EISENSTEIN CLASS OF A TORUS BUNDLE AND
LOG-RIGID ANALYTIC CLASSES FOR SL,(Z)
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ABSTRACT. Departing from a topological treatment of the Eisenstein class of a torus bundle,
we define log-rigid analytic classes for SL, (Z). These are group cohomology classes for SL,, (Z)
valued on log-rigid analytic functions on Drinfeld’s p-adic symmetric domain. Such classes
can be evaluated at points attached to totally real fields of degree n where p is inert. We
conjecture that these values are p-adic logarithms of Gross—Stark units in the narrow Hilbert
class field of totally real fields. We provide evidence for the conjecture by comparing our
constructions to p-adic L-functions. In addition, we prove it in certain situations where the
totally real field is Galois over QQ, as a consequence of the fact that in this case there is a

conjugate of a Gross—Stark unit in Q.
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The values of modular units at CM points, called elliptic units, have rich arithmetic sig-

nificance. Notably, they generate abelian extensions of imaginary quadratic fields. In [DD],

Darmon and Dasgupta proposed a conjectural construction of elliptic units for real quadratic

fields and predicted that they behave similarly to elliptic units. Their construction consists of

a p-adic limiting process involving periods of logarithmic derivatives of modular units along

real quadratic geodesics.

Using a different approach, Dasgupta used Shintani’s method to extend this construction

to totally real fields of arbitrary degree in [Das08|, and Dasgupta and Kakde proved that

this recipe gives p-units in abelian extensions of totally real fields [DK23|, [DK24]. More

precisely, they proved that their resulting objects are Gross—Stark units. Remarkably, their

work provides a solution to Hilbert’s twelfth problem for totally real fields via p-adic methods.
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Darmon, Pozzi, and Vonk constructed analogs of modular functions, called rigid classes,
which can be evaluated at real quadratic points, and expressed the original construction of
[DD] as the value of a rigid class in [DPV24]. Their work accentuates the parallel between
Gross—Stark units and elliptic units, as rigid classes play the role of modular functions. More-
over, it leads to an alternative proof of the conjecture of [DD] in the real quadratic setting.

In this paper, we construct a log-rigid analytic class for SL,(Z) and study its values at
points attached to totally real fields where p is inert. We conjecture that these values are p-adic
logarithms of Gross—Stark units and provide evidence for it by comparing our constructions
to p-adic L-functions and using the rank 1 Gross—Stark conjecture, proven in [DDP11] and
[Venl5].

Moreover, we prove the conjecture in certain situations where the totally real field is Galois
over Q, as a consequence of the fact that in this case there is a conjugate of a Gross—Stark
unit in Q,. To our knowledge, this extends the type of abelian extensions of F' that can be
constructed explicitly using only the values of the derivatives of p-adic L-functions. Moreover,
it expresses Gross—Stark units as values of a modular-like object, namely the log-rigid class.

A key ingredient in our construction is the Eisenstein class of a torus bundle of Bergeron,
Charollois, and Garcia [BCG20] and its pullbacks by torsion sections, that replace the role
of modular units. In particular, we conjecture that Gross—Stark units can be obtained via
a p-adic limiting process involving periods of Eisenstein classes on locally symmetric spaces
attached SL,(R) along tori determined by totally real fields. We hope that this represents
a first step toward a modular, or more technically automorphic, construction of Gross—Stark
units for totally real fields, which would generalize the results of [DD] and [DPV24].

1.1. Siegel units and abelian extensions of quadratic fields. We begin by explaining
the construction of Siegel units and their relation with the theory of complex multiplication
for imaginary quadratic fields. Let E be an elliptic curve defined over a scheme S, fix a

positive integer ¢ coprime to 6, and denote by N(©) the set of positive integers coprime to c.

Proposition 1.1. There exists a unique function .0 € O(E — E|c])* satisfying:
(1) The divisor of O is E[c] — c(0).
(2) b is invariant under pushforward induced by multiplication by a for all a € N(©),

Let N > 3 be a positive integer coprime to ¢, denote by I'(N) C SLo(Z) the congruence
subgroup of full level N, and let 5# be the complex upper half-plane. We can then consider
the universal elliptic curve

E:=T(N)\ ((4# x C)/Z?) — Y(N) :=T(N)\A2.

The proposition above yields the function .0 € O(E — E[c])*, which can be used to construct
modular units on I'(N)\ 2 in the following way. A vector v € Q?/Z?—{0} of order N induces
a torsion section v: Y(N) — E — E[c]. Then, the pullback .g, := v*(.0r) € O(Y(N))* is
called a Siegel unit and is an instance of a modular unit. It gives rise to a I'(NV)-invariant
function on J#, that we will denote by the same symbol. The theory of complex multiplication

implies that the values of Siegel units at special points have deep significance.
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Theorem 1.2. Let 7 € 7 be a CM point attached to a quadratic imaginary field K, i.e. T
is stabilized by a subgroup of norm one elements K* C SLo(Q) of K. Then,

cgo(1) € K* C Q.

An important question is to find an analog of this theorem for general number fields.
The case of real quadratic fields has been extensively studied via different methods. We are
particularly interested in the p-adic approach initiated by Darmon and Dasgupta in [DD] and
followed, among others, by Darmon, Pozzi, and Vonk in [DPV24]. We proceed to outline
these works in a language suited to this paper.

Let F' be a real quadratic field and p a rational prime. Observe that .77 does not contain
real quadratic points, i.e. there are no points stabilized by a torus of norm one elements
F' € SLy(Q) of F. On the other hand, /# has geodesics stabilized by these tori. Moreover,
if (z,72) C 4 is a segment of such geodesic, where v € F1 N T(p"), and v € Q?/Z% — {0} is
of exact order p”, we have the so-called Meyer’s theorem

1 [

ﬁ . dlog(cgv) = Cc(Fv [b],O) € Z. (1)

Here, (.(F,[b],0) denotes the value at s = 0 of a c-smoothed partial zeta function attached to

F and an ideal class [b] in a narrow class group of conductor divisible p", determined by the

inclusion F'' C SL2(Q) and v. In addition to encoding information about abelian extensions

of totally real fields, these zeta values possess notable p-adic properties and serve for the
construction of measures that yield p-adic partial zeta functions of F'.

The search for a symmetric space containing real quadratic points, combined with the p-
adic properties of the partial zeta values considered above, leads to replacing s by a p-adic
symmetric space to generalize Theorem 1.2. More precisely, if we let 7, := P1(C,) — P1(Q,)
be the p-adic upper half-plane and A its ring of rigid analytic functions, we have:

e 7, contains points stabilized by F!' C SLy(Q) if and only if p is nonsplit in F.
e There is a GL2(Qp)-equivariant isomorphism between A*/C and the space of Z-
valued measures on P1(Q,) of total mass zero ([Put82]), suggesting that A* encodes

information about p-adic zeta functions and refinements of their values.

In [DPV24], Darmon, Pozzi, and Vonk exploit the distribution relation of Siegel units attached

to vectors of arbitrary p-power order to construct a cohomology class
Jor € H' (SL2(Z), A*).

This class can be viewed as a generalization of a modular function. Indeed, the space of
invariant functions H%(SLy(Z), AX) = C) is too simple, which suggests studying the first
cohomology group instead. Moreover, if 7 € J%, is stabilized by F! C SLg(Q) and F' N
SLa(Z) = (£77), they define the value Jpr|[7] := Jpr(7-)(7) € C, .

Theorem 1.3 (Darmon-Pozzi-Vonk). Let T € 7, be as above with stabilizer (£v;) C SLa(Z)
be attached to a real quadratic field F' where p is inert, and suppose that {T,1} generate a
fractional ideal of F'. Then,

log,(Jpr[7]) = log,(u), v € H = narrow Hilbert class field of F' C F c Q.
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This theorem provides a level 1 version of Theorem 1.2 for real quadratic fields where p is
inert. Indeed, it produces nontrivial elements in abelian extensions of real quadratic fields as

values of Jpr at special points in JZ;,.

Remark 1.4. The class Jpr is the unique lift via the quotient map A* — A* /C of the restric-
tion to SLa(Z) of a class Jpr € H*(SLa(Z[1/p]), A*/C)), also constructed in [DPV24]. More-
over, the Hecke module H'(SLy(Z[1/p]), A* /C,)q is isomorphic to the sum of HY(Ty(p),Q)
and an Eisenstein line. The lift Jpgr is important to define the values of Jpgr and it is the
object we aim to generalize in this work. Here and for the rest of the paper, the subindex Q

denotes the tensor product with Q over Z.

1.2. Construction of the log-rigid class for SL,(Z). The work of Bergeron, Charollois,
and Garcia in [BCG20] provides a generalization of logarithmic derivatives of Siegel units
which is relevant for the study of totally real fields of degree n: the Fisenstein class of a torus
bundle. Let E — X be an oriented real vector bundle of rank n over an oriented manifold X.
Suppose that E contains a sub-bundle E7, with fibers isomorphic to Z™. We can then construct
the torus bundle T':= E/FEy; — X. Consider the following class in singular cohomology with
Z-coefficients
T[c] — {0} € H(T[c]) ~ H™(T, T — T|d]),

where the isomorphism above is the Thom isomorphism. The long exact sequence in relative
cohomology provides a map H" (T — T[c]) — H™(T,T — T[c]). The Eisenstein class .27
attached to T" and c is constructed from the next theorem and is analogous to the functions

I determined in Proposition 1.1.

Theorem 1.5 ([BCG20]). There exists a unique class .2y € H" YT —T|c], Z[1/c]) satisfying:
(1) czr is a lift of Tc] — c¢"{0} € H*(T,T — Tlc|, Z[1/¢]).
(2) czr is invariant under pushforward induced by multiplication by a for all a € N(©),

Let 2 := SL,(R)/SO,, be the symmetric space attached to SL,(R), let v, € Q"/Z" be
the column vector (1/p",0,...,0)! and let ', be its stabilizer in T := SL,(Z). Finally, fix
g an auxiliary integer such that the full level congruence subgroup I'(g) is torsion-free and
[[': T'(q)] is prime to p, which imposes that p is sufficiently large. Then, I',(q) :=T', NT(q) is

torsion-free. We can apply the previous theorem to the universal family of tori
T, =T, (¢0)\(Z xR"/Z") — T, (q)\Z

and obtain the Eisenstein class .z7,, that we will simply denote by z,. The vector v, induces
a torsion section v,: ' (¢)\Z — T, — T,[c] and we can consider the pullback v}z, which
defines a I';-invariant class on I',.(¢)\Z". This class is a higher-dimensional analog of dlog.g,.

The pullbacks of Eisenstein classes by p-power torsion sections satisfy distribution relations
parallel to those of Siegel units. In particular, (v}z,), are compatible with respect to push-
forward by the projection maps. Using these properties and Shapiro’s lemma, we package the

pullbacks of the Eisenstein classes by p-power torsion sections in a group cohomology class

po € H" 1 (T, Do(X, Z[1/m]))*="1,
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where m is a multiple of ¢ prime to p, Dy(X, Z[1/m]) is the space of Z[1/m]-valued measures
on X := Zy — pZ, of total mass zero, and w denotes the involution given by the action of
GL,(Z)/SL,(Z). We will sometimes refer to pg as an Eisenstein cocycle, following precedent
in the literature, which we briefly review and compare with our approach in Section 1.4.
The class pp valued in Dy (X, Z[1/m]) is suitable for the construction of rigid classes via
a Poisson kernel. Let 2, := P""!(C,) — Upey H be Drinfeld’s p-adic symmetric domain,
where H is the set of all Q,-rational hyperplanes. Denote by A, the space of log-rigid analytic
functions. Informally, A, consists of the Cp-valued functions on %), such that its restriction

to any affinoid is of the form

(rigid analytic function) + Z ch,grlog, (Cu(2)/lu(2)),
H,H'€H
where cg v € Qp are all but finitely many 0, {z(z) denotes the equation of the hyperplane
H € H, and log,,: C; — C, is the p-adic logarithm satisfying log,(p) = 0. Integration over X
leads to a I'-equivariant lift

ST: Dy(X,Zp) — Az, A—> (z — / logp(zt . x)d)\> (2)
X
and we define our desired log-rigid analytic class as
Jp.c = ST(uo) € H" (T, Ag).

The construction of Jg , can be compared to that in [DPV24] when n = 2, leading to
the relation Jp = log,(Jpr). In particular, this shows that the class log,(Jpr) can be
constructed solely from logarithmic derivatives of Siegel units, rather than from the full Siegel

units.

1.3. Values of Jg  at totally real fields where p is inert. Let I be a totally real field
of degree n where p is inert, and let 7 € F™ be such that its coordinates give an oriented
Z-basis a~ !, for a an ideal of Op. Since p is inert, it follows that 7 € 2,. Moreover, T is
a special point in %), in the sense that its stabilizer in SL,(Q) is isomorphic to the norm 1
elements of F'. In particular, its stabilizer in I'" is a group of rank n — 1. Following a similar
recipe than the case n = 2, we define the evaluation of J € H" YT, A7) at 7 € Zp, giving
J[r] € Cp. From our construction, one readily deduces Jg z[7] € F}, and the theorem below
gives evidence regarding the arithmetic significance of this value.

