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Abstract. Departing from a topological treatment of the Eisenstein class of a torus bundle,

we define log-rigid analytic classes for SLn(Z). These are group cohomology classes for SLn(Z)
valued on log-rigid analytic functions on Drinfeld’s p-adic symmetric domain. Such classes

can be evaluated at points attached to totally real fields of degree n where p is inert. We

conjecture that these values are p-adic logarithms of Gross–Stark units in the narrow Hilbert

class field of totally real fields. We provide evidence for the conjecture by comparing our

constructions to p-adic L-functions. In addition, we prove it in certain situations where the

totally real field is Galois over Q, as a consequence of the fact that in this case there is a

conjugate of a Gross–Stark unit in Qp.
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1. Introduction

The values of modular units at CM points, called elliptic units, have rich arithmetic sig-

nificance. Notably, they generate abelian extensions of imaginary quadratic fields. In [DD],

Darmon and Dasgupta proposed a conjectural construction of elliptic units for real quadratic

fields and predicted that they behave similarly to elliptic units. Their construction consists of

a p-adic limiting process involving periods of logarithmic derivatives of modular units along

real quadratic geodesics.

Using a different approach, Dasgupta used Shintani’s method to extend this construction

to totally real fields of arbitrary degree in [Das08], and Dasgupta and Kakde proved that

this recipe gives p-units in abelian extensions of totally real fields [DK23], [DK24]. More

precisely, they proved that their resulting objects are Gross–Stark units. Remarkably, their

work provides a solution to Hilbert’s twelfth problem for totally real fields via p-adic methods.
1
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Darmon, Pozzi, and Vonk constructed analogs of modular functions, called rigid classes,

which can be evaluated at real quadratic points, and expressed the original construction of

[DD] as the value of a rigid class in [DPV24]. Their work accentuates the parallel between

Gross–Stark units and elliptic units, as rigid classes play the role of modular functions. More-

over, it leads to an alternative proof of the conjecture of [DD] in the real quadratic setting.

In this paper, we construct a log-rigid analytic class for SLn(Z) and study its values at

points attached to totally real fields where p is inert. We conjecture that these values are p-adic

logarithms of Gross–Stark units and provide evidence for it by comparing our constructions

to p-adic L-functions and using the rank 1 Gross–Stark conjecture, proven in [DDP11] and

[Ven15].

Moreover, we prove the conjecture in certain situations where the totally real field is Galois

over Q, as a consequence of the fact that in this case there is a conjugate of a Gross–Stark

unit in Qp. To our knowledge, this extends the type of abelian extensions of F that can be

constructed explicitly using only the values of the derivatives of p-adic L-functions. Moreover,

it expresses Gross–Stark units as values of a modular-like object, namely the log-rigid class.

A key ingredient in our construction is the Eisenstein class of a torus bundle of Bergeron,

Charollois, and Garćıa [BCG20] and its pullbacks by torsion sections, that replace the role

of modular units. In particular, we conjecture that Gross–Stark units can be obtained via

a p-adic limiting process involving periods of Eisenstein classes on locally symmetric spaces

attached SLn(R) along tori determined by totally real fields. We hope that this represents

a first step toward a modular, or more technically automorphic, construction of Gross–Stark

units for totally real fields, which would generalize the results of [DD] and [DPV24].

1.1. Siegel units and abelian extensions of quadratic fields. We begin by explaining

the construction of Siegel units and their relation with the theory of complex multiplication

for imaginary quadratic fields. Let E be an elliptic curve defined over a scheme S, fix a

positive integer c coprime to 6, and denote by N(c) the set of positive integers coprime to c.

Proposition 1.1. There exists a unique function cθE ∈ O(E − E[c])× satisfying:

(1) The divisor of cθE is E[c]− c2(0).
(2) cθE is invariant under pushforward induced by multiplication by a for all a ∈ N(c).

Let N ≥ 3 be a positive integer coprime to c, denote by Γ(N) ⊂ SL2(Z) the congruence

subgroup of full level N , and let H be the complex upper half-plane. We can then consider

the universal elliptic curve

E := Γ(N)\
(
(H × C)/Z2

)
−→ Y (N) := Γ(N)\H .

The proposition above yields the function cθE ∈ O(E−E[c])×, which can be used to construct

modular units on Γ(N)\H in the following way. A vector v ∈ Q2/Z2−{0} of order N induces

a torsion section v : Y (N) → E − E[c]. Then, the pullback cgv := v∗(cθE) ∈ O(Y (N))× is

called a Siegel unit and is an instance of a modular unit. It gives rise to a Γ(N)-invariant

function on H , that we will denote by the same symbol. The theory of complex multiplication

implies that the values of Siegel units at special points have deep significance.
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Theorem 1.2. Let τ ∈ H be a CM point attached to a quadratic imaginary field K, i.e. τ

is stabilized by a subgroup of norm one elements K1 ⊂ SL2(Q) of K. Then,

cgv(τ) ∈ Kab ⊂ Q̄.

An important question is to find an analog of this theorem for general number fields.

The case of real quadratic fields has been extensively studied via different methods. We are

particularly interested in the p-adic approach initiated by Darmon and Dasgupta in [DD] and

followed, among others, by Darmon, Pozzi, and Vonk in [DPV24]. We proceed to outline

these works in a language suited to this paper.

Let F be a real quadratic field and p a rational prime. Observe that H does not contain

real quadratic points, i.e. there are no points stabilized by a torus of norm one elements

F 1 ⊂ SL2(Q) of F . On the other hand, H has geodesics stabilized by these tori. Moreover,

if (z, γz) ⊂ H is a segment of such geodesic, where γ ∈ F 1 ∩ Γ(pr), and v ∈ Q2/Z2 − {0} is
of exact order pr, we have the so-called Meyer’s theorem

1

2πi

∫ γz

z
dlog(cgv) = ζc(F, [b], 0) ∈ Z. (1)

Here, ζc(F, [b], 0) denotes the value at s = 0 of a c-smoothed partial zeta function attached to

F and an ideal class [b] in a narrow class group of conductor divisible pr, determined by the

inclusion F 1 ⊂ SL2(Q) and v. In addition to encoding information about abelian extensions

of totally real fields, these zeta values possess notable p-adic properties and serve for the

construction of measures that yield p-adic partial zeta functions of F .

The search for a symmetric space containing real quadratic points, combined with the p-

adic properties of the partial zeta values considered above, leads to replacing H by a p-adic

symmetric space to generalize Theorem 1.2. More precisely, if we let Hp := P1(Cp)− P1(Qp)

be the p-adic upper half-plane and A its ring of rigid analytic functions, we have:

• Hp contains points stabilized by F 1 ⊂ SL2(Q) if and only if p is nonsplit in F .

• There is a GL2(Qp)-equivariant isomorphism between A×/C×
p and the space of Z-

valued measures on P1(Qp) of total mass zero ([Put82]), suggesting that A× encodes

information about p-adic zeta functions and refinements of their values.

In [DPV24], Darmon, Pozzi, and Vonk exploit the distribution relation of Siegel units attached

to vectors of arbitrary p-power order to construct a cohomology class

JDR ∈ H1(SL2(Z),A×).

This class can be viewed as a generalization of a modular function. Indeed, the space of

invariant functions H0(SL2(Z),A×) = C×
p is too simple, which suggests studying the first

cohomology group instead. Moreover, if τ ∈ Hp is stabilized by F 1 ⊂ SL2(Q) and F 1 ∩
SL2(Z) = ⟨±γτ ⟩, they define the value JDR[τ ] := JDR(γτ )(τ) ∈ C×

p .

Theorem 1.3 (Darmon–Pozzi–Vonk). Let τ ∈Hp be as above with stabilizer ⟨±γτ ⟩ ⊂ SL2(Z)
be attached to a real quadratic field F where p is inert, and suppose that {τ, 1} generate a

fractional ideal of F . Then,

logp(JDR[τ ]) = logp(u), u ∈ H = narrow Hilbert class field of F ⊂ F ab ⊂ Q̄.
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This theorem provides a level 1 version of Theorem 1.2 for real quadratic fields where p is

inert. Indeed, it produces nontrivial elements in abelian extensions of real quadratic fields as

values of JDR at special points in Hp.

