a local norm of a Gross–Stark unit8 in the narrow Hilbert class field of F , using

the (known) Gross–Stark conjecture. We will also conjecture a similar comparison without

the norms using the map Dτ , which we will be able to prove modulo pZ (i.e. for the rigid

analytic cocycles) in special cases.

5.1. p-adic L-functions and Stark-type conjectures. We first briefly recall the state-

ments of the Gross–Stark and Brumer–Stark conjectures over F , specified to the setting we

will consider in our applications. To do so, we first need some background on (p-adic) L-

functions.

For a given integral ideal f, recall that Gf denotes the ray class group attached to f. Then,

for ε a Q̄-valued function on Gf, we define

L(ε, s) =
∑

(b,f)=1

ε(b)Nb−s,

where the sum is over integral ideals which are coprime to f. This sum converges for s ∈ C such

that Re(s) > 1 and it can be extended via analytic continuation to a meromophic function at

8The “units” involved in the Gross–Stark and Brumer–Stark conjectures which we will consider are actually
p-units in general, but we will colloquially call them “units” without comment.
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C with at most a pole at s = 1. Let c be a positive integer and denote by εc the function on

Gf given by εc(b) = ε(bc). Consider then, for k ≥ 1,

∆c(ε, 1− k) = L(ε, 1− k)− cnkL(εc, 1− k).

Recall that a is an integral ideal of F which is coprime to p. Let

1[a],p : Gp → Z

be the characteristic function of the pre-image of [a] ∈ G1 by the natural map Gp → G1

and consider the L-function L(1[a]1,p, s). It is a partial zeta function with the Euler factor

corresponding to p removed, which vanishes at s = 0.

By the work of Deligne–Ribet, there exists a p-adic analytic function Lp(1[a]1,p, s) defined

on Zp − {1} such that

Lp(1[a],p, 1− k) = ∆c(1[a],p, 1− k)

for every k ≥ 1. The following congruence, which is used to prove the existence of the p-adic

L-function Lp(1[a]1,p, 1− k), will be useful for later calculations.

Theorem 5.1. Consider the same notation as above. Then, we have:

(1) For all ε : Gf → Z̄p and k ≥ 1, we have ∆c(1− k, ε) ∈ Z̄p.

(2) Let f be divisible by pm, and let k ≥ 1 be given. Suppose that η : Gf → Z̄p is such that

η ≡ Nk−1 mod pm,

the two functions considered as functions on the set of prime to f ideals. Then, for all

ε : Gf → Z̄p

∆c(1− k, ε) ≡ ∆c(0, εη) mod pm.

We now state the Gross–Stark conjecture. Let H be the narrow Hilbert class field of F ,

and consider the following subgroup of the p-units

Up := {u ∈ H× | |x|Q = 1 ∀Q ∤ p},

where Q runs over places (archimedean and nonarchimedean). Fix P a prime of H dividing

p.

Proposition 5.2. There exists a unique element u ∈ Up ⊗Q satisfying

ordP(u
σa) = L(1[a]1 , 0) for all a coprime to p,

where 1[a]1 denotes the characteristic function of [a] on G1 and σa ∈ Gal (H/F ) denotes the

Frobenius element associated to

Note that, since p splits completely on H, we have H ⊂ HP ≃ Fp.

Theorem 5.3 (Gross–Stark conjecture). Let u be as above. We have

L′
p(1[a],p, 0) = −(1− cn) logp(NFp/Qp

uσa) for all a coprime to p.

Thus, the first derivative of a p-adic L-function is related to the norm of a virtual unit - i.e.

a formal rational power of a unit. A priori, this may not be an actual p-unit; we have only
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that some integer power of it is. On the other hand, in this same setting, the Brumer–Stark

conjecture (as proven in [DK23] and [DKSW23]) tells us that we do have a genuine unit:

Theorem 5.4. If the auxiliary smoothing integer c is such that all of its prime factors are

greater than n+ 1, then there is an actual unit u ∈ OH [1/p]×− satisfying the conditions of the

Gross–Stark conjecture.

(See [RX25, Remark 6.3] for how this follows from more standard statements of the Brumer–

Stark conjecture.)

Note that the property above defines u only up to is well-defined only up to pZ and a root

of unity.

5.2. Interpolation of L-values. In this section, we give the relation of the cocycle µ with

the p-adic L-function Lp(1[a]1,p, s) introduced above.

Let χ : Z×
p → Q̄×

p be a continuous function and fix τ ∈ Fn
p a representative of τ ∈ Pn−1(Fp).

Consider the map

φτ,χ : D(X,Zp) → Q̄p, λ 7→
∫
X
χ
(
N(ca)NFp/Qp

(τ t · x)
)
dλ(x),

which is UF -equivariant. We can then consider

φτ,χ (resUF
(µ̃)) = φτ,χ (resUF

(µ)) ∈ Hn−1(UF , Fp).

Remark 5.5. Note that though λ is only a Zp-valued distribution on locally constant functions

a priori, one can easily check that the usual definition of the integral against λ via Riemann

sums converges p-adically on any uniformly continuous function so long as the values of λ are

p-adically bounded, hence on any continuous function on the compact set X.

Recall that cUF
is a fundamental class of Hn−1(UF ,Zp). We will be interested in the

function of one p-adic variable

Zp ∋ s 7→ cUF
∩ φτ,()−s(resUF

(µ)) =

∫
X
(N(ca)N(τ t · x))−s dµ(x) ⌢ cUF

∈ Fp,

where (·)s : Z×
p → Z×

p denotes the character x 7→ xs. Observe that this function is a p-adic

analytic function on Zp.