Let H be the narrow Hilbert class field of F. Fix an embedding Q C @p, which determines
a prime p of H above pOp. Denote by Og[1/p]* the subgroup of p-units of H where every
complex conjugation of H acts by —1. Attached to p and ¢, there is a Gross—Stark unit
u € Og[l/p]* ® Q, whose valuations at primes above p are related to c-smoothed partial L-
functions of the extension H/F. In fact, the proof of the Brumer—Stark conjecture in [DK23]
and [Das+23] ensures that u € Og[1/p]” under certain minor assumptions on ¢, that we will
assume for the rest of the introduction (see Remark 6.3).

Theorem 1.6. Forn > 2, Trp g, Je.c[7] = Trg, /g, log,(u’®), where u € Ogll/p)X is the
Gross—Stark unit given above and o4 € Gal (H/F) is the Frobenius corresponding to a.
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The proof of this result uses that the integral of v}z, along the (n—1)-dimensional subman-
ifold of T';-(q)\ 2" determined by the inclusion F! C SL,(Q) is a special value of a partial zeta
function of F, generalizing (1). From there, we construct the p-adic partial zeta function of F’
attached to a from po and express Trr /g, JE, c[7] as its derivative at s = 0. Thus, Theorem
1.6 follows from the Gross-Stark conjecture in rank 1, proved in [DDP11] and [Venl5].

The previous theorem, together with Theorem 1.3 involving real quadratic fields, suggests

the following conjecture.

Conjecture 1.7. We have Jg c[7] = log,(u’), where u € Og[1/p]* and o, € Gal (H/F)
are as above.

We now outline some evidence towards the conjecture. When F/Q is Galois, the Gross—
Stark units satisfy log,(cqu) € Q, if the narrow ideal class [a] is Gal (£//Q)-stable. On the
other hand, it can be deduced from the properties of Jg ¢ that Jg £[7] € Q, if T generates an
ideal a~! that is Gal (F//Q)-stable. Thus, it follows from Theorem 1.6 that the values of Jg ¢
can be used to calculate the p-adic logarithm of the Gross—Stark unit « in this setting.

Theorem 1.8. Suppose F/Q is Galois, p is inert in F', and T generates an ideal a that is
Gal (F/Q)-stable. Then, Jg c[t] = log,(u”) € Q, for the Gross-Stark unit u € Oy[1/p]*
introduced above.

In particular, Theorem 1.8 applies to real quadratic fields, recovering instances of [DPV24,
Theorem B] when the coordinates of 7 generate a Gal (F'/Q)-fixed ideal of Op. Note that
this result implies that we can obtain a formula for certain Gross—Stark units in the narrow
Hilbert class field of F' only from derivatives of p-adic L-functions in settings where F), is
not equal to @Q,, see Remark 7.4. Moreover, the relevant unit involved in the constructions
appears as values of the modular-like object Jg , supporting the parallel between Jg » and
Siegel units. This extends the type of abelian extensions of F' that can be constructed only
from derivatives of p-adic L-functions (and note that the field generated by one Gross—Stark
unit is Galois over F' and therefore contains all its conjugates). This Gross—Stark unit is one
of the elements used by Dasgupta—Kakde to construct the maximal abelian extension of F'.
In ongoing work, we are exploring which ramified abelian extensions of F' can be constructed
using this observation.

The proof of Conjecture 1.7 would give a construction of Gross—Stark units using Fisenstein
classes defined purely from the topology of torus bundles. Moreover, it is possible to find
explicit representatives of the classes considered in this article via an integral symbol complex
(similarly to the article [Xu25] of the second-named author), which we will present in a sequel
to this article. Ultimately, such formulas can be related to those obtained via Shintani’s
method, as we mention below, and from there to the formulas for Gross—Stark units of [Das08]
proven in [DK24]. We hope that this paves the way for proving Conjecture 1.7.

The symbol complex methods mentioned above also seem to shed light on the construction
of rigid analytic classes for SL,(Z[1/p]) lifting our log-rigid class, which we will present in
the sequel. This would fully generalize the construction of Jpgr of [DPV24] to SL,, and
suggest a different approach to Conjecture 1.7, namely to generalize the strategy of [DPV24].
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In a different direction, Darmon, Gehrmann, and Lipnowski generalized the theory of rigid
meromorphic classes of [DV21] to the setting of orthogonal groups in [DGL25], see [GGM25]

for an extensive list of values of these classes at special points.

Remark 1.9. In this paper, we focused on invariants that conjecturally belong to the narrow
Hilbert class field of F. It would be interesting to explore the following extensions of the
construction. First, we could evaluate Jg o at points 7 € 2, represented by 7 € F" whose
coordinates give a Q-basis of F', but they do not necessarily span an ideal of F' over Z. In
this case, we expect to construct invariants in ramified abelian extensions of F'. For example,
when n = 2, such invariants are conjectured to belong to ring class fields of F. Second, when
n is odd, Gross—Stark units in the narrow Hilbert class field of F' are trivial. It seems that to
construct meaningful invariants also in the setting when n is odd, we would need a higher-level
version of Jg £, generalizing [Cha09] to totally real fields. For such construction, we expect

that the corresponding invariants belong to ray class fields of F'.

1.4. Related cocycles in the literature. There are constructions of similar cohomology
classes to g in the literature, frequently under the name of Eisenstein cocycles. Notably, the
work of Sczech [Scz93] together with its integral refinement by Charollois and Dasgupta [CD14,
Theorem 4], and the works of Charollois, Dasgupta, Greenberg, and Spiess (see [CDG15] and
[DS18]) using Shintani’s method give explicit formulas for Eisenstein cocycles. These works
yield cocycles for S-arithmetic groups; on the other hand, they take values in measures on
X together with some additional data, such as a set of linear forms in n-variables (used for
@-summation), or the set of rays in R™ not generated by a vector in Q.

More directly related to our approach is the work of Beilinson, Kings, and Levin [BKL18] in
the equivariant cohomology of a torus, its adelic refinement by Galanakis and Spiess [GS24],
as well as the results of Bannai et. al. in equivariant Deligne cohomology [Ban+24]. These
articles also define equivariant Eisenstein classes by specifying residues in a torus bundle but
work with larger and more general coefficient modules, such as the logarithm sheaf or a variant
of it. In this way, the first two articles construct distribution-valued cohomology classes by
delicate topological considerations. Our Eisenstein class is closely related to the specialization
to trivial coefficients of these classes (see Remark 4.8). Some computations in cohomology
will afford us a lift of our class with finer properties, e.g. a total-mass zero condition, making
it sufficient to construct log-rigid classes and produce a conjectural formula for Gross—Stark
units.

The latter article [Ban+24] works equivariantly under a nonsplit torus associated to a par-
ticular totally real field (rather than a general linear group), and relates a de Rham regulator
of this class to L-values closely tied to a method of Shintani. This suggests that the class ug,
or its restriction to a nonsplit torus, can be compared to the cocycles of [CDG15], [DS18],
and [Spil4].

1.5. Structure of the paper. In Section 2, we define the Eisenstein class of a torus bundle
and prove a distribution relation involving the pullbacks of this class by torsion sections. In
Section 3, we introduce an explicit differential form representing the Eisenstein class for a
universal family of tori following [BCG20]. We use it to prove that the sum of the pullbacks
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of this form along the torsion sections of exact order p is 0. The content of these two sections
is combined in Section 4 to construct the class ug € H* (T, Do(X, Z[1/m]))~. In Section 5,
we construct the log-rigid class Jg ¢ from po and define its values at points attached to totally
real fields where p is inert. In Section 6, we prove Theorem 1.6, relating the local trace of
these values, to the derivative of a p-adic L-function, and therefore to local traces of p-adic
logarithms of Gross—Stark units. Finally, in Section 7, we state Conjecture 1.7, and study the
case where F//Q is Galois.
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on this project. We are also grateful to both him and Pierre Charollois for their constant
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computations with Gross—Stark units, and Havard Damm-Johnsen, Max Fleischer, and Yijia
Liu for publicly sharing their algorithms on computing Gross—Stark units for real quadratic
fields.
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2. EISENSTEIN CLASS OF A TORUS BUNDLE

In this section, we introduce the Eisenstein class of a torus bundle, as studied in [BCG20].
We focus specifically on the torus bundle

I'\(Z x R"/Z") — D'\ %,

where 2" is the symmetric space attached to SL,(R) and I'" C T' := SL,,(Z) is a congruence
subgroup that is torsion-free. We then prove several properties of this class, including a
distribution relation between its pullbacks by torsion sections, which parallels the distribution
relations satisfied by Siegel units. Unless stated otherwise, in this section, we consider singular
cohomology with Z-coefficients.

2.1. Thom and Eisenstein classes of a torus bundle. Let 7: & — X be an oriented
real vector bundle of rank n over an oriented manifold X. Since FE is oriented, for every fiber

E, C E over x € X we have a preferred generator
ug, € H"(Ey, E, —{0}) ~Z

satisfying a local compatibility condition (see [MS74, Page 96]). The Thom isomorphism
theorem asserts that there is a global class that restricts to the orientation of each fiber.

Theorem 2.1 (Thom isomorphism theorem). There is a unique class ug € H"(E, E — {0})
such that its pullback to any fiber E; of E is equal to ug,. Moreover, for every i € Z, we have
an isomorphism

H'(X) = HY(E,E —{0}), y+— m*y — up.

Proof. See Section 10, and in particular Theorem 10.4, of [MS74]. O
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Now suppose that E contains a sub-bundle E7z with fibers isomorphic to Z™. We can then
construct the torus bundle T := E/Ez — X. For every z € X, the orientation on F, yields

an orientation on 7). Fix ¢ € Z>; and consider the class
ur, e € H'(Tp, To — Tele)) ~ @ H™(Te, T — {2}),
z2€T%[]

which restricts to the generator of each H"(T,, T, — {z}) determined by the orientation of T}
at z, for every z € T,[c]. By considering a tubular neighborhood of T'[c] in T, and applying
the excision theorem, we deduce the Thom isomorphism for torus bundles from Theorem 2.1

above.

Theorem 2.2. There is a unique class ur. € H"(T,T — T|c]) such that its pullback to any
fiber T, of T' is equal to ur, .. Moreover, for every i € Z, the Thom isomorphism in Theorem

2.1 induces an isomorphism
HY(T[c]) = H™T,T —Tc]).

Definition 2.3. The class ug is called the Thom class of the bundle £ — X, and ur. is the
Thom class of the torus bundle T" — X relative to the c-torsion.

We now outline the definition of the Eisenstein class of the torus bundle 7' — X relative to
the c-torsion. For this, we assume that for all i € Z, the group H*(X) is finitely generated.
Consider the following class in singular cohomology

T[] — ¢*{0} € H*(T[c]).

Denote by the same symbol the image of this class in H"(T,T — T'[c]) via the Thom isomor-

phism given in Theorem 2.2. The long exact sequence in relative cohomology gives
i — H"NT) — H" YT -~ T|c]) — HY(T,T - T[d]) — HY(T) — ---.  (3)
We then have the following theorem.
Theorem 2.4 (Sullivan, Bergeron—Charollois-Garcia). There exists a unique class .zp €
H" YT —T|c],Z[1/¢c]) satisfying:
(1) It is a lift of T[c] — {0} € H™(T,T — Tc|,Z[1/c]) by the map in (3).

(2) It is invariant under pushforward induced by multiplication by a in T for all a € N(©),

Proof. Section 2 and Section 3 of [BCG20] prove the existence of the class .z with coefficients
in Z[1/N], for N divisible by ¢ and coprime to p (see the remarks below Lemma 9 and
Definition 10 of [BCG20]). This is sufficient for our purposes, but we refer the reader to
[Xu23, Page 14] for a proof that the coefficients can be taken to be Z[1/c]. O

Definition 2.5. The class .z7 above is the Eisenstein class attached to T and c.

Throughout this work, we will define invariants attached to totally real fields of degree n

from periods of Eisenstein classes of torus bundles of rank n.
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Remark 2.6. Theorem 2.4 has the following visual interpretation. The first point is equivalent
to the fact that the image of T'[c] — ¢"{0} in H™(T,Z[1/c]) vanishes. Informally, this means
that there is a codimension n — 1 submanifold ¥ C 7' — T'[¢] such that

0¥ = t(T[c] — *{0}), t € Z,

where 0Y denotes the boundary of ¥. On the other hand, the class of ¥ is not unique, and the
second point of the theorem provides a preferred class, .zp with this property. In particular,
czr allows defining linking numbers with T'[¢] — ¢"{0} as the intersection number with the

preferred choice of X.

Remark 2.7. Let a € N, Consider inclusion
i: T—Tlac] — T — T|c].
Multiplication by a induces a map
[a]: T — Tac] — T — Tc].
The map pushforward induced by multiplication by [a] on H*(T —T[c]) appearing in Theorem

2.4 is defined as the composition

[a]

H(T = Tlc]) - H(T - Tlac]) 2 H(T — T]c)).
We similarly define [a].: H{(T,T — T[c]) — H{(T, T — T|[c]).

2.2. Eisenstein class of universal families of tori. Let n > 2 and denote by 2 :=
SL,(R)/SO,, the symmetric space attached to SL,(R). We are interested in the Eisenstein
class of universal families of tori over quotients of 2~ by the following congruence subgroups.