Remark 1.4. The class JDR is the unique lift via the quotient mapA× → A×/C×
p of the restric-

tion to SL2(Z) of a class JDR ∈ H1(SL2(Z[1/p]),A×/C×
p ), also constructed in [DPV24]. More-

over, the Hecke module H1(SL2(Z[1/p]),A×/C×
p )Q is isomorphic to the sum of H1(Γ0(p),Q)

and an Eisenstein line. The lift JDR is important to define the values of JDR and it is the

object we aim to generalize in this work. Here and for the rest of the paper, the subindex Q
denotes the tensor product with Q over Z.

1.2. Construction of the log-rigid class for SLn(Z). The work of Bergeron, Charollois,

and Garćıa in [BCG20] provides a generalization of logarithmic derivatives of Siegel units

which is relevant for the study of totally real fields of degree n: the Eisenstein class of a torus

bundle. Let E → X be an oriented real vector bundle of rank n over an oriented manifold X.

Suppose that E contains a sub-bundle EZ with fibers isomorphic to Zn. We can then construct

the torus bundle T := E/EZ → X. Consider the following class in singular cohomology with

Z-coefficients

T [c]− cn{0} ∈ H0(T [c]) ≃ Hn(T, T − T [c]),

where the isomorphism above is the Thom isomorphism. The long exact sequence in relative

cohomology provides a map Hn−1(T − T [c]) → Hn(T, T − T [c]). The Eisenstein class czT

attached to T and c is constructed from the next theorem and is analogous to the functions

cθE determined in Proposition 1.1.

Theorem 1.5 ([BCG20]). There exists a unique class czT ∈ Hn−1(T−T [c],Z[1/c]) satisfying:

(1) czT is a lift of T [c]− cn{0} ∈ Hn(T, T − T [c],Z[1/c]).
(2) czT is invariant under pushforward induced by multiplication by a for all a ∈ N(c).

Let X := SLn(R)/SOn be the symmetric space attached to SLn(R), let vr ∈ Qn/Zn be

the column vector (1/pr, 0, . . . , 0)t and let Γr be its stabilizer in Γ := SLn(Z). Finally, fix

q an auxiliary integer such that the full level congruence subgroup Γ(q) is torsion-free and

[Γ : Γ(q)] is prime to p, which imposes that p is sufficiently large. Then, Γr(q) := Γr ∩ Γ(q) is
torsion-free. We can apply the previous theorem to the universal family of tori

Tr := Γr(q)\(X × Rn/Zn) −→ Γr(q)\X

and obtain the Eisenstein class czTr , that we will simply denote by zr. The vector vr induces

a torsion section vr : Γr(q)\X → Tr − Tr[c] and we can consider the pullback v∗rzr, which

defines a Γr-invariant class on Γr(q)\X . This class is a higher-dimensional analog of dlogcgv.

The pullbacks of Eisenstein classes by p-power torsion sections satisfy distribution relations

parallel to those of Siegel units. In particular, (v∗rzr)r are compatible with respect to push-

forward by the projection maps. Using these properties and Shapiro’s lemma, we package the

pullbacks of the Eisenstein classes by p-power torsion sections in a group cohomology class

µ0 ∈ Hn−1(Γ,D0(X,Z[1/m]))w=−1,
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where m is a multiple of c prime to p, D0(X,Z[1/m]) is the space of Z[1/m]-valued measures

on X := Znp − pZnp of total mass zero, and w denotes the involution given by the action of

GLn(Z)/SLn(Z). We will sometimes refer to µ0 as an Eisenstein cocycle, following precedent

in the literature, which we briefly review and compare with our approach in Section 1.4.

The class µ0 valued in D0(X,Z[1/m]) is suitable for the construction of rigid classes via

a Poisson kernel. Let Xp := Pn−1(Cp) −
⋃
H∈HH be Drinfeld’s p-adic symmetric domain,

where H is the set of all Qp-rational hyperplanes. Denote by AL the space of log-rigid analytic

functions. Informally, AL consists of the Cp-valued functions on Xp such that its restriction

to any affinoid is of the form

(rigid analytic function) +
∑

H,H′∈H
cH,H′ logp (ℓH(z)/ℓH′(z)) ,

where cH,H′ ∈ Qp are all but finitely many 0, ℓH(z) denotes the equation of the hyperplane

H ∈ H, and logp : C×
p → Cp is the p-adic logarithm satisfying logp(p) = 0. Integration over X

leads to a Γ-equivariant lift

ST: D0(X,Zp) −→ AL, λ 7−→
(
z 7−→

∫
X
logp(z

t · x)dλ
)

(2)

and we define our desired log-rigid analytic class as

JE,L := ST(µ0) ∈ Hn−1(Γ,AL).

The construction of JE,L can be compared to that in [DPV24] when n = 2, leading to

the relation JE,L = logp(JDR). In particular, this shows that the class logp(JDR) can be

constructed solely from logarithmic derivatives of Siegel units, rather than from the full Siegel

units.

1.3. Values of JE,L at totally real fields where p is inert. Let F be a totally real field

of degree n where p is inert, and let τ ∈ Fn be such that its coordinates give an oriented

Z-basis a−1, for a an ideal of OF . Since p is inert, it follows that τ ∈ Xp. Moreover, τ is

a special point in Xp in the sense that its stabilizer in SLn(Q) is isomorphic to the norm 1

elements of F . In particular, its stabilizer in Γ is a group of rank n − 1. Following a similar

recipe than the case n = 2, we define the evaluation of J ∈ Hn−1(Γ,AL) at τ ∈ Xp, giving

J [τ ] ∈ Cp. From our construction, one readily deduces JE,L[τ ] ∈ Fp and the theorem below

gives evidence regarding the arithmetic significance of this value.

Let H be the narrow Hilbert class field of F . Fix an embedding Q̄ ⊂ Q̄p, which determines

a prime p of H above pOF . Denote by OH [1/p]×− the subgroup of p-units of H where every

complex conjugation of H acts by −1. Attached to p and c, there is a Gross–Stark unit

u ∈ OH [1/p]×− ⊗ Q, whose valuations at primes above p are related to c-smoothed partial L-

functions of the extension H/F . In fact, the proof of the Brumer–Stark conjecture in [DK23]

and [Das+23] ensures that u ∈ OH [1/p]×− under certain minor assumptions on c, that we will

assume for the rest of the introduction (see Remark 6.3).

Theorem 1.6. For n ≥ 2, TrFp/QpJE,L[τ ] = TrFp/Qp logp(u
σa), where u ∈ OH [1/p]×− is the

Gross–Stark unit given above and σa ∈ Gal (H/F ) is the Frobenius corresponding to a.
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The proof of this result uses that the integral of v∗rzr along the (n−1)-dimensional subman-

ifold of Γr(q)\X determined by the inclusion F 1 ⊂ SLn(Q) is a special value of a partial zeta

function of F , generalizing (1). From there, we construct the p-adic partial zeta function of F

attached to a from µ0 and express TrFp/QpJE,L[τ ] as its derivative at s = 0. Thus, Theorem

1.6 follows from the Gross–Stark conjecture in rank 1, proved in [DDP11] and [Ven15].

The previous theorem, together with Theorem 1.3 involving real quadratic fields, suggests

the following conjecture.

Conjecture 1.7. We have JE,L[τ ] = logp(u
σa), where u ∈ OH [1/p]×− and σa ∈ Gal (H/F )

are as above.

We now outline some evidence towards the conjecture. When F/Q is Galois, the Gross–

Stark units satisfy logp(σau) ∈ Qp if the narrow ideal class [a] is Gal (F/Q)-stable. On the

other hand, it can be deduced from the properties of JE,L that JE,L[τ ] ∈ Qp if τ generates an

ideal a−1 that is Gal (F/Q)-stable. Thus, it follows from Theorem 1.6 that the values of JE,L

can be used to calculate the p-adic logarithm of the Gross–Stark unit u in this setting.