Proposition 5.6. Let χ : Z×
p ↠ (Zp/p

rZp)
× → Q̄× be a finite order character. We have

cUF
⌢ φτ,χ (resUF

(µ)) = ∆c(1[a],pχ̃, 0).

Proof. By Theorem 3.16, cUF
⌢ φτ,χ(resUF

(µ)) satisfies the same interpolation properties at

every finite level Γ1(p
r) as the cocycle µ used in [RX25, Proposition 6.9], from which we derive

the same conclusion as in loc. cit. □

Using the existence of the Deligne–Ribet L-function, we also immediately derive the ana-

logue of [RX25, Corollary 6.10]:

Corollary 5.7. For any s ∈ Zp, we have

Lp(1[a],p, s) =

∫
X

〈
N(a)NFp/Qp

(cτ t · x)
〉−s

dµ(x) ⌢ cUF
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By comparing the derivatives at s = 0 of the two sides, we hence deduce the analogue of

[RX25, Theorem 1.6]:

Corollary 5.8 (Theorem 1.4). Let u ∈ Up ⊗Q be the Gross–Stark unit introduced in Propo-

sition 5.2 and denote by uτ := uc
n−1 ∈ Up ⊗Q. We have,

logpNFp/Qp
JE [τ ] ≡ logpNFp/Qp

(uτ ) ∈ Fp

5.3. Brumer–Stark units and the cyclic Galois case. The above result gives us evidence

to conjecture that JE [τ ] should in fact be equal to a genuine p-unit uτ ∈ OH [1/p]× satisfying

the Brumer–Stark conjecture. As in [RX25, §7.2], we are able to prove some cases of the weak

form of this conjecture in the Galois case: suppose that F is Galois over Q. If the narrow ideal

class [a] is Gal (F/Q)-stable, we prove that σau ∈ Qp up to roots of unity. If moreover the

ideal a is Gal (F/Q)-stable, we show that JL[τ ] ∈ Qp. Thus, the norms in Theorem 1.4 simply

become nth powers, and we are able to remove them up to an nth root of unity ambiguity.

Observe that under these assumptions, H is Galois over Q. Denote by Dp ⊂ Gal (H/Q) the

decomposition group at p. Note that Gal (H/Q), and therefore also Dp, act on OH [1/p]×−⊗Q.

Then we have from [RX25, Lemma 7.2, Proposition 7.3]:

Lemma 5.9. Let u be the Gross–Stark unit as above and let [a] be a narrow ideal class that

is Gal (F/Q)-fixed. For every η ∈ Dp, we have η(σau) = σau in OH [1/p]×− ⊗ Q. As a result,

logp(σau) ∈ Qp.

We proceed to study the invariant JE [τ ] in the case that the ideal a is Gal (F/Q)-stable.

In this setting, we can refine the embedding of UF into SLn(Z) to an embedding

O×
F ⋊Gal (F/Q) ↪−→ GLn(Z)

determined by the following equations: for every x ∈ Qn, α ∈ F× and σ ∈ Gal (F/Q),

α(τ t · x) = τ tAαx, σ(τ t · x) = τ tAσx.

Denote D0 := D0(X). Recall that GLn(Z) acts on D0 as follows: for g ∈ GLn(Z), λ ∈ D0, and

U ⊂ X compact open

(g · λ)(U) := λ(g−1U).

Consider also the GLn(Z)-module D0(det) := D0 ⊗Z Z(det). We use these actions and the

embedding above to describe an action of O×
F and of Gal (F/Q), on D0 and D0(det). In

particular, since {1}⋊Gal (F/Q) normalizes UF ⋊ {1}, we have natural actions of Gal (F/Q)

on Hn−1(UF ,D0(det)) as well as on the coinvariants (D0)UF
. Under these actions, Lemma

actually tells us that our construction actually lifts µ = (φp)∗Ψ∗θ(n)C to a unique class in

Hn−1(GLn(Z[1/p]),D0(VQp ,Z)(0)(det)).

Lemma 5.10. The element cUF
⌢ µ ∈ (D0)UF

is fixed by Gal (F/Q).

Proof. The proof is identical to [RX25, Lemma 7.4], following immediately from the fact that

the restriction

Hn−1(O×
F ⋊Gal (F/Q),D0(VQp ,Z)(0)(det)) → Hn−1(O×

F ,D0(VQp ,Z)(0)(det))
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lands in the Gal (F/Q)-invariants. □

Likewise, the following can be deduced in exactly the same way as [RX25, Theorem 7.5]:

Theorem 5.11. Suppose that the coordinates of τ ∈ Fn given an oriented Z-basis of a

Gal (F/Q)-stable ideal a−1. Then JE [τ ] ∈ Qp.

We hence deduce:

Corollary 5.12. Suppose that F is a totally real field that is Galois over Q and where p is

inert. Let τ ∈ Fn with coordinates generating a−1, where a is a Gal (F/Q)-stable ideal, and

let u ∈ O[1/p]×− ⊗Q be the Gross–Stark unit of Proposition 5.2. We have

JE [τ ] = uσa

up to pZ and roots of unity.

This implies Theorem 1.5 of the introduction. Note that the denominator op(c)c
n occurring

in the definition of JE does not matter, since we tolerate a root of unity ambiguity.
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