Let p be an odd prime such that (p,c) = 1, for » > 0 consider the column vector
vy = (1/p",0,...,0) € Q"/Z",

and let I, be its stabilizer in I' := SL,,(Z). Fix ¢ # p an auxiliary prime such that the full level
congruence subgroup I'(¢) C I' is torsion-free and has index prime to p. Observe that these
conditions imply that p is sufficiently large. Finally, define I',(¢q) := I', N T'(¢) and consider
the torus bundle

T, = T (@\(2 x R*/Z") — T, (q)\ 2.

Definition 2.8. Denote by z, := .27, € H" (T, —T[c], Z[1/c]) the Eisenstein class attached
to the torus bundle 7;. and c.

Remark 2.9. We introduced the auxiliary prime ¢ and the congruence subgroups I',(q) to
ensure that their action on 2" is free, which holds as I',(q) is torsion-free. Thus, the fibers of

T, are n-tori.

Remark 2.10. We are omitting ¢ from the notation since it is generally fixed. We note in
passing also that the dependence of our classes on c is simple: as explained in [BCG20,
Section 3.3], it follows from the definition of the Eisenstein class that, if ¢ and d are coprime,

([d]" = c)azr = ([d]" — d") ez
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For » > 1, the vector v, induces a section
vr: D@\ 2" — T = T[], [g] — [(g,vr)]-

We can then consider the pullback viz. € H" Y(T'.(q)\2",Z[1/c]). We proceed to study
the behavior of v}z, with respect to two different actions. Observe that I';(¢) is a normal
subgroup of I',. Thus, we can define an action of I, on I',(¢)\Z" as follows. For v € T';.,

v: To(@\Z — T (O\Z, [9] — [vg].

As a consequence, I', acts on H" 1(I'.(¢)\.2",Z[1/c]) via pullback. Since I, fixes v,, we
deduce that the class v}z, is fixed by this action, as we make precise in the next lemma.

Lemma 2.11. Consider the same notation as above. We have
viz € H NI (g\ 2, Z[1 /)"
Proof. Let v € I, and define the map of torus bundles

7: T — T, [(9,0)] — [(vg,70)].
We have 3*T;[c] = T,[c] and 7*{0} = {0} in H(T:[c]). Moreover, since y*ur, . = ur, ¢, as ¥
is orientation preserving, it follows that
Y (Tr[c] — *{0}) = T;.[c] — {0} € H™(T}, T, — Ty [c]).

This implies that 3%z, is a lift of T[] — ¢*{0}. Moreover, for every a € N(©, 5* commutes
with [a].. Indeed, define ')/A_/l in the same way as 4 but replacing v by v~!. Since 7* = 'F/l*,
the desired commutativity follows then from taking the pushforward of [a] o F = ijl o [a].
From there, we deduce that *z, is invariant under [a].. As a consequence, Theorem 2.4
implies z, = 5*z,. Pulling back this equality by v,: I';(¢)\:Z" — T, — T;[c] yields the desired
expression. O

Let w = diag(1,—1,1,...,1) € GL,(Z). Since w normalizes I'.(q) and SO,,, conjugation
induces the following map

w: T (@\Z — To(@\ 2, [g] — [wgw™],

which induces an involution w on H"1(I'.(¢)\Z", Z[1/¢c]) via pullback. Here and for the rest
of the section, we will denote with a superindex — the w = —1 eigenspace for w.

Lemma 2.12. For every r > 1, we have
viz. € H' N T (g\ 2, Z[1/c])".

Proof. The proof is analogous to the proof of Lemma 2.11, so we only outline it. Denote by
w the morphism of torus bundles

w: T, — Ty, [([g],0)] — [(wgw™t, wv)].

Since W reverses the orientation on the fibers (because the determinant of the matrix defining
w is —1), it follows that

w*(Ty[c] — "{0}) = — (T}.[¢] — "*{0}) € H(T,, T, — T;[c]).
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Similar to Lemma 2.11, we deduce from there that w*z, = —z,. The desired result follows by

pulling back this equality by v, and observing wv, = v,. (|

2.3. Distribution relations. We give some compatibility properties regarding the classes
zr and their pullbacks by torsion sections. In particular, we prove a distribution relation. We

begin with the following general lemma.

Lemma 2.13. Consider the commutative diagram of topological spaces, where all the maps

are continuous

Suppose that the following two conditions hold:

(1) hi and hy are r-sheeted covering maps, for r € Z>1.
(2) If v € X and {2;};_, are its distinct lifts by h1, the images {f1(z;)};_; are distinct.

Then, for all i € Z>q, we have
(M) fi = f5(ha)s: H(Y) — H'(X).

Proof. For the proof of this lemma, we follow the same notation as in its statement. Let
@ € CYY,Z) be a degree i cochain and consider o: A* — X a continuous map from an
i-simplex A’ to X. Fix a vertex u € A%, and let z = o(u).

Since hq is an r-sheeted covering map, there are &1,...,6,: A — Z distinct lifts of o by

h1, characterized by the property &;(u) = z;. Then,

(h)«fie(o Zflso 5)) =Y _@(f106).
J
Similarly, let y1,...,7, € Y be the distinct lifts of fa(x), and consider @1,...,0,: A" = Y
the distinct lifts of fy o o by ho, characterized by the property @;(u) = y;. Then,

f3(h2)wp(o) = (h2)p(f200) Zsﬁ @;)-

We now observe that we have the equality of sets { fi 05,}; = {@;};. Indeed, Condition (2) in
the statement of the lemma implies that the simplices { f; 05;}; are all distinct, which implies
that both sets have the same number of elements. Moreover, since fi od; is a lift of fo 00 by
ha, we deduce the inclusion {f; 06;} C {@;}; and the desired equality of sets follows.

From this equality of sets and the previous two calculations, we obtain the desired equality
(h1)«fi = f5(h2)« of cochain maps, which induces the result in cohomology. O

Remark 2.14. Condition (2) of the lemma above holds if the commutative diagram is Carte-

sian.

Proposition 2.15. Let r,r’ € Z withr > ' > 1, consider the projection map pr: T, —T,[c] —
T, — Tys[c], and denote by pr* the corresponding pullback in cohomology. Then, pr*z. = z,.
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Proof. The structure of the proof is analogous to the proof of Lemma 2.11, so we only outline

the key points. First, we observe
pr*(T[e] — ¢"{0}) = Tr[d] — {0} € H*(T, T — Tr[d]).

Therefore, pr*(z,/) is a lift of T,[c] — ¢"{0}. Second, we claim that pr* commutes with [a]..

The key to proving this statement is to apply Lemma 2.13 to the diagram

T, — Tplac] —>— T, — T[ad]

| |

T, — Tr[d] —>— Ty — Ty[c].
Therefore, z, = pr*z,» by Theorem 2.4. O

From the previous proposition, we deduce that the classes v}z, satisfy the following distri-

bution relation.

Proposition 2.16. Let r > 1 and consider the pushforward attached to the finite quotient
map pr: U'ry1(@\Z — (@) \Z", namely

pr,: H" YT (@\ 2, Z[L/c]) — H" (T (g)\ 2, Z[1/ ).
Then, pr, (v} 120+1) = V2.
Proof. Consider the map
friTo(@Q\Z — T, — T [c] — Th — T1[d],

where the first arrow is induced by v, and the second one is the quotient map. Also, observe

that since 7 > 1 we can define

fre1 : o1 (Q\Z — Tri1 — Trga[pc] — 11 — Tipd],

r+1

in a similar way as f., but where we used that v,4; is of exact p torsion, with p"+! > p.

It is a consequence of Proposition 2.15 that, if ¢: T1 — T [pc] — Th — Ti[c],
vrzr = fla, vipze = figd
We will now deduce the desired statement from the invariance of z; under multiplication by p.

With this aim, observe that we can apply Lemma 2.13 to the following commutative diagram

T (@\2 <5 Ty — Ti[pd

pr l[p]

T(\Z — 1 —1[d.

Indeed, since T',(q) is torsion-free and [I',(q) : I'y+1(¢)] = p™, both horizontal maps are p"-
sheeted covering maps, implying Condition (1) of the lemma. Moreover, the fact that I',(q)
is torsion-free implies that the maps f, and f,41 are injective, giving Condition (2) of the

lemma. Therefore,

pr S = f7[pl
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From there,

DLV 2t = DL fi = Pl s = i = vz,
where we used the invariance of z; under multiplication by p on the second to last equality
(see Theorem 2.4 and Remark 2.7). O

3. DIFFERENTIAL FORM REPRESENTATIVE OF THE EISENSTEIN CLASS

In [BCG20], Bergeron, Charollois, and Garcia construct a closed differential form on 7, —
T, [c] representing the Eisenstein class z,. Their construction, inspired by the work of Bismut
and Cheeger [BC92|, consists of a regularized average of a transgression form considered by
Mathai and Quillen. In this section, we outline this procedure and use the differential forms
we obtain to prove some properties about pullbacks of the Eisenstein class by torsion sections
(see Proposition 3.10). The expressions given here will also be used in the last section to

relate periods of the Eisenstein class to special values of L-functions.

3.1. Mathai—Quillen form and the transgression form. Let S := GL,(R)/SO,, and
consider the real vector bundle E := S x R® — S, which is GL,,(R)-equivariant for the left
multiplication action on each of the components of £ and on S. Mathai and Quillen construct
a closed GL,(R)-equivariant differential form

RS Q?d(E)GL"(R)

which has rapid decay (Gaussian shape) and integral 1 along the fibers. In particular, ¢
represents the Thom class of the oriented vector bundle £ — S via the isomorphisms

H"(234(E)) =~ H"(E, E — {0}, R)

between the cohomology of the complex of forms on E with rapid decay along the fibers
2, (E) and relative singular cohomology (see [MQ86, Page 98 and Page 99]).

There is an explicit expression for the form ¢, which we proceed to outline following
[BCG20, Theorem 13] and [MQ86]. The reader is referred to these sources for further de-
tails on the construction of ¢, as for our purposes it is sufficient to know the shape of its
expression. Using the Iwasawa decomposition of GL,(R), fix h: S — GL,(R) a smooth
section of the quotient map GL,(R) — S. Then

p=m e N pPEQ,/2) (d(h T ) + on1z)" (4)
Ic{1,..,n}
|I| even
where:
e x=(x1,...,2,) € R” and |z|= (27 + --- + 22)'/? is its standard norm.

e 0 is an n X n matrix of 1-forms on S, obtained as the pullback by A of the connection
of the principal SO,-bundle GL,(R) — S given by fqr,, (&) = (g7 tdg — dg'(g*)~1)/2.

e () is an n X n matrix of 2-forms on S, obtained as the pullback by h of the curvature
dfqr, (r) —I—HéLn(R). Then, Pf(£27/2) is an |I|-form given as the Pfaffian of the submatrix
of /2 of size |I| involving the indices in I.

e I’ denotes the complement of I C {1,...,n}, e, € {£1}, and for a vector v of size
n, vl = Vig Vi Vi where I' = {iy, ... i)}
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Remark 3.1. We will not use the expressions for 6 and €, aside from the fact that they are

forms of degree 1 and 2 on S.

For t € Ry, let [t]: E — E be multiplication by ¢ on the fibers. An important property
of ¢ is that for every ¢t € R-, [t]*¢ also represents the Thom class. Indeed, the Gaussian on
the fibers gets dilated, but the value of the integral over the fibers is preserved and equal to
1. In particular,

[t]*o — b0, ast — 400,
where J§p denotes the current of integration along the zero section of E, also represents the
Thom class (as a current). Recall that the Eisenstein class is a lift of Thom classes of a torus
bundle, by Theorem 2.4. The next proposition constructs a form 1 whose differential involves
dp. The relevance of this form is that a (regularized) average of it will give a representative

of the Eisenstein class.

Definition 3.2. Let R := ), xz be the radial vector field on E = S x R", where {z;};
denote the coordinates on R" and con81der the contraction ¢ := trp € Q7' L(E)GE(®) which
is GL,,(R)-invariant (see [BCG20, Proposition 14]).

Proposition 3.3. Consider the differential form on E — S

too L dt
= [ e (5)

Viewed as a current on E, it satisfies the transgression property dn = do — [0]*p.

Proof. The main idea for the proof of this statement lies in the following equalities
. teo g too . dt
S 0fe= [ Glttede= [ ditf e = d,
0 0
where the second equality follows from interpreting %[t]*@ in terms of a Lie derivative with

respect to the vector field R and using Cartan magic formula. For more details, see Section
7.2 and Section 7.3 of [BCG20] and Page 106 of [MQ86]. O

Using the explicit expression for ¢ given in (4), and following the same notation as in that

equation, we obtain

1’| s
g =72 TN e LPrQ/2) Y ()R (A ), (AR )+ 0n )T
1¢{1,...,n} k=1
|I] even
w2 I'(1'/2) o 1)k 1 1,3\ —{ix}
n = Z 6[71/Pf(91/2 1 |I’| Z + h :I)) (d(h_ .Z') +9h_ .TL‘)
2 IC{1,...,n} ’h ’
|| even
Here I' = {i1,..., i} is the complement of I C {1,...,n}. The exact formulas will not be

necessary for us. On the other hand, it will be important to note:

e ¢ and v are linear combinations of products of an exponential and a polynomial. In
particular, they have rapid decay along the fibers.

e [0]*y = 0.

e 1) does not have rapid decay along the fibers.
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3.2. Eisenstein transgression. We proceed to consider a regularized average of the form 7
in (5) over a lattice to obtain forms on torus bundles representing the Eisenstein class. For
L C Q" a Z-lattice and A € L, let

try: E— E, (g,2) — (g, 2+ ).