Theorem 1.8. Suppose F/Q is Galois, p is inert in F , and τ generates an ideal a that is

Gal (F/Q)-stable. Then, JE,L[τ ] = logp(u
σa) ∈ Qp for the Gross–Stark unit u ∈ OH [1/p]×−

introduced above.

In particular, Theorem 1.8 applies to real quadratic fields, recovering instances of [DPV24,

Theorem B] when the coordinates of τ generate a Gal (F/Q)-fixed ideal of OF . Note that

this result implies that we can obtain a formula for certain Gross–Stark units in the narrow

Hilbert class field of F only from derivatives of p-adic L-functions in settings where Fp is

not equal to Qp, see Remark 7.4. Moreover, the relevant unit involved in the constructions

appears as values of the modular-like object JE,L, supporting the parallel between JE,L and

Siegel units. This extends the type of abelian extensions of F that can be constructed only

from derivatives of p-adic L-functions (and note that the field generated by one Gross–Stark

unit is Galois over F and therefore contains all its conjugates). This Gross–Stark unit is one

of the elements used by Dasgupta–Kakde to construct the maximal abelian extension of F .

In ongoing work, we are exploring which ramified abelian extensions of F can be constructed

using this observation.

The proof of Conjecture 1.7 would give a construction of Gross–Stark units using Eisenstein

classes defined purely from the topology of torus bundles. Moreover, it is possible to find

explicit representatives of the classes considered in this article via an integral symbol complex

(similarly to the article [Xu25] of the second-named author), which we will present in a sequel

to this article. Ultimately, such formulas can be related to those obtained via Shintani’s

method, as we mention below, and from there to the formulas for Gross–Stark units of [Das08]

proven in [DK24]. We hope that this paves the way for proving Conjecture 1.7.

The symbol complex methods mentioned above also seem to shed light on the construction

of rigid analytic classes for SLn(Z[1/p]) lifting our log-rigid class, which we will present in

the sequel. This would fully generalize the construction of JDR of [DPV24] to SLn, and

suggest a different approach to Conjecture 1.7, namely to generalize the strategy of [DPV24].
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In a different direction, Darmon, Gehrmann, and Lipnowski generalized the theory of rigid

meromorphic classes of [DV21] to the setting of orthogonal groups in [DGL25], see [GGM25]

for an extensive list of values of these classes at special points.

Remark 1.9. In this paper, we focused on invariants that conjecturally belong to the narrow

Hilbert class field of F . It would be interesting to explore the following extensions of the

construction. First, we could evaluate JE,L at points τ ∈ Xp represented by τ ∈ Fn whose

coordinates give a Q-basis of F , but they do not necessarily span an ideal of F over Z. In

this case, we expect to construct invariants in ramified abelian extensions of F . For example,

when n = 2, such invariants are conjectured to belong to ring class fields of F . Second, when

n is odd, Gross–Stark units in the narrow Hilbert class field of F are trivial. It seems that to

construct meaningful invariants also in the setting when n is odd, we would need a higher-level

version of JE,L, generalizing [Cha09] to totally real fields. For such construction, we expect

that the corresponding invariants belong to ray class fields of F .

1.4. Related cocycles in the literature. There are constructions of similar cohomology

classes to µ0 in the literature, frequently under the name of Eisenstein cocycles. Notably, the

work of Sczech [Scz93] together with its integral refinement by Charollois and Dasgupta [CD14,

Theorem 4], and the works of Charollois, Dasgupta, Greenberg, and Spiess (see [CDG15] and

[DS18]) using Shintani’s method give explicit formulas for Eisenstein cocycles. These works

yield cocycles for S-arithmetic groups; on the other hand, they take values in measures on

X together with some additional data, such as a set of linear forms in n-variables (used for

Q-summation), or the set of rays in Rn not generated by a vector in Qn.

More directly related to our approach is the work of Beilinson, Kings, and Levin [BKL18] in

the equivariant cohomology of a torus, its adelic refinement by Galanakis and Spiess [GS24],

as well as the results of Bannai et. al. in equivariant Deligne cohomology [Ban+24]. These

articles also define equivariant Eisenstein classes by specifying residues in a torus bundle but

work with larger and more general coefficient modules, such as the logarithm sheaf or a variant

of it. In this way, the first two articles construct distribution-valued cohomology classes by

delicate topological considerations. Our Eisenstein class is closely related to the specialization

to trivial coefficients of these classes (see Remark 4.8). Some computations in cohomology

will afford us a lift of our class with finer properties, e.g. a total-mass zero condition, making

it sufficient to construct log-rigid classes and produce a conjectural formula for Gross–Stark

units.

The latter article [Ban+24] works equivariantly under a nonsplit torus associated to a par-

ticular totally real field (rather than a general linear group), and relates a de Rham regulator

of this class to L-values closely tied to a method of Shintani. This suggests that the class µ0,

or its restriction to a nonsplit torus, can be compared to the cocycles of [CDG15], [DS18],

and [Spi14].

1.5. Structure of the paper. In Section 2, we define the Eisenstein class of a torus bundle

and prove a distribution relation involving the pullbacks of this class by torsion sections. In

Section 3, we introduce an explicit differential form representing the Eisenstein class for a

universal family of tori following [BCG20]. We use it to prove that the sum of the pullbacks
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of this form along the torsion sections of exact order p is 0. The content of these two sections

is combined in Section 4 to construct the class µ0 ∈ Hn−1(Γ,D0(X,Z[1/m]))−. In Section 5,

we construct the log-rigid class JE,L from µ0 and define its values at points attached to totally

real fields where p is inert. In Section 6, we prove Theorem 1.6, relating the local trace of

these values, to the derivative of a p-adic L-function, and therefore to local traces of p-adic

logarithms of Gross–Stark units. Finally, in Section 7, we state Conjecture 1.7, and study the

case where F/Q is Galois.
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2. Eisenstein class of a torus bundle

In this section, we introduce the Eisenstein class of a torus bundle, as studied in [BCG20].

We focus specifically on the torus bundle

Γ′\(X × Rn/Zn) −→ Γ′\X ,

where X is the symmetric space attached to SLn(R) and Γ′ ⊂ Γ := SLn(Z) is a congruence

subgroup that is torsion-free. We then prove several properties of this class, including a

distribution relation between its pullbacks by torsion sections, which parallels the distribution

relations satisfied by Siegel units. Unless stated otherwise, in this section, we consider singular

cohomology with Z-coefficients.

2.1. Thom and Eisenstein classes of a torus bundle. Let π : E → X be an oriented

real vector bundle of rank n over an oriented manifold X. Since E is oriented, for every fiber

Ex ⊂ E over x ∈ X we have a preferred generator

uEx ∈ Hn(Ex, Ex − {0}) ≃ Z

satisfying a local compatibility condition (see [MS74, Page 96]). The Thom isomorphism

theorem asserts that there is a global class that restricts to the orientation of each fiber.

Theorem 2.1 (Thom isomorphism theorem). There is a unique class uE ∈ Hn(E,E − {0})
such that its pullback to any fiber Ex of E is equal to uEx. Moreover, for every i ∈ Z, we have

an isomorphism

H i(X)
∼−−→ H i+n(E,E − {0}), y 7−→ π∗y ⌣ uE .

Proof. See Section 10, and in particular Theorem 10.4, of [MS74]. □
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Now suppose that E contains a sub-bundle EZ with fibers isomorphic to Zn. We can then

construct the torus bundle T := E/EZ → X. For every x ∈ X, the orientation on Ex yields

an orientation on Tx. Fix c ∈ Z≥1 and consider the class

uTx,c ∈ Hn(Tx, Tx − Tx[c]) ≃
⊕

z∈Tx[c]

Hn(Tx, Tx − {z}),

which restricts to the generator of each Hn(Tx, Tx−{z}) determined by the orientation of Tx

at z, for every z ∈ Tx[c]. By considering a tubular neighborhood of T [c] in T , and applying

the excision theorem, we deduce the Thom isomorphism for torus bundles from Theorem 2.1

above.

Theorem 2.2. There is a unique class uT,c ∈ Hn(T, T − T [c]) such that its pullback to any

fiber Tx of T is equal to uTx,c. Moreover, for every i ∈ Z, the Thom isomorphism in Theorem

2.1 induces an isomorphism

H i(T [c])
∼−−→ H i+n(T, T − T [c]).