Then, if t € R<g, define
O([t]*y, L) := ) tr}[t]". (6)
AEL
The sum converges as the differential form ¢*¢ has rapid decay on the fibers of £ — S.
Theorem 3.4. View 0([t]*y, L) as a differential form on S x (R™ — L). For s € C with

Re(s) > 0, the integral

+oo
BulLs) = [ oo e

converges. Furthermore, it admits a meromorphic continuation to all s € C, regular at s =0,

and its value at every reqular s € C defines a differential form on S x (R™ — L).

Proof. This follows from Proposition 17 and Section 8.5 of [BCG20]. In particular, the fact
that the integral is regular at s = 0 follows from the fact that we are viewing 0([t]*¢, L) as a
form on S x (R™ — L), and [¢t]* tends to 0 as t — +o00 on § x (R" — L). O

The previous theorem implies that Ey (L, s) is regular at s = 0 and
Ey(L) := Ey(L,0)

defines a form on S x (R™ — L)/L. In fact, Ey(L) descends to a form in 2" x (R" — L)/L by
the calculation on (8.9) of [BCG20]. Moreover, if IV C SL,,(R) is a subgroup contained in the
stabilizer of L, the form E (L) is invariant under I".

Remark 3.5. We outline how to view Ey(L) as a regularized average of . As we pointed out
at the end of Section 3.1, the form 7 does not have rapid decay along the fibers. Therefore,
the sum },.; trin does not converge. On the other hand, for s € C with Re(s) > 0 define

+oo
wo= [ e

Then, 7n(s) has the same expression as the one given for 7 at the end of Section 3.1 where the
term T'(|I'|/2)/|h~ x| is replaced by T((|[I'| + 5)/2)/|h~'z|I'#5. In particular, it follows
that if Re(s) > 0, the sum ), trin(s) is absolutely convergent and

400
Polts) = [ oo e = Y i),

AEL
where we exchanged the integral with the sum (using that for Re(s) > 0, the sums are
absolutely convergent). Thus, Ey(L) is equal to the value at s = 0 of the meromorphic
continuation of »° . tryn(s).

Recall the torus bundle
T, =T (@\(Z x R"/Z") — Tr(g\Z

introduced in Section 2.2.
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Definition 3.6. Consider the linear combination
By = By(cT L") — "By (L"),
which we view as a differential form on T, — T}[c| for every r > 1.
Theorem 3.7. The form .Ey is closed in T, — T;[c] and its cohomology class
By € Hig (T, — T;[d) ~ H" (T, — T;[c], R)
is equal to the image of the Eisenstein class z, in H" (T, — T;[c],R).

Proof. See Theorem 19, Proposition 20, and Theorem 21 of [BCG20]. There it is explained
that, since Ey is a regularized average of 1 (see Remark 3.5), Proposition 3.3 implies that

d(cEy) = 71 — "0y,

where d7(q and 09, denote currents of integration along T'[c|] and {0} (the contributions [0]*¢
appearing in Proposition 3.3 vanish after the regularization). Moreover, [a].Ey = E, by
Proposition 20 of [BCG20]. Thus, .Ey is a closed form on T, — T} [c] satisfying the character-
izing properties of the Eisenstein class z, asserted in Theorem 2.4. O

3.3. Pullbacks by torsion sections. We now use the differential forms introduced above
to study the pullbacks of the form .Ey, by torsion sections. For v € Q", denote also by v the
corresponding section v: S — E. Then, for s € C with Re(s) > 0, consider the differential

“+o00 d —+00 d
n(v, s) = / ol S = / (t0)

Since 0%t = 0, which can be verified using the explicit expression given at the end of Section

form on S

3.1, we have 1(0, s) = 0. From this same expression and Remark 3.5, we deduce that for v # 0

n(v,s) =
—n/2 ! I'| -
U — > | P2 LT+ 5)/2) Z DR (B ), (d(h v + 0h 1)

h—1y|l’|+s
IC{1,...n} I =1
|I] even

(7)
Proposition 3.8. Let L C Q™ be a Z-lattice and v € Q™ — L. For s € C with Re(s) > 0,

v*Ey(L,s) = Z n(A, s).

A€v+L

In particular, the right-hand side has a meromorphic continuation regular at s = 0.
Proof. This follows from Theorem 3.4 and Remark 3.5. U
Thus, if v € Q" — (1/c)Z"™

v Ey = lim Z n(A,s) —c" Z n(A, s), (8)

s—0
AEv+c—1Zn AEv+Zn

where here and from now on, lims_,¢ denotes evaluation of the meromorphic continuation.
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In fact, the right-hand side of the equation appearing in Proposition 3.8 defines a differential

form on S even if v € L. More precisely,
> nlhs)
AeL

converges for Re(s) > 0, and admits a meromorphic continuation to C which is regular at
s = 0. We proceed to prove a weaker version of this statement, as this will be enough for our

purposes.

Lemma 3.9. Let g € S, consider tangent vectors Y1,...,Y,_1 € T,S and denote ¥ =
(Y1,...,Y,_1). Then, for s € C with Re(s) > 0,

S+ Z n(A, s)g(Y)
AEL

converges and admits a meromorphic continuation to C which is reqular at s = 0.

Proof. 1t follows from the explicit expression of n(v, s) given in (7) that the sum
D1 s)e(Y)
AEL

is absolutely convergent for Re(s) > 0. From there, we deduce that if Re(s) > 0, we have
the equality

+oo
Sy = [ S @), e
AEL 0 JeL

as we can exchange the integral with the sum. Thus, it is enough to prove that the right-hand

side has a meromorphic continuation regular at s = 0. For that, define the function
[iR" — R, vi— (v"9Y)y(Y).

Since 1 is a differential form which has rapid decay along the fibers, it follows that f is a

Schwartz function. Hence, we need to prove that

+oo
| T rened )

el
has a meromorphic continuation to s € C which is regular at s = 0. We split the integral as
a sum of integrals from 1 to 400 and from 0 to 1. Observe that f(0) = 0, as 0% = 0. The
rapid decay of f, together with the fact that f(0) = 0, implies that the integral from 1 to +o00
converges absolutely and defines an entire function on s. To study the integral from 0 to 1,

we use Poisson summation formula
1 1
dt N dt
S s = [ % fomen
0 xeL 0 xerv

where f denotes the Fourier transform of f and LY the dual lattice of L. For Re(s) > n, the

previous integral can be written as

. oo ) y
1(0) +/1 Z f()\u)u"_s%.

s—n
AeLY—{0}
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Since f is a Schwartz function, the integral converges for all values of s € C and defines an
entire function. Thus, this expression gives a meromorphic continuation of the integral from

0 to 1 regular everywhere except maybe at s = n. The result follows from there. O

Finally, we are ready to prove the following expression regarding pullbacks of the Eisenstein

class by torsion sections, which will be useful for the next section.

Proposition 3.10. For v € Q" — ¢~ 'Z", view v*.Ey as a differential form on 2. Then,
Z ’U*CE¢ =0.
veLzZn /7 —{0}

Proof. By Proposition 3.8, and more precisely (8), we can write the sum of the proposition

as the evaluation at s = 0 of the following expression
2 PR CDELND DD DI (GDF
vELZ" [T —{0} AEv+cTIZn velzn /zn—{0} AEv+L"

We will verify that each of the two terms vanishes when evaluated at s = 0. Since the proof

is analogous in the two cases, we will show that
li =0.
oYY a0
ve S LN /27 —{0} AEVHL

Let g € S, consider tangent vectors Y1,...,Y,—1 € 1,5, and let Y = (Y3,...,Y,,_1). Then,

it is enough to see
21_{% Z Z n(A, 5)g(Y) =0.
vELZn [Zn—{0} A€V LT

Then, for s € C with Re(s) >0
Z Z n(A, S)Q(Y) = Z n(A, S)g(Y) - Z n(A, S)9<Y)7
ve L LM /2" —{0} AEVHL" velzn Aezr

where the right-hand side consists of the difference of two functions which admit a meromor-

phic continuation to all s € C and are regular at s = 0 by Lemma 3.9. The previous expression

is equal to
D> M, 8)g(Y) = D (A s)g(Y) =" D> n(h 9)(Y) = D n(A,s)(Y).
AEZL™ AEZL™ AEZL™ AEZL™

Here we used that n(\/p,s) = p*n(A, s), which can be verified from the definition of n(v, s).
Since the meromorphic continuation of )y ,n 7(X,5)4(Y) is regular at s = 0 by Lemma 3.9,
the evaluation at s = 0 of the expression above is zero. O

4. THE EISENSTEIN GROUP COHOMOLOGY CLASS

In this section, we package the pullbacks of the Eisenstein class by p-power torsion sections
in a group cohomology class for I' ;= SL,(Z) valued in measures on X := Z; — pZy;. Then,
we discuss the process of lifting this class to a class valued in total mass zero measures on X,
which will be an important property for defining rigid classes and p-adic invariants attached
to totally real fields.
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4.1. From singular to group cohomology. Let r > 1 and let
m :=lem(c, ' : T'(q)], 2).

Since I';-(¢) is normal in T, there are actions of I', on the singular cohomology of T';(¢)\ 2,
described above Lemma 2.11, and on the group cohomology of I',(¢), via conjugation. These
actions are compatible with the natural isomorphism from singular to group cohomology,
giving

H* YT\ 2, Z[1/m]))" " = H" (T (q), Z[1/m])" = H" YT, Z[1/m]).  (10)

The first map is an isomorphism because I'.(q) acts freely on 2, as it is torsion-free. The
second one is given by the corestriction map multiplied by [T, : T'x(¢)] ™!, which belongs to
Z[1/m] as [I'; : T, (q)] divides [I" : T'(q)]. The inverse of the second map is restriction.

For every r > 1, in Section 2.2 we constructed the classes

viz € H' " (o (o\ 2, Z[1/m])" .
and proved they are invariant under the action of I', and belong to the —1-eigenspace for the

action induced by w := diag(1,—1,1,...,1) € GL,(Z) in Lemma 2.11 and Lemma 2.12.

Definition 4.1. For r > 1, let ¢, € H" (T, Z[1/m]) be the group cohomology class corre-
sponding to v}z, via the isomorphisms of (10).

Similarly as above, w € GL,,(Z) induces an action on group cohomology for I',(q) (as well
as for I';) via conjugation. This is compatible with the involution in singular cohomology
induced by w considered in Section 2.2 via (10). It follows that ¢, € H" (T, Z[1/m])~,
where here and form now on the superindex — indicates the —1-eigenspace for w.

The trace compatibility of the singular cohomology classes (v} z,), leads to the compatibility
of the group cohomology classes (¢, ), with respect to corestriction maps.

Proposition 4.2. For r > 1 let cor: H" " Y(T,41,Z[1/m]) — H* (T, Z[1/m]) be the core-

striction map. Then, cor(c,41) = ¢y.

Proof. Denote by c.(q) € H" 1 (T'+(q), Z[1/m])'" the image of v}z, via the first isomorphism
n (10). Since this isomorphism is compatible with respect to pushforward and corestriction
(see [Bro82, Chapter III, Section 9 (E)]), it follows from Proposition 2.16 that if

corg: H" 1 (Tria(q), Z[1/m]) — H" (T (q), Z[1/m]),
denotes corestriction in group cohomology, then cory(c,+1(¢)) = ¢r(¢). This implies that
cor ([Ir41 : Drya(g)]err) = [Ir : T (g)]er
which leads to the desired result as [['y41 : I'yy1(q)] = [y : T (q)] € Z[1/m]*. O

It is a computation to verify that the corestriction maps are equivariant with respect to

the involution w. From there, we conclude

(¢r)r € Jm H" (T, Z[1/m]) ™.
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4.2. Cohomology class with coefficients in Z[1/m]-measures. We first describe the
action of w € GL,(Z) on group cohomology with coefficients. For every r > 0 (including
I’y =T'), conjugation by w induces the automorphism «: I', — I';, a(v) = wyw. Then, if M

is a GL,(Z)-module M, we can consider the morphism of complexes of group cochains
c*(I'y,M) — C*(I'y, M), c—>wocoa,
which induces an involution w on H*(T',, M). We will denote by H* (T, M)~ the (—1)-

eigenspace for w.
For r > 1, let X, := (Z/p"Z)" — (pZ/p"Z)™ and if A is an abelian group, denote

D(X,, A) := Maps(X,, A).

It admits a left action of GL,(Z) given by (g-\)(x) = Mg~ 'z), for g € GL,(Z), A € D(X,, A),
and z € X,.. Let z,. := (1,0,...,0)! € X,.. Since the stabilizer of x, in T is T, we deduce that

we have a I'-equivariant isomorphism
coIndll:T(A) = D(X,, A), fr— Ay,

where A\f(x) = f(v) for v € I such that yx, = x. In particular, Shapiro’s lemma induces an
isomorphism

HY(T,D(X,, Z[1/m]) = H (T, Z[1/m]), [\ — [c())] (11)
where ¢(A\)(Y0,---,7%) = A(Y0,---,7%i)(zr). Moreover, the isomorphism is equivariant with

respect to the action of w.