Definition 2.3. The class uE is called the Thom class of the bundle E → X, and uT,c is the

Thom class of the torus bundle T → X relative to the c-torsion.

We now outline the definition of the Eisenstein class of the torus bundle T → X relative to

the c-torsion. For this, we assume that for all i ∈ Z, the group H i(X) is finitely generated.

Consider the following class in singular cohomology

T [c]− cn{0} ∈ H0(T [c]).

Denote by the same symbol the image of this class in Hn(T, T − T [c]) via the Thom isomor-

phism given in Theorem 2.2. The long exact sequence in relative cohomology gives

· · · −→ Hn−1(T ) −→ Hn−1(T − T [c]) −→ Hn(T, T − T [c]) −→ Hn(T ) −→ · · · . (3)

We then have the following theorem.

Theorem 2.4 (Sullivan, Bergeron–Charollois–Garćıa). There exists a unique class czT ∈
Hn−1(T − T [c],Z[1/c]) satisfying:

(1) It is a lift of T [c]− cn{0} ∈ Hn(T, T − T [c],Z[1/c]) by the map in (3).

(2) It is invariant under pushforward induced by multiplication by a in T for all a ∈ N(c).

Proof. Section 2 and Section 3 of [BCG20] prove the existence of the class czT with coefficients

in Z[1/N ], for N divisible by c and coprime to p (see the remarks below Lemma 9 and

Definition 10 of [BCG20]). This is sufficient for our purposes, but we refer the reader to

[Xu23, Page 14] for a proof that the coefficients can be taken to be Z[1/c]. □

Definition 2.5. The class czT above is the Eisenstein class attached to T and c.

Throughout this work, we will define invariants attached to totally real fields of degree n

from periods of Eisenstein classes of torus bundles of rank n.
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Remark 2.6. Theorem 2.4 has the following visual interpretation. The first point is equivalent

to the fact that the image of T [c] − cn{0} in Hn(T,Z[1/c]) vanishes. Informally, this means

that there is a codimension n− 1 submanifold Σ ⊂ T − T [c] such that

∂Σ = t(T [c]− cn{0}), t ∈ Z,

where ∂Σ denotes the boundary of Σ. On the other hand, the class of Σ is not unique, and the

second point of the theorem provides a preferred class, czT with this property. In particular,

czT allows defining linking numbers with T [c] − cn{0} as the intersection number with the

preferred choice of Σ.

Remark 2.7. Let a ∈ N(c). Consider inclusion

i : T − T [ac] ↪−→ T − T [c].

Multiplication by a induces a map

[a] : T − T [ac] −→ T − T [c].

The map pushforward induced by multiplication by [a] on H i(T −T [c]) appearing in Theorem

2.4 is defined as the composition

H i(T − T [c]) i∗−−→ H i(T − T [ac]) [a]∗−−→ H i(T − T [c]).

We similarly define [a]∗ : H
i(T, T − T [c]) −→ H i(T, T − T [c]).

2.2. Eisenstein class of universal families of tori. Let n ≥ 2 and denote by X :=

SLn(R)/SOn the symmetric space attached to SLn(R). We are interested in the Eisenstein

class of universal families of tori over quotients of X by the following congruence subgroups.

Let p be an odd prime such that (p, c) = 1, for r ≥ 0 consider the column vector

vr := (1/pr, 0, . . . , 0)t ∈ Qn/Zn,

and let Γr be its stabilizer in Γ := SLn(Z). Fix q ̸= p an auxiliary prime such that the full level

congruence subgroup Γ(q) ⊂ Γ is torsion-free and has index prime to p. Observe that these

conditions imply that p is sufficiently large. Finally, define Γr(q) := Γr ∩ Γ(q) and consider

the torus bundle

Tr := Γr(q)\(X × Rn/Zn) −→ Γr(q)\X .

Definition 2.8. Denote by zr := czTr ∈ Hn−1(Tr−Tr[c],Z[1/c]) the Eisenstein class attached

to the torus bundle Tr and c.

Remark 2.9. We introduced the auxiliary prime q and the congruence subgroups Γr(q) to

ensure that their action on X is free, which holds as Γr(q) is torsion-free. Thus, the fibers of

Tr are n-tori.

Remark 2.10. We are omitting c from the notation since it is generally fixed. We note in

passing also that the dependence of our classes on c is simple: as explained in [BCG20,

Section 3.3], it follows from the definition of the Eisenstein class that, if c and d are coprime,

([c]∗ − cn)dzr = ([d]∗ − dn)czr.
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For r ≥ 1, the vector vr induces a section

vr : Γr(q)\X −→ Tr − Tr[c], [g] 7−→ [(g, vr)].

We can then consider the pullback v∗rzr ∈ Hn−1(Γr(q)\X ,Z[1/c]). We proceed to study

the behavior of v∗rzr with respect to two different actions. Observe that Γr(q) is a normal

subgroup of Γr. Thus, we can define an action of Γr on Γr(q)\X as follows. For γ ∈ Γr,

γ : Γr(q)\X −→ Γr(q)\X , [g] 7−→ [γg].

As a consequence, Γr acts on Hn−1(Γr(q)\X ,Z[1/c]) via pullback. Since Γr fixes vr, we

deduce that the class v∗rzr is fixed by this action, as we make precise in the next lemma.

Lemma 2.11. Consider the same notation as above. We have

v∗rzr ∈ Hn−1(Γr(q)\X ,Z[1/c])Γr .

Proof. Let γ ∈ Γr and define the map of torus bundles

γ̃ : Tr −→ Tr, [(g, v)] 7−→ [(γg, γv)].

We have γ̃∗Tr[c] = Tr[c] and γ̃
∗{0} = {0} in H0(Tr[c]). Moreover, since γ̃∗uTr,c = uTr,c, as γ̃

is orientation preserving, it follows that

γ̃∗(Tr[c]− cn{0}) = Tr[c]− cn{0} ∈ Hn(Tr, Tr − Tr[c]).

This implies that γ̃∗zr is a lift of Tr[c] − cn{0}. Moreover, for every a ∈ N(c), γ̃∗ commutes

with [a]∗. Indeed, define γ̃−1 in the same way as γ̃ but replacing γ by γ−1. Since γ̃∗ = γ̃−1
∗,

the desired commutativity follows then from taking the pushforward of [a] ◦ γ̃−1 = γ̃−1 ◦ [a].
From there, we deduce that γ̃∗zr is invariant under [a]∗. As a consequence, Theorem 2.4

implies zr = γ̃∗zr. Pulling back this equality by vr : Γr(q)\X → Tr − Tr[c] yields the desired

expression. □

Let w = diag(1,−1, 1, . . . , 1) ∈ GLn(Z). Since w normalizes Γr(q) and SOn, conjugation

induces the following map

w : Γr(q)\X −→ Γr(q)\X , [g] 7−→ [wgw−1],

which induces an involution w on Hn−1(Γr(q)\X ,Z[1/c]) via pullback. Here and for the rest

of the section, we will denote with a superindex − the w = −1 eigenspace for w.

Lemma 2.12. For every r ≥ 1, we have

v∗rzr ∈ Hn−1(Γr(q)\X ,Z[1/c])−.

Proof. The proof is analogous to the proof of Lemma 2.11, so we only outline it. Denote by

w̃ the morphism of torus bundles

w̃ : Tr −→ Tr, [([g], v)] 7−→ [(wgw−1, wv)].

Since w̃ reverses the orientation on the fibers (because the determinant of the matrix defining

w is −1), it follows that

w̃∗(Tr[c]− cn{0}) = − (Tr[c]− cn{0}) ∈ Hn(Tr, Tr − Tr[c]).
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Similar to Lemma 2.11, we deduce from there that w̃∗zr = −zr. The desired result follows by

pulling back this equality by vr and observing wvr = vr. □

2.3. Distribution relations. We give some compatibility properties regarding the classes

zr and their pullbacks by torsion sections. In particular, we prove a distribution relation. We

begin with the following general lemma.