Definition 4.3. For every r > 1, define u, € H" 1(I',D(X,, Z[1/m]))~ to be the image of ¢,

by the inverse of the isomorphism induced by Shapiro’s lemma given in (11).

Consider the GL,(Z)-equivariant maps
U1 D(Xpy1, A) — DX, A), upga (f) (@) = Z f@). (12)

$,€Xr+1
r’=x mod p”

It follows from the compatibility of the classes (¢,), € im H "=YT,,Z[1/m])~ proven in

Proposition 4.2, that we have a compatible system

(tr)r € Yim H" (0, D(X,., Z[1/m])) ",

where the transition maps are given by wu, for every r > 2. This statement can be proven
using Chapter III, Section 9 (A) of [Bro82], which leads to describing the corestriction maps
in terms of the map given by Shapiro’s lemma and u,.

Denote by D(X, A) the space of A-valued distributions on X. An element of A\ € D(X, A)
is determined by the values A\(U) of the characteristic functions of compact open sets U. In
particular, it is determined by the images of the following compact open sets. For z € X,,
choose any lift of it in X, also denoted by x, and let

Upjpr =2 +p"Z, CX. (13)
Endow D(X, A) with a left action of GL,(Z) given by (g- A\)(U) = A(¢g~'U) and define
D(X, A) —» D(X,, A), A — A,
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where for z € X, A.(z) = A(U,/pr). This discussion implies the following lemma.

Lemma 4.4. Let A be an abelian group. The map

D(X, A) = Im D(X,, A), A— (An)y,

18 a I'-equivariant isomorphism.

We will now combine the compatible system of classes (u,), to a group cohomology class
valued on D(X, Z[1/m]). First, we note the following fact regarding the cohomology of I' = T’y
and the congruence subgroups I',. for r > 1 in the stable range, which is a consequence of the
work of Li and Sun [LS19].

Lemma 4.5. For every r >0 and 0 <i < n — 2, the group H (T, Z[1/m])~ is finite.

Proof. Denote by T, the stabilizer of v, € Q™ /Z"™ in GL,(Z). Then, Shapiro’s lemma implies

the following isomorphisms.
HI(T,,R)™ = Hi(T, R(det) = H(GLa(Z), 1),
where [ := coIndGL"(Z)( R(det)). Since IG%(%) = 0, again by Shapiro’s lemma, it follows from
Example 1.10 of [LSlQ] that
HYI',,R)™ = 0.

It is now an application of the universal coefficient theorem that H*(T',, Z[1/m])~ is torsion.

By [BS73, Theorem 11.4], the group I, is of type (WFL). In partlcular, it is of type (VFL).
By the Remark in Page 101 of Section 1.8 of [Ser71], and the universal coefficient theorem,

it follows that H*(T,,Z[1/m])~ is finitely generated over Z[1/m]. Since it is also a torsion
group, we deduce that it is finite, as desired. O

Proposition 4.6. For every 0 < i < n —1, the map A — (\;)r of Lemma 4.4 induces an
isomorphism

H' (T, D(X, Z[1/m]))” = lim H'(T, D(X,, Z[1/m])) ™.

Proof. To simplify the notation, denote D := D(X, Z[1/m]) and D, := D(X,, Z[1/m]). For a
group G, a G-module M, and j € Z>q, let

CY(G, M) := Homg(Z[G' 1], M),

where the action of G in G/*! is diagonal. The complex C*(G, M) with the usual coboundary
maps computes the group cohomology of G with coefficients in M.
The surjective morphisms %, mod p"~': D, — ID,_; obtained by taking the maps in (12)
modulo p"~! induce a map
u=(u): [[C'(T, D) — [[ /(T D).
r>1 r>1

Since wu, is surjective for every r, u is surjective. It can be deduced from there and the

expression of u, that 1 — u is also surjective, where 1 denotes the identity. In particular, we
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have a short exact sequence of complexes
0 — C*(I,D) — [[ c*(r,p,) =% J] C*(r, D)) — 0.
r>1 r>1
Note that to justify exactness in the middle, we used that D = @r D, by Lemma 4.4. Since
2 is invertible in Z[1/m], we can consider the w = —1 eigenspace of the corresponding long
exact sequence in cohomology. This yields to the short exact sequence

0 — R'lim H'Y(I,D,)” — H(I,D)” — Lim H'(T',D,)” — 0, (14)
T T
where we used that

: - _ - - i _
R'lim H* (I, D) = coker [ [[ #'(T,D,)” —% [[ #* (I, Dy)
T r>1 r>1
Finally, since H*~Y(T', D)~ ~ H*~Y(T',, Z[1/m])~ is finite for i—1 < n—2 by Lemma 4.5, it fol-
lows that (H*~*(T, ]D)T‘)_)r satisfies the Mittag—Leffler condition. Thus, R! lim H-YT,D,)” =
0 for every i — 1 < n — 2 proving the desired isomorphism. U

Definition 4.7. Define
i€ B0, D(X, Z[1/m]))"

to be the class corresponding to (i), via the isomorphism of Proposition 4.6.

Remark 4.8. The class u viewed as a class with coefficients in Z,-valued measures on X is
equal to the restriction of the classes considered in [BKL18, Definition 1.8.4] to measures on

primitive vectors on Z;.

4.3. Cocycle with coefficients in R-distributions. Using the differential form .F, intro-
duced in Section 3, which represents the Eisenstein class, we give an explicit representative of
the image of y, € H* YT, D(X,,Z[1/m])) in H* YT, D(X,,R)). This will be used to lift x
to a class valued in measures of total mass zero and to compare our constructions to special
values of L-functions.

Lemma 4.9. Letr > 1 and let z € 2" be an arbitrary point. The map
Cox By - F:,L — R, (’yo,...,’yn_1> — ’U:CEw,
A0, Yn—17)

where A(yoz,...,Yn—12) denotes the geodesic simplex in Z with vertices {v;z};, defines a
group cocycle and represents the class ¢, € H" (T, R).

Proof. The form v;.E,; on 2 is closed and invariant under the action of I';.. It follows from
there that c,x g, is a group cocycle and its cohomology class is independent of the choice of
point z € Z.

We proceed to see that the class of ¢, g » 18 ¢ For this, note that Theorem 3.7 im-
plies that v} Ey descends to a closed differential form on I';(q)\Z representing v}z, €
H" 1(T(¢)\Z",R). Thus, the image of v}z, by the first map in the isomorphism (10) (with
coefficients in R) is represented by the restriction of c,x g ,» to I'»(¢)". In particular, it follows

from the definition of ¢, that [cyx.5,] = ¢ O
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Fix z € 2 an arbitrary point. Define a cocycle

,va,’chz/,: Fn — ]D)(XraR)v (707 o 7771—1) — (1? — /A( (x/pr)*CETZ)> )

Y0ZseeyYn—17)
where x € Z" is a lift of T € X,, z € % denotes a fixed arbitrary base point, and
A(Y02,...,Yn—1%) is defined as in the lemma above.

Proposition 4.10. We have [p;.5,] = pr when viewed as classes in H" (I, D(X,, R)).

Proof. First observe that ;. g, is a group cocycle. This follows from the fact that .Ey is

r

closed and invariant under I". Now, the proposition follows from observing that [p,» .k w} maps
to [cyr .k, ] via the isomorphism given by Shapiro’s lemma

H" (T, D(X,,R)) = H" (T, R)
described in (11), Lemma 4.9, and the definition of p, (see Definition 4.3). O

Consider the I'-equivariant morphism given by taking the total mass of a distribution
D(X1,R) — R, Ar— Y Ax).
zeXy

Corollary 4.11. The corestriction map H" ' (I't,R) — H" YT, R) maps c; to 0. In partic-
ular, the morphism induced by taking the total mass of a measure

74Ty, D(Xy,R)) — H" (T, R)
maps py to 0.

Proof. The corestriction map can be written as
H" Y(I'1,R) = H* (I, D(X,R)) — H" (T, R),

where the first map is given by the inverse of the map given by Shapiro’s lemma, and the
second one is the map induced by taking the total mass of a measure (see [Bro82, Chapter
I1I, Section 9 (A)]). In view of this observation and of Proposition 4.10, it is enough to prove
that the image of [Mv’{c E ¢] by the second map is trivial. For that, observe that such image is

represented by the cocycle
(’Yoa"'vvnfl) — Z (x/p)*CEl/)
A(Y02yeYn—12) zeXq
It follows from Proposition 3.10 that the sum of differential forms in the integral is equal to

zero, giving the desired result. O

4.4. Lifting to measures of total mass zero. To construct rigid classes, it is useful to lift
the class p to a class with coefficients in measures of total mass zero. Let Dy := Dy(X, Z[1/m])
be the sub-module of D := D(X, Z[1/m]) consisting of measures A € D such that A(X) = 0.

Consider the short exact sequence
0— Dy —D— Z[1/m] — 0. (15)

Proposition 4.12. The image of j by the map H" Y(I',D) — H" (T, Z[1/m)]) is torsion.
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Proof. The result follows from Proposition 4.11. O

As we explained above, w = diag(1,—1,1,...,1) € GL,(Z) acts on the cohomology groups
HY(T,Z[1/m]), H(T',Dy), and H*(T',D). Moreover, (15) yields a long exact sequence

0=H"?*I,Q  — H"(I',Dy)g — H" '([,D), — H"(I',Q)",

where the subindex denotes taking the tensor product with Q over Z[1/m] and we used Lemma
4.5 for the vanishing of H"~2(I',Q)~. Thus, by Proposition 4.12, 1 admits a unique lift to a
class in H"fl(F,Do)@.

Definition 4.13. Let
po € H" (T, Do(X, Z[1/m]))g (16)
be a a lift of y € H" YT, D)q.

Remark 4.14. If a is any integer prime to p, we denote [al, as the GL,,(Z)-equivariant operator
on D(X,) or D(X) given by pushforward of measures along the multiplication-by-a map X, —
X, (resp. X — X). Then Remark 2.10 implies that for any ¢ and d coprime to p and each
other

([t = apr = ([ — d")epr,
where the pre-subscripts, as before, denote the class associated to the corresponding smooth-
ings. Then Proposition 4.6 implies the same for the inverse limit class pu. Note that the

-1

pullback [a]* on the cohomology of the torus induces [a], ' on the distributions over torsion

specializations. From there, we deduce that, up to torsion,
([ = apo = ([d]. — d™)epo-

5. DRINFELD’S SYMMETRIC DOMAIN AND LOG-RIGID CLASSES

In this section, we introduce Drinfeld’s p-adic symmetric domain Z,. Then, we define a lift
from measures on X = Z — pZy of total mass zero to log-rigid analytic functions on 2. This
leads to construct a log-rigid class Jg r as the image of the class ug € H" (", Do (X, Z[1/m]))g
of the previous section by such lift. We conclude by defining the evaluation of Jg » at points
T € %, attached to totally real fields where p is inert.

5.1. Drinfeld’s domain and rigid functions. Drinfeld’s p-adic symmetric domain is de-
fined as 2, := }P’"_l((Cp) —Upgey H, where H is the set of all Qp-rational hyperplanes. It has
the structure of a rigid analytic space, which we proceed to describe following [SS91].

For a given H € H, let {7 be an equation of H such that its coefficients form a unimodular
vector in Cj. Also, if z € P"=1(C,), we will always assume z = [(20, ..., zn—1)] is represented

by a vector with unimodular coordinates. For m > 1, define

,%”pgm = {2z € P""1(C,) | ord,(£x(2)) < m, for all H € H}.

The family {,%”pgm}m forms an admissible covering of .2}, by open affinoid subdomains.
The ring of rigid functions on ﬂ&”pgm can be described as follows. Let H,, be the set of

equivalence classes of H modulo p™. Also, fix H,, a set of representatives for the equivalence
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classes in H,, 1 containing the coordinate hyperplanes H; = {z; = 0} forevery i = 0,...,n—1.
For H, H' € H, define the function fy g : 2, — C,

_ tu(?)
EH/ (Z) '

frm(2)
Then, observe that we can describe
%Sm ={z€ 2, | ordp(fum (z)) > —m for all H, H' € H,}.
Let A,, be the affinoid @,-algebra obtained as the quotient of the free Tate algebra over Q,
in the indeterminates {Ty u'}y preg,, modulo the closed ideal generated by
TH,H —pm, for H € ﬁm
TH,H’TH’,H” — meH,H”a for H, Hl, H" ¢ ﬁm,

r—1 n—1
ThnH, — Z)‘iTHi,va if lp(z) = Z)‘izi for H € H,, and 0 < j <n — 1.
i=0 i=0

The previous descriptions of %,Sm and A,, lead to the following result.

Proposition 5.1. Denote by AS™ the ring of rigid analytic functions on ,%”pgm. Then, we

have an isomorphism of Qy,-algebras
Ay = AS™ Ty g — p™ fr.
In particular, it induces an isomorphism of rigid spaces %Sm = Sp(An).
Proof. See proof of Proposition 4 of [SS91]. O
In particular, AS™ is a Banach algebra with respect to the supremum norm.