Lemma 2.13. Consider the commutative diagram of topological spaces, where all the maps

are continuous

Z Y

X S.

h1

f1

h2

f2

Suppose that the following two conditions hold:

(1) h1 and h2 are r-sheeted covering maps, for r ∈ Z≥1.

(2) If x ∈ X and {zj}rj=1 are its distinct lifts by h1, the images {f1(zj)}rj=1 are distinct.

Then, for all i ∈ Z≥0, we have

(h1)∗f
∗
1 = f∗2 (h2)∗ : H

i(Y ) −→ H i(X).

Proof. For the proof of this lemma, we follow the same notation as in its statement. Let

φ ∈ Ci(Y,Z) be a degree i cochain and consider σ : ∆i → X a continuous map from an

i-simplex ∆i to X. Fix a vertex u ∈ ∆i, and let x = σ(u).

Since h1 is an r-sheeted covering map, there are σ̃1, . . . , σ̃r : ∆
i → Z distinct lifts of σ by

h1, characterized by the property σ̃j(u) = zj . Then,

(h1)∗f
∗
1φ(σ) =

∑
j

f∗1φ(σ̃j) =
∑
j

φ(f1 ◦ σ̃j).

Similarly, let y1, . . . , yr ∈ Y be the distinct lifts of f2(x), and consider ω̃1, . . . , ω̃r : ∆
i → Y

the distinct lifts of f2 ◦ σ by h2, characterized by the property ω̃j(u) = yj . Then,

f∗2 (h2)∗φ(σ) = (h2)∗φ(f2 ◦ σ) =
∑
j

φ(ω̃j).

We now observe that we have the equality of sets {f1 ◦ σ̃j}j = {ω̃j}j . Indeed, Condition (2) in

the statement of the lemma implies that the simplices {f1 ◦ σ̃j}j are all distinct, which implies

that both sets have the same number of elements. Moreover, since f1 ◦ σ̃j is a lift of f2 ◦ σ by

h2, we deduce the inclusion {f1 ◦ σ̃j} ⊂ {ω̃j}j and the desired equality of sets follows.

From this equality of sets and the previous two calculations, we obtain the desired equality

(h1)∗f
∗
1 = f∗2 (h2)∗ of cochain maps, which induces the result in cohomology. □

Remark 2.14. Condition (2) of the lemma above holds if the commutative diagram is Carte-

sian.

Proposition 2.15. Let r, r′ ∈ Z with r ≥ r′ ≥ 1, consider the projection map pr: Tr−Tr[c]→
Tr′ − Tr′ [c], and denote by pr∗ the corresponding pullback in cohomology. Then, pr∗zr′ = zr.
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Proof. The structure of the proof is analogous to the proof of Lemma 2.11, so we only outline

the key points. First, we observe

pr∗(Tr′ [c]− cn{0}) = Tr[c]− cn{0} ∈ Hn(Tr, Tr − Tr[c]).

Therefore, pr∗(zr′) is a lift of Tr[c] − cn{0}. Second, we claim that pr∗ commutes with [a]∗.

The key to proving this statement is to apply Lemma 2.13 to the diagram

Tr − Tr[ac] Tr′ − Tr′ [ac]

Tr − Tr[c] Tr′ − Tr′ [c].

pr

[a] [a]

pr

Therefore, zr = pr∗zr′ by Theorem 2.4. □

From the previous proposition, we deduce that the classes v∗rzr satisfy the following distri-

bution relation.

Proposition 2.16. Let r ≥ 1 and consider the pushforward attached to the finite quotient

map pr: Γr+1(q)\X → Γr(q)\X , namely

pr∗ : H
n−1(Γr+1(q)\X ,Z[1/c]) −→ Hn−1(Γr(q)\X ,Z[1/c]).

Then, pr∗(v
∗
r+1zr+1) = v∗rzr.

Proof. Consider the map

fr : Γr(q)\X −→ Tr − Tr[c] −→ T1 − T1[c],

where the first arrow is induced by vr and the second one is the quotient map. Also, observe

that since r ≥ 1 we can define

fr+1 : Γr+1(q)\X −→ Tr+1 − Tr+1[pc] −→ T1 − T1[pc],

in a similar way as fr, but where we used that vr+1 is of exact pr+1 torsion, with pr+1 > p.

It is a consequence of Proposition 2.15 that, if ι : T1 − T1[pc]→ T1 − T1[c],

v∗rzr = f∗r z1, v∗r+1zr+1 = f∗r+1ι
∗z1.

We will now deduce the desired statement from the invariance of z1 under multiplication by p.

With this aim, observe that we can apply Lemma 2.13 to the following commutative diagram

Γr+1(q)\X T1 − T1[pc]

Γr(q)\X T1 − T1[c].

fr+1

pr [p]

fr

Indeed, since Γr(q) is torsion-free and [Γr(q) : Γr+1(q)] = pn, both horizontal maps are pn-

sheeted covering maps, implying Condition (1) of the lemma. Moreover, the fact that Γr(q)

is torsion-free implies that the maps fr and fr+1 are injective, giving Condition (2) of the

lemma. Therefore,

pr∗f
∗
r+1 = f∗r [p]∗.
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From there,

pr∗v
∗
r+1zr+1 = pr∗f

∗
r+1ι

∗z1 = f∗r [p]∗ι
∗z1 = f∗r z1 = v∗rzr,

where we used the invariance of z1 under multiplication by p on the second to last equality

(see Theorem 2.4 and Remark 2.7). □

3. Differential form representative of the Eisenstein class

In [BCG20], Bergeron, Charollois, and Garćıa construct a closed differential form on Tr −
Tr[c] representing the Eisenstein class zr. Their construction, inspired by the work of Bismut

and Cheeger [BC92], consists of a regularized average of a transgression form considered by

Mathai and Quillen. In this section, we outline this procedure and use the differential forms

we obtain to prove some properties about pullbacks of the Eisenstein class by torsion sections

(see Proposition 3.10). The expressions given here will also be used in the last section to

relate periods of the Eisenstein class to special values of L-functions.

3.1. Mathai–Quillen form and the transgression form. Let S := GLn(R)/SOn and

consider the real vector bundle E := S × Rn → S, which is GLn(R)-equivariant for the left

multiplication action on each of the components of E and on S. Mathai and Quillen construct

a closed GLn(R)-equivariant differential form

φ ∈ Ωnrd(E)GLn(R)

which has rapid decay (Gaussian shape) and integral 1 along the fibers. In particular, φ

represents the Thom class of the oriented vector bundle E → S via the isomorphisms

Hn(Ω•
rd(E)) ≃ Hn(E,E − {0},R)

between the cohomology of the complex of forms on E with rapid decay along the fibers

Ω•
rd(E) and relative singular cohomology (see [MQ86, Page 98 and Page 99]).

There is an explicit expression for the form φ, which we proceed to outline following

[BCG20, Theorem 13] and [MQ86]. The reader is referred to these sources for further de-

tails on the construction of φ, as for our purposes it is sufficient to know the shape of its

expression. Using the Iwasawa decomposition of GLn(R), fix h : S → GLn(R) a smooth

section of the quotient map GLn(R) ↠ S. Then

φ = π−n/2e−|h−1x|2
∑

I⊂{1,...,n}
|I| even

εI,I′Pf(ΩI/2)
(
d(h−1x) + θh−1x

)I′
, (4)

where:

• x = (x1, . . . , xn) ∈ Rn and |x|= (x21 + · · ·+ x2n)
1/2 is its standard norm.

• θ is an n× n matrix of 1-forms on S, obtained as the pullback by h of the connection

of the principal SOn-bundle GLn(R)→ S given by θGLn(R) = (g−1dg − dgt(gt)−1)/2.

• Ω is an n× n matrix of 2-forms on S, obtained as the pullback by h of the curvature

dθGLn(R)+θ
2
GLn(R). Then, Pf(ΩI/2) is an |I|-form given as the Pfaffian of the submatrix

of Ω/2 of size |I| involving the indices in I.

• I ′ denotes the complement of I ⊂ {1, . . . , n}, εI,I′ ∈ {±1}, and for a vector v of size

n, vI
′
= vi1vi2 · · · vi|I′| , where I

′ = {i1, . . . , i|I′|}.
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Remark 3.1. We will not use the expressions for θ and Ω, aside from the fact that they are

forms of degree 1 and 2 on S.

For t ∈ R>0, let [t] : E → E be multiplication by t on the fibers. An important property

of φ is that for every t ∈ R>0, [t]
∗φ also represents the Thom class. Indeed, the Gaussian on

the fibers gets dilated, but the value of the integral over the fibers is preserved and equal to

1. In particular,

[t]∗φ −→ δ0, as t −→ +∞,
where δ0 denotes the current of integration along the zero section of E, also represents the

Thom class (as a current). Recall that the Eisenstein class is a lift of Thom classes of a torus

bundle, by Theorem 2.4. The next proposition constructs a form η whose differential involves

δ0. The relevance of this form is that a (regularized) average of it will give a representative

of the Eisenstein class.

Definition 3.2. Let R :=
∑

i xi
∂
∂xi

be the radial vector field on E = S × Rn, where {xi}i
denote the coordinates on Rn and consider the contraction ψ := ιRφ ∈ Ωn−1

rd (E)GLn(R), which

is GLn(R)-invariant (see [BCG20, Proposition 14]).

Proposition 3.3. Consider the differential form on E − S

η :=

∫ +∞

0
[t]∗ψ

dt

t
. (5)

Viewed as a current on E, it satisfies the transgression property dη = δ0 − [0]∗φ.

Proof. The main idea for the proof of this statement lies in the following equalities

δ0 − [0]∗φ =

∫ +∞

0

d

dt
[t]∗φdt =

∫ +∞

0
d[t]∗ιRφ

dt

t
= dη,

where the second equality follows from interpreting d
dt [t]

∗φ in terms of a Lie derivative with

respect to the vector field R and using Cartan magic formula. For more details, see Section

7.2 and Section 7.3 of [BCG20] and Page 106 of [MQ86]. □

Using the explicit expression for φ given in (4), and following the same notation as in that

equation, we obtain

ψ = π−n/2e−|h−1x|2
∑

I⊊{1,...,n}
|I| even

εI,I′Pf(ΩI/2) |I′|∑
k=1

(−1)k+1(h−1x)ik
(
d(h−1x) + θh−1x

)I′−{ik}

 ,

η =
π−n/2

2

∑
I⊊{1,...,n}
|I| even

εI,I′Pf(ΩI/2) Γ(|I ′|/2)|h−1x||I′|

|I′|∑
k=1

(−1)k+1(h−1x)ik
(
d(h−1x) + θh−1x

)I′−{ik}

 .

Here I ′ = {i1, . . . , i|I′|} is the complement of I ⊊ {1, . . . , n}. The exact formulas will not be

necessary for us. On the other hand, it will be important to note:

• φ and ψ are linear combinations of products of an exponential and a polynomial. In

particular, they have rapid decay along the fibers.

• [0]∗ψ = 0.

• η does not have rapid decay along the fibers.
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3.2. Eisenstein transgression. We proceed to consider a regularized average of the form η

in (5) over a lattice to obtain forms on torus bundles representing the Eisenstein class. For

L ⊂ Qn a Z-lattice and λ ∈ L, let

trλ : E −→ E, (g, x) 7−→ (g, x+ λ).

Then, if t ∈ R>0, define

θ([t]∗ψ,L) :=
∑
λ∈L

tr∗λ[t]
∗ψ. (6)

The sum converges as the differential form t∗ψ has rapid decay on the fibers of E → S.

Theorem 3.4. View θ([t]∗ψ,L) as a differential form on S × (Rn − L). For s ∈ C with

Re(s)≫ 0, the integral

Eψ(L, s) :=

∫ +∞

0
θ([t]∗ψ,L)ts

dt

t

converges. Furthermore, it admits a meromorphic continuation to all s ∈ C, regular at s = 0,

and its value at every regular s ∈ C defines a differential form on S × (Rn − L).

Proof. This follows from Proposition 17 and Section 8.5 of [BCG20]. In particular, the fact

that the integral is regular at s = 0 follows from the fact that we are viewing θ([t]∗ψ,L) as a

form on S × (Rn − L), and [t]∗ψ tends to 0 as t→ +∞ on S × (Rn − L). □

The previous theorem implies that Eψ(L, s) is regular at s = 0 and

Eψ(L) := Eψ(L, 0)

defines a form on S × (Rn −L)/L. In fact, Eψ(L) descends to a form in X × (Rn −L)/L by

the calculation on (8.9) of [BCG20]. Moreover, if Γ′ ⊂ SLn(R) is a subgroup contained in the

stabilizer of L, the form Eψ(L) is invariant under Γ
′.

Remark 3.5. We outline how to view Eψ(L) as a regularized average of η. As we pointed out

at the end of Section 3.1, the form η does not have rapid decay along the fibers. Therefore,

the sum
∑

λ∈L tr
∗
λη does not converge. On the other hand, for s ∈ C with Re(s)≫ 0 define

η(s) :=

∫ +∞

0
[t]∗ψts

dt

t
.

Then, η(s) has the same expression as the one given for η at the end of Section 3.1 where the

term Γ(|I ′|/2)/|h−1x||I′| is replaced by Γ((|I ′| + s)/2)/|h−1x||I′|+s. In particular, it follows

that if Re(s)≫ 0, the sum
∑

λ∈L tr
∗
λη(s) is absolutely convergent and

Eψ(L, s) =

∫ +∞

0
θ([t]∗ψ,L)ts

dt

t
=
∑
λ∈L

tr∗λη(s),

where we exchanged the integral with the sum (using that for Re(s) ≫ 0, the sums are

absolutely convergent). Thus, Eψ(L) is equal to the value at s = 0 of the meromorphic

continuation of
∑

λ∈L tr
∗
λη(s).

Recall the torus bundle

Tr = Γr(q)\(X × Rn/Zn) −→ Γr(q)\X

introduced in Section 2.2.
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Definition 3.6. Consider the linear combination

cEψ := Eψ(c
−1Zn)− cnEψ(Zn),

which we view as a differential form on Tr − Tr[c] for every r ≥ 1.

Theorem 3.7. The form cEψ is closed in Tr − Tr[c] and its cohomology class

cEψ ∈ Hn−1
dR (Tr − Tr[c]) ≃ Hn−1(Tr − Tr[c],R)

is equal to the image of the Eisenstein class zr in Hn−1(Tr − Tr[c],R).

Proof. See Theorem 19, Proposition 20, and Theorem 21 of [BCG20]. There it is explained

that, since Eψ is a regularized average of η (see Remark 3.5), Proposition 3.3 implies that

d(cEψ) = δT [c] − cnδ{0},

where δT [c] and δ{0} denote currents of integration along T [c] and {0} (the contributions [0]∗φ
appearing in Proposition 3.3 vanish after the regularization). Moreover, [a]∗Eψ = Eψ by

Proposition 20 of [BCG20]. Thus, cEψ is a closed form on Tr − Tr[c] satisfying the character-

izing properties of the Eisenstein class zr asserted in Theorem 2.4. □

3.3. Pullbacks by torsion sections. We now use the differential forms introduced above

to study the pullbacks of the form cEψ by torsion sections. For v ∈ Qn, denote also by v the

corresponding section v : S → E. Then, for s ∈ C with Re(s) ≫ 0, consider the differential

form on S

η(v, s) :=

∫ +∞

0
v∗[t]∗ψts

dt

t
=

∫ +∞

0
(tv)∗ψts

dt

t
.

Since 0∗ψ = 0, which can be verified using the explicit expression given at the end of Section

3.1, we have η(0, s) = 0. From this same expression and Remark 3.5, we deduce that for v ̸= 0

η(v, s) =

π−n/2

2

∑
I⊊{1,...,n}
|I| even

εI,I′Pf(ΩI/2)Γ((|I ′|+ s)/2)

|h−1v||I′|+s

|I′|∑
k=1

(−1)k+1(h−1v)ik
(
d(h−1)v + θh−1v

)I′−{ik}

 .