Definition 5.2. The ring of rigid analytic functions on %2, denoted by A, is the space of
functions f: 23, — C, such that for every m, their restriction to 2,=™ belongs to AS™,

We will also consider a larger space of functions on 2, called log-rigid analytic functions.
Let log,: C; — C, be the branch of the p-adic logarithm satisfying log,(p) = 0. A function
f: %Sm — C,, is log-rigid analytic on %ﬁm if it can be written as

f=rfot+ > cumlog,(frmu(2)),

H.H'eH

where fo € AS™ and cy g € Q, are all but finitely many equal to 0. Denote the space of
log-rigid analytic functions on %ﬁm by A%m.

Definition 5.3. The space of log-rigid analytic functions on %2, denoted by A, is the space

of functions f: £, — C, such that for every m, their restriction to g{pﬁm belongs to Aim.
The following lemma will be useful to study log-rigid functions in the next sections.

Lemma 5.4. Let m > 1, and let H, H' € H be hyperplanes with equations {x and £pr which

are congruent modulo p™ L. Then, the function
VE e%pgm — Cp, z+— log, (fu,m(2))

is rigid analytic on %Sm.
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Proof. Observe that we can write
Crr(2) — EH(@)
z) =lo 1—-——"—7.
) =tog, (1 L
Moreover, since £ = ¢z mod p™t! and z € %,Sm, we have
ord, (L) = Lu(2)) o
Ui (2)
Therefore,

1 (i (2) = () \*
which is rigid analytic on ,%”pgm. a

Observe that matrix multiplication induces a right action of SL,,(Q,) on £}, given as follows.
For g € SL,(Qp) and z € Z;, represented by a vector in C}, that we also denote by z, we have

(2,9) = lg"2],
where ¢' € SL,,(Q,) denotes the transpose of g. This induces a left action of SL,,(Q,) on the
space of C,-valued functions on 2. If g € SL,(Qy), f is a function on £, and z € 2,

(9- f)(2) := f(g"2).
This action preserves the subspaces A and Ag.

5.2. Lifts from measures to functions on 2. Recall that 2, consists of the points in
P"1(C,) that do not belong to a Q,-rational hyperplane. On the other hand, a point in
X = Z; — pZ, gives the equation of a Q)-rational hyperplane. This suggests considering the

two-variable function

((Cg - U H> xX —Cp, (z,2) — logp(zt - T),
HeH

Integration with respect to the variable x € X will induce a map from total mass zero measures

on X to functions on 2.

Lemma 5.5. Let A € Dy(X,Zy,). The function F: %, — C,, given by

z+— F(z):= / logp(zt - x)dA,
X

where z in the right hand side denotes an arbitrary representative in C} of z € %2, 1s well-
defined and belongs to Ag.

Proof. For every r > 1, fix V,. a set of representatives in Z" of X, = (Z/p"Z)" — (pZ/p"Z)"
and define
fri Zp —Cp, 2+— Z AUy pr) log,, (2" - ),
VeV,
where U,/ C X is as in (13). Observe that since A(X) = 0, f.(2) is independent of the
choice of representative of z in Cj, showing that f, is a well-defined function. For the rest
of the proof we will assume that the representative of z (also denoted z) is chosen so that its

coordinates are unimodular. We follow the next steps:
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e [ is a well-defined function on 2. Indeed, for z € C; — (Jgcy H, the function

reX— logp(zt - x) is continuous on the compact set X. Thus, the integral defining

F(z) converges and we have pointwise convergence

F(z)= lm f.(2).

r——+o00
The sequence ( fr| %pgm) converges to F| asm with respect to the sup norm for m > 1.
To simplify the notation, denote by (f,) and F' the restrictions of these functions
to prgm. To prove that (f,), converges to F' with respect to the sup norm it is
enough to see that (f,), is Cauchy with respect to this norm. Observe that, if we let
m: Ver1 — V. be the lift of the reduction modulo p” map X,;1 — X, and use that A
is a measure, we have

(@) = £r(2) = D2 AMUspprr) log, (Ztv)

t .
veEVry1 i 7T(U)

= Y A(U,pe1) log, <1+Zt-<v—7r(v)>>_

t.
T zt-m(v)

Since v = 7(v) mod p", we deduce that for every z € Z,=™
t.(p —
ord, (W) Srom,
2t (v)
Thus, if » > m, we can use the power series expansion of log(1 + x) to deduce that

ordy(fr+1(2) — fr(2)) > r —m for all z € %”pgm

It follows from there that (f,), is Cauchy.
F € Ar. Let m > 1 and denote by (f,), and F' the restrictions of these functions to
38;5’”. It is enough to see that F' belongs to A%m. With this aim, write

F = < lim (fr_fm+l)) + fm+1-

r—-+00

We claim that lim,_, oo (fr — frn+1) is a rigid analytic function. Indeed, we can write

Zt -V
fr(2) = fmi1(2) = Y MUyjprsa)log, ( . 7r7”—<m+1>(v)> '

v€EVrt1

Since v = 7"~ (™D (y) mod p™t!, it follows from Lemma 5.4, that f, — fy,.1 is rigid
analytic on %ﬁm. Then, since the sequence (f, — fim+1)r converges with respect to
the sup norm by the previous point of this proof, and AS™ is complete with respect
to this norm, we deduce the desired claim.

On the other hand, since A has total mass zero, we have that f,,11 € A%m, as it
can be written as a linear combination of log,(fm,g'(2)) for Qp-rational hyperplanes
H,H' € H. Hence, we deduce that F' € AEm and we are done.

g

In view of the previous lemma, we can define a lift from measures of total mass zero to

log-rigid analytic functions on %.
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Definition 5.6. Let ST be the morphism given by
ST: Do(X,Z[1/m]) — Ar, A +—> <z — /Xlogp(zt . x)d)\) .
The morphism ST is I'-equivariant. Therefore, it induces a map in cohomology
ST: H" (', Do(X, Z[1/m])) — H" (T, Ag).

Using this map, we obtain our desired log-rigid analytic class.
Definition 5.7. Let uo € H" YT, Do(X, Z[1/m]))g be as in (16). Define

Je.c = ST(mo) € H* (T, Az)g-

As with the cocycles pg, we have the following independence-of-¢ result, where we here, as

before, denote dependence on the smoothing with a pre-subscript.

Proposition 5.8. If ¢, d are coprime to each other and also to p, we have
(1 — dn)cJEﬁ = (1 — Cn)dJEyg.

Proof. For any prime-to-p scalar a, we have ST o [a], = ST, as if A € Dy(X, Z[1/m])

/Xlogp(z -x)d([a]*)\):/Xlogpaleogp(z ~:Jc)d)\:/xlogp(z ~x) dA

with the last equality by A(X) = 0. Then the result follows by passing to group cohomology
for I' and applying Remark 4.14. g

In particular, (1 — c”)_chE’g is independent of ¢, though this introduces denominators.

Remark 5.9. Suppose n = 2 and consider Jpr € H'(SL2(Z), A*)~ a lift of (the restriction
to SLy(Z) of) Jpr € H'(SLa(Z[1/p]), A*/C))~ constructed in [DPV24]. By comparing the
constructions of Jpr and Jg ¢, we deduce Jg o = logp(jDR).

5.3. Evaluation at totally real fields where p is inert. Let F' be a totally real field of
degree n where p is inert and denote by o1, ..., 0, the collection of embeddings of F' into R.
Let a be an integral ideal of F' of norm coprime to pc. Fix {7y,...,7,} an oriented Z-basis of
a~!, in the sense that the square matrix (0;(7;));; has positive determinant, and let 7 € F"
be the column vector whose ith entry is equal to 7;. The vector 7 induces an isomorphism of
Q-vector spaces

Q" =5 F, z— 7t .
The action of multiplication by F* on F', which is Q-linear, gives an embedding

F — M,(Q), a— A, (17)
determined by the following property: for o € F and z € Q", a(r! - x) = 7 - (Anx).
Lemma 5.10. The element T € P"~1(C,) belongs to 2, and is fized by F! — SL,(Q).

Proof. The coordinates of 7 give a (Q-basis of F. Since p is inert in F, the coordinates of 7
also form a Q,-basis of the completion of F' at p. In particular, they are independent over Q,,.
In other words, 7 € 2,,. Finally, for every a € F we have AL, 7 = ar by the property stated
below (20). In particular, 7 € 2, is fixed by the action of F! < SL,(Q). O
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Let Up be the subgroup of totally positive units in O. We view Up as a subgroup of T'.

Consider the following morphism in cohomology induced by evaluation at 7
H" YT, Az) &5 H" N (Up, Cy).

By Dirichlet’s unit theorem, Up ~ Z"~1. Therefore, H, 1(Ur,Z) ~ Z, and we can fix a
generator of this group ¢y, € Hy—1(Ur, Z).

Definition 5.11. Consider the same notation as above, and let J € H" }(I", Az)g. Define
the evaluation of J at [7] € 2}, by the cap product

J(1] == cup —~ ev(J) € Cp.

Observe that, since Jg, = ST(uo), it follows from the description of the map ST that
Jec[t] € Fp. We also note that this definition depends, up to a sign, of the choice of
generator ¢y, € H,—1(Ur,Z). In the next section, we will make a precise choice of generator
when comparing the local trace of these values to the local trace of p-adic logarithms of

Gross—Stark units.

6. TRACES OF VALUES OF THE LOG-RIGID CLASS AND THE GROSS—STARK CONJECTURE

Let F be a totally real field where p is inert, let a be an integral ideal of F' coprime to pc,

1 which yields a point

and fix 7 € F™ a vector whose entries give an oriented Z-basis of a~
7 € X,. Recall the log-rigid analytic class Jg ¢ constructed in the previous section and the

value Jg »[7] € F),. In this section, we prove

TrFP/@pJErl:[T] = _L;/D(l[a},p’ 0)7

where L; (11 p, s) denotes a p-adic partial zeta function attached to the class of a in the narrow
Hilbert class group of F'. From this expression and the rank 1 Gross—Stark conjecture, we

obtain the equality
Tre, /0, /E.C [T] = Trg, /g, log,(u™)

for u%+ a Gross-Stark unit in the narrow Hilbert class field of I attached to the class of a.

6.1. p-adic L-functions and Gross—Stark conjecture. We state the the Gross—Stark
conjecture in a simple setting. For more details, we refer the reader to [Das08, Section 2]. We
begin by introducing the following notation. For an integral ideal § of F', denote by Gj the
narrow ray class group modulo f. It is obtained by taking the quotient of the set of integral

ideals in F' which are prime to f by the relation
b ~; ¢ if and only if be™' = (\) for A € 1+ fe ™! totally positive.
Then, if € is a Q-valued function on Gj, we let
L(e,s) = Y _ £(b)Nb~*,
(b,f)=1
where the sum is over integral ideals which are coprime to f. This sum converges for s € C

such that Re(s) > 1 and it can be extended via analytic continuation to a meromorphic
function at C with at most a pole at s = 1, that we will still denote by L(e, s). Recall that ¢
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is a positive integer prime to p and denote by &. the function on Gj given by e.(b) = £((c)b).
For k € Z>1, consider

Ac(e,1 — k) :=L(e,1 — k) — " L(g, 1 — k).

It is result of Klingen and Siegel that A.(e,1 — k) € Q(e), where Q(e) denotes the field
generated by the values of €. Deligne-Ribet and Cassou—Nogues refined this statement by
studying the integrality properties of these values. Their study results in the existence of
p-adic analytic functions interpolating these values, which we proceed to outline for the case
of partial zeta functions.

Let G := @T> ) Gpr, where the limit is taken with respect to the natural projection maps
Gy
map G — G, and denote by 1

r+1 — Gpr, let Hy be the open subset of G consisting of the pre-image of a via the natural
a,p: G — Z the characteristic function of Hy. If e: G — Z is
locally constant, it factors through G- for some r > 1. We then define L(e, s) by viewing e

as a function on G-, which is independent of the choice of r.