(7)

Proposition 3.8. Let L ⊂ Qn be a Z-lattice and v ∈ Qn − L. For s ∈ C with Re(s)≫ 0,

v∗Eψ(L, s) =
∑

λ∈v+L
η(λ, s).

In particular, the right-hand side has a meromorphic continuation regular at s = 0.

Proof. This follows from Theorem 3.4 and Remark 3.5. □

Thus, if v ∈ Qn − (1/c)Zn,

v∗cEψ = lim
s→0

∑
λ∈v+c−1Zn

η(λ, s)− cn
∑

λ∈v+Zn
η(λ, s), (8)

where here and from now on, lims→0 denotes evaluation of the meromorphic continuation.
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In fact, the right-hand side of the equation appearing in Proposition 3.8 defines a differential

form on S even if v ∈ L. More precisely, ∑
λ∈L

η(λ, s)

converges for Re(s) ≫ 0, and admits a meromorphic continuation to C which is regular at

s = 0. We proceed to prove a weaker version of this statement, as this will be enough for our

purposes.

Lemma 3.9. Let g ∈ S, consider tangent vectors Y1, . . . , Yn−1 ∈ TgS and denote Y =

(Y1, . . . , Yn−1). Then, for s ∈ C with Re(s)≫ 0,

s 7−→
∑
λ∈L

η(λ, s)g(Y )

converges and admits a meromorphic continuation to C which is regular at s = 0.

Proof. It follows from the explicit expression of η(v, s) given in (7) that the sum∑
λ∈L

η(λ, s)g(Y )

is absolutely convergent for Re(s) ≫ 0. From there, we deduce that if Re(s) ≫ 0, we have

the equality ∑
λ∈L

η(λ, s)g(Y ) =

∫ +∞

0

∑
λ∈L

((tλ)∗ψ)g (Y )ts
dt

t
,

as we can exchange the integral with the sum. Thus, it is enough to prove that the right-hand

side has a meromorphic continuation regular at s = 0. For that, define the function

f : Rn −→ R, v 7−→ (v∗ψ)g(Y ).

Since ψ is a differential form which has rapid decay along the fibers, it follows that f is a

Schwartz function. Hence, we need to prove that∫ +∞

0

∑
λ∈L

f(tλ)ts
dt

t
(9)

has a meromorphic continuation to s ∈ C which is regular at s = 0. We split the integral as

a sum of integrals from 1 to +∞ and from 0 to 1. Observe that f(0) = 0, as 0∗ψ = 0. The

rapid decay of f , together with the fact that f(0) = 0, implies that the integral from 1 to +∞
converges absolutely and defines an entire function on s. To study the integral from 0 to 1,

we use Poisson summation formula∫ 1

0

∑
λ∈L

f(tλ)ts
dt

t
=

∫ 1

0

∑
λ∈L∨

f̂(λ/t)ts−n
dt

t
,

where f̂ denotes the Fourier transform of f and L∨ the dual lattice of L. For Re(s)≫ n, the

previous integral can be written as

f̂(0)

s− n
+

∫ +∞

1

∑
λ∈L∨−{0}

f̂(λu)un−s
du

u
.
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Since f̂ is a Schwartz function, the integral converges for all values of s ∈ C and defines an

entire function. Thus, this expression gives a meromorphic continuation of the integral from

0 to 1 regular everywhere except maybe at s = n. The result follows from there. □

Finally, we are ready to prove the following expression regarding pullbacks of the Eisenstein

class by torsion sections, which will be useful for the next section.

Proposition 3.10. For v ∈ Qn − c−1Zn, view v∗cEψ as a differential form on X . Then,∑
v∈ 1

p
Zn/Zn−{0}

v∗cEψ = 0.

Proof. By Proposition 3.8, and more precisely (8), we can write the sum of the proposition

as the evaluation at s = 0 of the following expression∑
v∈ 1

p
Zn/Zn−{0}

∑
λ∈v+c−1Zn

η(λ, s)− cn
∑

v∈ 1
p
Zn/Zn−{0}

∑
λ∈v+Zn

η(λ, s).

We will verify that each of the two terms vanishes when evaluated at s = 0. Since the proof

is analogous in the two cases, we will show that

lim
s→0

∑
v∈ 1

p
Zn/Zn−{0}

∑
λ∈v+Zn

η(λ, s) = 0.

Let g ∈ S, consider tangent vectors Y1, . . . , Yn−1 ∈ TgS, and let Y = (Y1, . . . , Yn−1). Then,

it is enough to see

lim
s→0

∑
v∈ 1

p
Zn/Zn−{0}

∑
λ∈v+Zn

η(λ, s)g(Y ) = 0.

Then, for s ∈ C with Re(s)≫ 0∑
v∈ 1

p
Zn/Zn−{0}

∑
λ∈v+Zn

η(λ, s)g(Y ) =
∑
v∈ 1

p
Zn
η(λ, s)g(Y )−

∑
λ∈Zn

η(λ, s)g(Y ),

where the right-hand side consists of the difference of two functions which admit a meromor-

phic continuation to all s ∈ C and are regular at s = 0 by Lemma 3.9. The previous expression

is equal to∑
λ∈Zn

η(λ/p, s)g(Y )−
∑
λ∈Zn

η(λ, s)g(Y ) = ps
∑
λ∈Zn

η(λ, s)g(Y )−
∑
λ∈Zn

η(λ, s)g(Y ).

Here we used that η(λ/p, s) = psη(λ, s), which can be verified from the definition of η(v, s).

Since the meromorphic continuation of
∑

λ∈Zn η(λ, s)g(Y ) is regular at s = 0 by Lemma 3.9,

the evaluation at s = 0 of the expression above is zero. □

4. The Eisenstein group cohomology class

In this section, we package the pullbacks of the Eisenstein class by p-power torsion sections

in a group cohomology class for Γ := SLn(Z) valued in measures on X := Znp − pZnp . Then,

we discuss the process of lifting this class to a class valued in total mass zero measures on X,
which will be an important property for defining rigid classes and p-adic invariants attached

to totally real fields.
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4.1. From singular to group cohomology. Let r ≥ 1 and let

m := lcm(c, [Γ : Γ(q)], 2).

Since Γr(q) is normal in Γr, there are actions of Γr on the singular cohomology of Γr(q)\X ,

described above Lemma 2.11, and on the group cohomology of Γr(q), via conjugation. These

actions are compatible with the natural isomorphism from singular to group cohomology,

giving

Hn−1(Γr(q)\X ,Z[1/m])Γr
∼−−→ Hn−1(Γr(q),Z[1/m])Γr

∼−−→ Hn−1(Γr,Z[1/m]). (10)

The first map is an isomorphism because Γr(q) acts freely on X , as it is torsion-free. The

second one is given by the corestriction map multiplied by [Γr : Γr(q)]
−1, which belongs to

Z[1/m] as [Γr : Γr(q)] divides [Γ : Γ(q)]. The inverse of the second map is restriction.

For every r ≥ 1, in Section 2.2 we constructed the classes

v∗rzr ∈ Hn−1(Γr(q)\X ,Z[1/m])Γr,−.

and proved they are invariant under the action of Γr and belong to the −1-eigenspace for the

action induced by w := diag(1,−1, 1, . . . , 1) ∈ GLn(Z) in Lemma 2.11 and Lemma 2.12.

Definition 4.1. For r ≥ 1, let cr ∈ Hn−1(Γr,Z[1/m]) be the group cohomology class corre-

sponding to v∗rzr via the isomorphisms of (10).

Similarly as above, w ∈ GLn(Z) induces an action on group cohomology for Γr(q) (as well

as for Γr) via conjugation. This is compatible with the involution in singular cohomology

induced by w considered in Section 2.2 via (10). It follows that cr ∈ Hn−1(Γr,Z[1/m])−,

where here and form now on the superindex − indicates the −1-eigenspace for w.

The trace compatibility of the singular cohomology classes (v∗rzr)r leads to the compatibility

of the group cohomology classes (cr)r with respect to corestriction maps.