Theorem 6.1. For e: Hy — Z locally constant, consider the product €l ;, and view it as a

al,p
locally constant function on G.
(1) If k > 1, we have Ac(eljg,, 1 — k) € Z[1/c].
(2) The distribution pq: € = Ac(ellq) ,0) defines a measure on H,.
(8) The function
Ly(Nayps o) : Zp — Ly, s+ H (Nb) ™ *dpia(b)

18 analytic and is characterized by the following interpolation property: for every in-
teger k > 1 such that k =1 mod [F(pgp) : F,

Ly(Lgpr L — k) = Ac(ljgp 1 — k). (18)

al,ps

Proof. See Theorem 0.5 of [DR80]. O

Observe that L(l[aLp, s) is a partial zeta function with the Euler factor corresponding to p
removed. This implies that A¢(1q ,,0) = 0 and, by (18), Ly(1(q,,,0) = 0 as well. The Gross—
Stark conjecture gives an arithmetic interpretation for the value of the derivative L;)(l[a]yp, 0)
with respect to s at s = 0. For that, let H be the narrow Hilbert class field of F' and consider
the following subgroup of p-units in H

Oull/p]” :={z € H* | |z, = 1 Va1 p},

where q runs over all archimedean and nonarchimedean places of H not dividing p. Fix p a

prime of H dividing p.
Proposition 6.2. There exists a unique element u € Og[1/p]* ® Q satisfying
ordp(u”®) = Ac(1g),0) for all a coprime to p,

where 1y denotes the characteristic function of [a] on Gy and, here and from now on, o4 €
Gal (H/F) denotes the Frobenius element associated to a.
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Remark 6.3. If every prime factor of ¢ is greater than n 4 1, the Brumer—Stark conjecture,
proven in [DK23] and [Das+23], implies that in fact u € Og[1/p]”*. Indeed, the quantities
Ac(e,1 — k) can be written as a linear combination of values of (smoothed) partial zeta
functions (g r(o,1 — k) considered in [Das08] for 7" running over subsets of the set of prime
ideals of F' dividing cOp. Under the condition on ¢ given above, each of these subsets satisfies

the assumptions to apply the proof of Brumer—Stark, see [Das+23, Section 1.1].
Since pOp splits completely on H, we have H C H, = F),.
Theorem 6.4 (Gross—Stark conjecture). Let u be as in Proposition 6.2. We have
Ly (11q),p,0) = —log, (N, o,u’®) for all a coprime to p.
Proof. See [DDP11] and [Venl5]. O

6.2. Periods of the Eisenstein class along tori attached to totally real fields. We use
the differential forms representing the Eisenstein class of Section 3 to prove that pullbacks of
the Eisenstein class by torsion sections encode special values of zeta functions of totally real
fields. A general version of the result was proven in [BCG20, Section 12.6] using an adelic
framework, and we specialize their results and outline the proof below for the cases that will
be relevant for us. Our calculations are similar to those in Section 4.2 of [BCG23|.

Recall that F is a totally real field of degree n where p is inert, a is an integral ideal of F’
prime to pc, and 7 € F™ is a column vector whose entries give a positively oriented Z-basis of

a~!. As we saw in the previous section, 7 induces a Q-linear isomorphism

f:Q" = F, x> 1t 2. (19)
The action of multiplication by F'* on F', which is Q-linear, gives an embedding

F— M,(Q), a+— A, (20)

determined by the following property: for all & € F and z € Q", a(r! - z) = 7t - (Aa7). Let
(F ® R)} be the subset of totally positive elements of norm 1. The embedding (20) induces
an oriented map (see Section 12.4 of [BCG20] for more details on the orientation)

i (FeR)L — 2.

Denote by Up the subgroup of totally positive units in Q. Since Up has rank n — 1 by
Dirichlet’s unit theorem, it follows that

X(F):=Up\(F®R)} (21)

is a compact oriented manifold of dimension n — 1.
We now introduce a linear combination of pullbacks of the Eisenstein class that we will
integrate along X (F). For r > 1, let

x: (a7t —pa) /plat —Q

be an Oj-invariant function, where here and from now on, (a_l - pa_l) /p"a~! denotes the
set a~! — pa~! modulo the translation action by p"a~!. Recall X, := (Z/p"Z)" — (pZ/p"Z)"
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and observe that dot product with 7 induces a bijection

X, = (a7t —pat) /pral. (22)

1 1

, and the rest of their values

are determined by the value of x on the residue classes modulo p"a~!.

We will sometimes view x as a function on a=* which is 0 on pa™

Definition 6.5. Consider the same notation as above. Define

Eryoi= Y xler'-a) (a/p")* By € 012, (23)
zeX,

For s € C, we define E,,(s) as above but replacing .Ey by Ey(s) = Ey(c1Z",s) —
c"Ey(Z", s) in the definition.

Lemma 6.6. The differential form E., on 2 is invariant under Ur C I', where the inclusion
of Up in T" is induced by (20).

Proof. For v € T, note that we have v*v*.Ey = (yv)*.Ey. Then, if y e Up C T

Y Ery =Y xlert - a)(ya/p') By

zeX,
= 3 xler v ) @/p) By
zeX,
= > x(eer" @) (x/p) By
zeX,
= > xler" @) (x/p") By,
zeXr
where we used that 7iy~! = e7t, for ¢ € Ur the preimage of y~! by (20) and that y is
Up-invariant. O

Thus, ifE; , defines a closed form on X (F') and we can consider

/ B .
X(F)

We will express this integral in terms of L-values. Observe that we have a bijection
(a7t —pa™t) /p"a™?) JUp =5 {b € Gpr | b ~1 a} = Gpr, [N — [a(N)],  (24)
where A € a~! is a totally positive element in [A]. We can use this bijection to consider
Xyt Gpr — Q,

where 1j5, denotes characteristic function of the preimage of [a] € G7 via the projection

Gpr — G1 and x is viewed as a function on the preimage of [a] in G via the bijection above.

Lemma 6.7. We have

.1 x(a)sign(Nea)
L(Xl[a],}ﬂo) = 2%27 Z |NO[’S Y
anF\a—1

where on the right hand side, lim,_,o denotes evaluation at s = 0 of the analytic continuation.
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Proof. The result can be deduced from equation (7.15) of [Cha07], which is originally due to
Siegel ([Sie79)). O

Theorem 6.8. Consider the same notation as above. Then,

/ ixEry = Ac (X1, 0) -
X(F)

Proof. For s € C such that Re(s) > 0, we have

/X i Bde) = /X o (Z x(er! - v) (ofp")* cEw<s>>

veX,
o[ T e ¥ a0,
X(F) veX, AEv/prHc—1zn Aev/pr+Zn

where we recall that n(A, s) was introduced in Section 3.3. Using that n(v/p", s) = p*n(v, s),
and keeping in mind that we will later be interested in evaluating the analytic continuation
of the expression above at s = 0, it is enough to compute

/. PR DIRC ] N DI C RN SRR

veXy AEv+c—lprZn AEv+pTZ™
S R D SRCIT] D DI R F EED SRR
X(F) veX, z€B(v)+ctpra=l z€B(v)+pra~!

- /X(F) | D xeam(Bas) =" Y x(ean(8 a,s)

rec~ a1l rzea~l

We can compute the inner sums by first taking representatives of Ur\c ta™! and Ur\a~!,
that we denote by x, and then running over all elements in Up, denoted by w. Hence, we
obtain that the previous expressions can be written as

/ D WD SRR D I RIS

U'F'\(271Cl71 UF UF\Cl71 UF
= Z X(ca;)/ (B, s) — " Z X(ca:)/ in(B 'z, 5).
Up\c—la—1 (FeR)Y Up\a—! (FOR)L

From [BCG20, Section 12.8], we have that for x € F'
. A _ _ s 1\" sign(N(z))
i*n B 1[13, s) = n/225/2 ny ( + > = S e
/<F®R)1+ 7es) 20 t2) TIN@F
Hence, we deduce
N sign(N(z)) sign(N(z))
irEyy = — lim r)———" — " Cr)
fumy =il T MSRGE - T e

z€Up\a~1 z€Up\a~1

Finally, the desired equality follows from Lemma 6.7. 0
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6.3. The class i and p-adic L-functions. We state the relation between the class p con-
structed in Section 4 and the p-adic L-function Lp(l[a} p»8) introduced above. From there, we
relate Trr, /g, JE,c[T] to traces of p-adic logarithms of Gross—Stark units.

Denote by a, the completion of a at p. For x: a, I pa, L Qp a continuous function that

is Oj-equivariant, define the map

ox: DX, Z[1/m]) — Qp, A — /XX(CTt - x)dA.
Since ¢, is Up-equivariant, it induces a map in cohomology
oy s H NI, D(X, Z[1/m])) — H" 1 (Ur, Qp).
Fix the generator ¢y, € Hy—1(Up,Z) ~ Hy,_1(X(F),Z) ~ 7Z corresponding to the positive
orientation of X (F') in (21). We can then consider the cap product
cvp ~ ¢x (1) € Qp.

To make the notation more transparent, we will write

cur — ox (1) = /XX(CTt-w)du(cUF)-

When Yy is locally constant, this quantity relates to special values of partial L-functions in the

following way.

1

Proposition 6.9. Let x: a;l —pa " —» (cf1 — pail) /p"at — Q be an O -invariant func-

P
tion. Then,

/Xx(m't ~x)dp(cuy,) = Ac(l[a]px, 0).
Proof. Consider the Up-equivariant morphism

o DXy, Z[1/m]) — Qp, Ar— Y x(er’ - )M (T).
zeX,

Since x factors through (a_l — pa_l) /p"a~1, it follows that

CUp ™ @x(,u) =Cup ™ ‘Px,r(ﬂr)a (25)

where p, € H" Y(T,D(X,,Z[1/m])) is the class described in Definition 4.3. In particular,
cup —~ ©xr(r) € Q. Fix an embedding Q C C. Then, the right-hand side of (25) can be
computed using a representative of the image of p, in H" (T, D(X,,R)). By Proposition

4.10, such a representative is given by

'YOZV--y’Ynflz)

or: I — DX, R), (Y0, Vn—1) — (f — /A( ($/pr)*cE¢) ,

where z € 2 denotes an arbitrary point and A(7ypz,...,¥n—12) is the geodesic simplex in 2~

with vertices {7;z};. Hence, (25) can be written as

* t T * *
L x(ert - z)(x/p")" E 2/ trEr
/X(F) S xlert - a)(a/p) By ,

zeX, X(F)
where X (F) is given in (21) and E;, in (23). By Theorem 6.8, the result follows. O
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Let Ur denote the completion of U in OF . The previous proposition has an interpretation
in terms of measures on a, L pa, 1 /UF, that we proceed to explain. Cap product with CUp

yields the morphism
H"H(Up,D(X, Z[1/m]) — D(X, Z[L/m))y,.

In addition, if we identify X = a, ! via dot product with 7 € F", and denote 7: a, I pa, L

(a;1 - pa;l)/UF the quotient map, we can define
h: D(X, Z[1/m])u, — D ((a," = pay ') /Up, Z[1/m])
in the following way: for [u] € D(X, Z[1/m])y, and V C (a,'—pa,!)/Ur open set, h([A])(V) :=
A(x~1(V))). We can then consider these two maps and view cy, —~ pyy, as an element in
D(a,! —pa,/Up, Z[1/m]).
Moreover, the bijection given in (24) considered for every r > 1, induces a homeomorphism

a,' —pa,!/Up = Hy C G =lmG,r.

Corollary 6.10. Let u, be the measure on Hy considered in Theorem 6.1. Via the homomor-

phism above, we have cyp —~ p, = pa- In particular, for s € Z

Lp(l[a],pa s) = /X<N(Q)NFP/QP (CTt : x)>—8 dlu’(CUF)‘

Proof. The equality cy, —~ pjy, = pq follows from the discussion above, Proposition 6.9 and
Theorem 6.1. O

As a consequence, we obtain the relation between the local trace of Jg £[7] and the local
trace of the logarithm of a Gross—Stark unit.

Theorem 6.11. Let u € Og[l/p]* ® Q be the Gross—Stark unit introduced in Proposition
6.2. We have,

Trp, 0, E.clT] = Trp, g, log,(u).
Proof. By viewing Do (X, Z[1/m]) C D(X,Z[1/m]), we can consider cy, — ¢y, (o) € Qp,
where s € Z,, and

-1 s

Xsta,t —pa,t — Q. ar— (N(a)NF, /g, (@) "

Moreover, since jig is a lift of j1, Corollary 6.10 implies that for every s € Z,,

CUr ™ Pxs (po) = Lp(l[a],p’ s).

Then, it follows from the definition of Jg ; = ST (1), and the fact that ;o takes values on
measures of total mass zero, that Trp /g, JEc[T] = —L},(1}q,0). Hence, the result follows
from Theorem 6.4. O

7. CONJECTURE ON THE VALUES OF THE LOG-RIGID CLASS

In this section, we make a conjecture on the values of the log-rigid class Jg o at certain
points 7 € X, attached to totally real fields where p is inert. Then, we study the conjecture
for the concrete case that F/Q is Galois and the point 7 corresponds to a Gal (F'/Q)-stable

ideal of F. Finally, we provide an observation that motivates the conjecture.
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7.1. Conjecture on the values of Jg [7]. Here and for the rest of the section, we consider
the same notation as in Section 6. In particular, let I’ be a totally real field where p is inert,
let a be an integral ideal of F' coprime to pc, and fix 7 € F™ a vector whose entries give
an oriented Z-basis of a=!
JE,c[T] € F,. Moreover, let H be the narrow Hilbert class field of F', p the fixed prime ideal

of H above p determined by the embedding Q C Q,, and recall that we have the inclusion

, which yields a point 7 € X,,. We can then consider the value

H C H, = F,. Also note that the p-adic logarithm can be extended to a map
log,: Hy' ® Q — H,
by linearity. In view of Theorem 6.11, we make the following conjecture.

Conjecture 7.1. Suppose that F' is a totally real field where p is inert. Let T € X, be as
above and let uw € O[1/p]* @Q be the Gross—Stark unit determined in Proposition 6.2. Then,

JE,E [T] = 1ng (uUa ) )

where o4 € Gal (H/F) denotes the Frobenius associated to the class of a.

When n = 2, the conjecture is true by Theorem B of [DPV24] since, as stated in Remark
5.9, we have the equality Jg c = log,(Jpr)-

7.2. The case of Galois extensions. Suppose that F' is Galois over Q. If the narrow
ideal class [a] is Gal (F//Q)-stable, we prove that log,(cqu) € Q. If moreover the ideal a is
Gal (F//Q)-stable, we show that Jg z[r] € Q,. Thus, Conjecture 7.1 follows from Theorem
6.11 in the case that a is Gal (F//Q)-stable.

Observe that under these assumptions, H is Galois over Q. Denote by D, C Gal (H/Q) the
decomposition group at p. Note that Gal (H/Q), and therefore also Dy, act on Og[1/p]* @ Q.

Lemma 7.2. Let u be the Gross—Stark unit as above and let [a] be a narrow ideal class that
is Gal (F'/Q)-fized. For every n € Dy, we have n(oqu) = oqu in Og[l/p]* ® Q.

Proof. We will use the uniqueness property determining Gross—Stark units given Proposition
6.2. For every ideal b of Op, denote by o, € Gal (H/F') the corresponding Frobenius and
observe

oenoa(u) = m~ oynoa(u) = noy-1(p)0a(t) = 00,1 (pa) (W),
where we used the Gal (F'/Q)-equivariance of the Artin map in the second equality, and the
fact that [a] is Galois fixed in the last one. From there,

ordy(apn0q(u)) = ordy (10,1 (a) (1))
= Ordp(%*l(ba) (u))
= Be(lpy1om) 0)
= Ac(1[pq), 0),
where we used that 7(p) = p in the second equality, Proposition 6.2 in the second to last
equality, and the last equality follows from L(l[n—l(ba)], s) = L(1jpq}, ), which can be verified

from their definition. From the uniqueness asserted in Proposition 6.2, it can be deduced
n(oqu) = oqu in Of[1/p]* ® Q and we are done. O
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Proposition 7.3. Let u € Og[1/p]X @ Q be the Gross—Stark unit introduced above and let [a]
be a narrow ideal class that is Gal (F/Q)-fived. We have log,(oqu) € Q.

Proof. We will see that for every 7 € Gal (H,/Q)), we have 7log,(cqu) = log,(oqu). Consider
the isomorphism given by extending an automorphism in D, C Gal (H/Q) to H,.

Dy — Gal(H,/Qp), 1+ 1.
Observe that the map induced by the p-adic logarithm
log,: Og[1/p]* ®Q — H, ® Q — H,

satisfies the following invariance property: for every n € D, and z € Og[1/p]* ® Q, we have
log,(nz) = 7log,(z). Indeed, this follows from the definition of D, and the Gal (H,/Q))-
invariance of the p-adic logarithm on H,‘. Applying this to 2 = 04(u) and using Lemma, 7.2

we obtain the desired result. O

Remark 7.4. Suppose that ¢ satisfies the condition stated in Remark 6.3. Then, u € Og[1/p]*
and its image under the embedding v € H* C H, = F, lands in Qp. Therefore, by Gross-
Stark,

1
logp(u) = EL;?(l[OF],p? O)

Since the valuation of u at p is equal to A.(1jp,),0), we deduce that, up to a root of unity in
F (see [DK24, Remark 2.7] for a discussion on this ambiguity),

1
U= pAc(l[OF]vO) exp <nL;(1[OFLP’ 0)) .

This gives an explicit formula for u in terms of L-values, generalizing the type of abelian
extensions of F' that can be constructed only from p-adic L-functions, and in particular
Proposition 3.14 of [Gro81] (see also Remark 7 of [DDP11]).

We proceed to study the invariant Jg £[7] in the case that the ideal a is Gal (F//Q)-stable.
In this setting, the isomorphism (19) induces an embedding

O x Gal (F/Q) — GL,(Z)
determined by the following equations: for every x € Q", o € F* and o € Gal (F/Q),
a(rt - x) =" Agz, o(rt - x) = ' A,

Denote Dy := Dy(X, Z[1/m]). Recall that GL,(Z) acts on Dy as follows: for g € GL,(Z),
A € Dy, and U C X compact open

(g- M) =g~ 'U).

Consider also the GLy(Z)-module Do(det) := Do @1 /) Z[1/m](det). We use these actions
and the embedding above to describe an action of O and of Gal (F/Q), on Dy and Dy (det).
In particular, since {1} x Gal (F'/Q) normalizes Up x {1}, we have natural actions of Gal (F'/Q)
on H" 1 (Up,Dy(det)) as well as on the coinvariants (Do),
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Recall the class pp € H" 1(I',Dy)g given in (16). To lighten the notation for the next
proof, by avoiding the appearance of tensor products, let £ € Z>( be such that fpg lifts to an
element in H"~1(I",Dg). Fix such a lift and denote it by jig € H" (I, Dy). Note that

g clt] = / log, (7" - z)d) € F,
X

where A\ := ¢y, — fio € Do)y, and ¢y, € Hp—1(Up,Z) is the oriented fundamental class.
This quantity is independent of the choice of lift fig, as the difference between two such lifts

is torsion.

Lemma 7.5. Let fip € H" Y(T',Dy) and cy, € Hn—1(T',Z) be as above. The element \ =
CUp ™ fo € (DO)UF is fized by Gal (F/Q)

Proof. By Shapiro’s lemma, fig € H" '(I',Dg)~ admits a unique lift via the isomorphism
given by restriction

H" Y (GL,(Z), Do(det)) — H" (T, Dy) ",
that we will also denote by fig. It then follows that the restriction of jip to Ur is Gal (F//Q)-
invariant, as it can be obtained as the image of [ig via the following maps

H" Y (GLy(Z), Dy (det)) —s H" H(Up x Gal (F/Q), Dy(det)) —s H" *(Up, Do(det)) G2 (F/Q),
The result follows as cup product with ¢y, induces a Gal (F'/Q)-equivariant map

H" Y (Up,Dy(det)) = (Do)vry,
which can be verified via a direct calculation. g

Theorem 7.6. Suppose that the coordinates of T € F™ given an oriented Z-basis of a
Gal (F/Q)-stable ideal a=t. We have, Jg c[1] € Q.

Proof. We need to see that Jg [7] € F, is fixed by Gal (F,/Q,). For every ¢ € Gal (F,/Q,)
denote by o € Gal (F/Q) its restriction to F' and note

(el = / log, (o (' - 2))dA
X
:/logp(TtAax)d)\
X

= [ tog, (- 2)d(As ) = el
X
where in the last equality we used that A € (Dg)y, is fixed by Gal (F'/Q) by Lemma 7.5. O

Remark 7.7. Observe that in the theorem above, we only used that pg is a group cohomology
class for SL,(Z) that belongs to the w = —1 eigenspace. Thus, the theorem can be applied
to other rigid analytic classes.

Corollary 7.8. Suppose that F' is a totally real field that is Galois over Q and where p is
inert. Let 7 € F™ with coordinates generating a=t, where a is a Gal (F/Q)-stable ideal, and
let u € O[1/p]* ® Q be the Gross—Stark unit of Proposition 6.2. We have,

Jp.clr] = log, (u®).
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7.3. Example in the Galois case. Consider the same notation as above. In this section,
we give a numerical computation that exemplifies Proposition 7.3, namely the fact that the
conjugates of Gross—Stark units corresponding to Gal (F//Q)-fixed narrow ideal classes belong
to Qp. We used the algorithm developed by Damm-Johnsen, see [Dam24], which is publicly
available. We made minor modifications to the algorithm to output all conjugates of a given
Gross—Stark unit.

Concretely, we take p = 3 and F = Q(v/D) with D = 689. The narrow Hilbert class field
of F', denoted by H, is a cyclic extension of F' of degree 8. The Galois group Gal (H/F) is
isomorphic tothe narrow Hilbert class group of F', denoted by ;. Denote by Fp the set
of binary quadratic forms with integer coefficients and discriminant D. This set is equipped

with a group action of SLy(Z) by linear transformations and we have a bijection

Fp/SLa(Z) == G4

0] = [a, b, ] — [ag] = [(a _bz‘/ﬁﬂ ,

where [a, b, ¢] denotes the class of ax? + bxy + cy?.

The Gross—Stark units are, up to high p-adic precision, roots of the polynomial
65612% — 1134027 — 88225 + 43332° + 26652 + 433323 — 88222 — 11340z + 6561.

More precisely, for every class [Q] € Fp/SLa(Z), the table below gives the image of the
Gross-Stark unit o4, (u) € H via the embedding H C Hy = F),.

TABLE 1. p =3, D = 689. Elements in Fp/SLa(Z) and their Gross-Stark unit.

Q] ord([ag)) | oag(u) € F,

[-20,17,5] |8 ~2(7283498230698546457 + 204278114263245135061/D) + O(3%)
[—-10,7,16] |2 34 . 28799930840163216397 4+ O(3%)

[—10,17,10] | 4 25613292858296352193 + 34405602800800679412v/D + O(3*1)
[—5,17,20] |8 32(28389335835840796072 + 1041259434467889369v/D) + O(343)
5,17, 20] 8 372(7283498230698546457 + 16045184950846272897v/D + O(339)
[10,7,—16] |1 374.23094469614450736543 + O(337)

(10,17, —10] | 4 25613292858296352193 + 2067393576370106991v/D + O(3*1)
20,17, 5] |8 32(28389335835840796072 + 35431736942702897034v/D) + O(3*3)

Note that o4, (u) € Q, if and only if [ag] is 2-torsion in G1. For real quadratic fields, this is
equivalent to the fact that the class [ag] is Gal (F)/Q)-fixed, as predicted by Proposition 7.3.

The work of Damm-—Johnsen made it possible to verify this phenomenon in many additional
cases. In these cases, the size of the narrow Hilbert class group ranged from 2 to 20.

7.4. Further comments. We conclude with some observations to support the conjecture
for general n > 2. Denote D := D(X,Z[1/m]) and Dy := Dy(X,Z[1/m]). Recall the class
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p € H"1(I',D)~ constructed in Section 4 and denote by Wuy its restriction to Up C T

Consider the Up-equivariant morphism
E:D — Fy/Z[1/m]log,(OF), s / log, (cr' - )dA,
X

where Z[1/m]log,(OF) denotes the Z[1/m]-span of log,(OF) in F,. The proof of Theorem
6.11 implies that
v~ E(uy) = logy(u”)  mod Z,log, (). (26)
Conjecture 7.1, predicts an expression for log,(u”®) without the ambiguity Z,log,(Op).
Observe that, if we consider measures of total mass zero, we can define the Ugp-equivariant
morphism

E:Dy — Fp, \—> / 10gp(c7't - xz)dA.
X

Moreover, it follows from Proposition 4.12 that juy;,, lifts to a class in H "~1(Up,Dg). However,

the lift is not unique. Indeed, the long exact sequence
oo H'2(Up, Z[1/m]) > H(Up,Dy) — H 1 (Up,D) —> - --

shows that a lift of yy,, is well-defined up to the image of 4. Since Up =~ Z"~! by Dirichlet’s

unit theorem, we have a natural isomorphism
H"2(Up,Z[1/m]) ~ H)(Ur,Z[1/m]) ~ Ur ® Z[1/m). (27)
This leads to the following proposition.

Proposition 7.9. The map
H"3(Up,Z[1/m]) — F,, e — cy, —~ E(0(¢))

has image equal to Z[1/m]log,(Ur). More precisely, via the natural isomorphism given in
(27), it is equal to log,: Up ® Z[1/m] = Z[1/m]log,(Ur).

In other words, the process of lifting py,. to a class valued in total mass zero measures
allows to compute its image under £ and construct an element in F,. However, since the lift
is only well-defined up to Ur ® Z[1/m], the elements we construct in F}, are only well-defined
up to Z[1/m]log,(Ur). Thus, we obtain a similar ambiguity for the Gross—Stark unit as the
one appearing on the formula of the Gross—Stark conjecture.

However, in this paper, we worked with cohomology classes for I, instead of for Up, to
define our invariants. In this way, we obtained that u € H "*1(I‘,]D))@ has a unique lift
wo € H ”_1(F,D0)@. Indeed, as explained in Section 4.4, this follows from the long exact

sequence
H" (I, Z[1/m])~ — H" Y, D)~ — H"'(T\D)” — H" (T, Z[1/m])",

Proposition 4.12, and the fact that H"~2(T',Z,)~ is torsion by [LS19]. Then, the restriction
Ho|u, 1s a preferred lift of py,. to H" Y (Up,Dy(X, Z[1/m])). Hence, using pou,, and the map

&, we are able to produce a canonical element in F),

cup ~ E(po,) = JE.clT] € F).
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The fact that this construction is unique suggests that the quantity we produced could be a

preferred lift of T, /g, log,,(u?®), and this motivates us to state Conjecture 7.1 above.

We summarize this discussion with the following commutative diagram

[Ban+24]
[BKL18]
[BCG20]
[BCG23]

[BCY2]

[BST3]
[Bros2]
[Cha07]
[Cha09]
[CD14]
[CDG15]

[Dam24]

torsion —— H" Y[, Dy)~ —— H" (I, D)~

| | |

Ur ®Z[1/m] —>— H" Y (Up,Dy) —— H" (Up,D)

lCUF ~&05(:) lcUF ~&() lcUFAéc)
Z[1/m]log,(UFr) F, Fy/(Z[1/m]log(Ur)).
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