Proposition 4.2. For r ≥ 1 let cor : Hn−1(Γr+1,Z[1/m]) → Hn−1(Γr,Z[1/m]) be the core-

striction map. Then, cor(cr+1) = cr.

Proof. Denote by cr(q) ∈ Hn−1(Γr(q),Z[1/m])Γr the image of v∗rzr via the first isomorphism

in (10). Since this isomorphism is compatible with respect to pushforward and corestriction

(see [Bro82, Chapter III, Section 9 (E)]), it follows from Proposition 2.16 that if

corq : H
n−1(Γr+1(q),Z[1/m]) −→ Hn−1(Γr(q),Z[1/m]),

denotes corestriction in group cohomology, then corq(cr+1(q)) = cr(q). This implies that

cor ([Γr+1 : Γr+1(q)]cr+1) = [Γr : Γr(q)]cr.

which leads to the desired result as [Γr+1 : Γr+1(q)] = [Γr : Γr(q)] ∈ Z[1/m]×. □

It is a computation to verify that the corestriction maps are equivariant with respect to

the involution w. From there, we conclude

(cr)r ∈ lim←−
r

Hn−1(Γr,Z[1/m])−.
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4.2. Cohomology class with coefficients in Z[1/m]-measures. We first describe the

action of w ∈ GLn(Z) on group cohomology with coefficients. For every r ≥ 0 (including

Γ0 = Γ), conjugation by w induces the automorphism α : Γr → Γr, α(γ) = wγw. Then, if M

is a GLn(Z)-module M , we can consider the morphism of complexes of group cochains

C•(Γr,M) −→ C•(Γr,M), c 7−→ w ◦ c ◦ αr,

which induces an involution w on H i(Γr,M). We will denote by H i(Γr,M)− the (−1)-
eigenspace for w.

For r ≥ 1, let Xr := (Z/prZ)n − (pZ/prZ)n and if A is an abelian group, denote

D(Xr, A) := Maps(Xr, A).

It admits a left action of GLn(Z) given by (g ·λ)(x) = λ(g−1x), for g ∈ GLn(Z), λ ∈ D(Xr, A),
and x ∈ Xr. Let xr := (1, 0, . . . , 0)t ∈ Xr. Since the stabilizer of xr in Γ is Γr, we deduce that

we have a Γ-equivariant isomorphism

coIndΓΓr(A)
∼−−→ D(Xr, A), f 7−→ λf ,

where λf (x) = f(γ) for γ ∈ Γ such that γxr = x. In particular, Shapiro’s lemma induces an

isomorphism

H i(Γ,D(Xr,Z[1/m])
∼−−→ H i(Γr,Z[1/m]), [λ] 7−→ [c(λ)] (11)

where c(λ)(γ0, . . . , γi) = λ(γ0, . . . , γi)(xr). Moreover, the isomorphism is equivariant with

respect to the action of w.

Definition 4.3. For every r ≥ 1, define µr ∈ Hn−1(Γ,D(Xr,Z[1/m]))− to be the image of cr

by the inverse of the isomorphism induced by Shapiro’s lemma given in (11).

Consider the GLn(Z)-equivariant maps

ur+1 : D(Xr+1, A) −→ D(Xr, A), ur+1(f)(x) =
∑

x′∈Xr+1

x′≡x mod pr

f(x′). (12)

It follows from the compatibility of the classes (cr)r ∈ lim←−rH
n−1(Γr,Z[1/m])− proven in

Proposition 4.2, that we have a compatible system

(µr)r ∈ lim←−
r

Hn−1(Γ,D(Xr,Z[1/m]))−,

where the transition maps are given by ur for every r ≥ 2. This statement can be proven

using Chapter III, Section 9 (A) of [Bro82], which leads to describing the corestriction maps

in terms of the map given by Shapiro’s lemma and ur.

Denote by D(X, A) the space of A-valued distributions on X. An element of λ ∈ D(X, A)
is determined by the values λ(U) of the characteristic functions of compact open sets U . In

particular, it is determined by the images of the following compact open sets. For x ∈ Xr,
choose any lift of it in X, also denoted by x, and let

Ux/pr := x+ prZnp ⊂ X. (13)

Endow D(X, A) with a left action of GLn(Z) given by (g · λ)(U) = λ(g−1U) and define

D(X, A) −↠ D(Xr, A), λ 7−→ λr,



22 MARTI ROSET AND PETER XU

where for x ∈ Xr, λr(x) = λ(Ux/pr). This discussion implies the following lemma.

Lemma 4.4. Let A be an abelian group. The map

D(X, A) ∼−−→ lim←−
r

D(Xr, A), λ 7−→ (λr)r,

is a Γ-equivariant isomorphism.

We will now combine the compatible system of classes (µr)r to a group cohomology class

valued on D(X,Z[1/m]). First, we note the following fact regarding the cohomology of Γ = Γ0

and the congruence subgroups Γr for r ≥ 1 in the stable range, which is a consequence of the

work of Li and Sun [LS19].

Lemma 4.5. For every r ≥ 0 and 0 ≤ i ≤ n− 2, the group H i(Γr,Z[1/m])− is finite.

Proof. Denote by Γ̃r the stabilizer of vr ∈ Qn/Zn in GLn(Z). Then, Shapiro’s lemma implies

the following isomorphisms.

H i(Γr,R)− ≃ H i(Γ̃r,R(det)) ≃ H i(GLn(Z), I),

where I := coInd
GLn(Z)
Γ̃r

(R(det)). Since IGLn(Z) = 0, again by Shapiro’s lemma, it follows from

Example 1.10 of [LS19] that

H i(Γr,R)− = 0.

It is now an application of the universal coefficient theorem that H i(Γr,Z[1/m])− is torsion.

By [BS73, Theorem 11.4], the group Γr is of type (WFL). In particular, it is of type (VFL).

By the Remark in Page 101 of Section 1.8 of [Ser71], and the universal coefficient theorem,

it follows that H i(Γr,Z[1/m])− is finitely generated over Z[1/m]. Since it is also a torsion

group, we deduce that it is finite, as desired. □

Proposition 4.6. For every 0 ≤ i ≤ n − 1, the map λ 7→ (λr)r of Lemma 4.4 induces an

isomorphism

H i (Γ,D(X,Z[1/m]))−
∼−−→ lim←−

r

H i(Γ,D(Xr,Z[1/m]))−.

Proof. To simplify the notation, denote D := D(X,Z[1/m]) and Dr := D(Xr,Z[1/m]). For a

group G, a G-module M , and j ∈ Z≥0, let

Cj(G,M) := HomG(Z[Gj+1],M),

where the action of G in Gj+1 is diagonal. The complex C•(G,M) with the usual coboundary

maps computes the group cohomology of G with coefficients in M .

The surjective morphisms ur mod pr−1 : Dr → Dr−1 obtained by taking the maps in (12)

modulo pr−1 induce a map

u = (ur) :
∏
r≥1

Ci(Γ,Dr) −↠
∏
r≥1

Ci(Γ,Dr).

Since ur is surjective for every r, u is surjective. It can be deduced from there and the

expression of u, that 1 − u is also surjective, where 1 denotes the identity. In particular, we
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have a short exact sequence of complexes

0 −→ C•(Γ,D) −→
∏
r≥1

C•(Γ,Dr)
1−u−−→

∏
r≥1

C•(Γ,Dr) −→ 0.

Note that to justify exactness in the middle, we used that D = lim←−r Dr by Lemma 4.4. Since

2 is invertible in Z[1/m], we can consider the w = −1 eigenspace of the corresponding long

exact sequence in cohomology. This yields to the short exact sequence

0 −→ R1 lim←−
r

H i−1(Γ,Dr)− −→ H i(Γ,D)− −→ lim←−
r

H i(Γ,Dr)− −→ 0, (14)

where we used that

R1 lim←−
r

H i−1(Γ,Dr)− = coker

∏
r≥1

H i−1(Γ,Dr)−
1−u−−→

∏
r≥1

H i−1(Γ,Dr)−
 .

Finally, sinceH i−1(Γ,Dr)− ≃ H i−1(Γr,Z[1/m])− is finite for i−1 ≤ n−2 by Lemma 4.5, it fol-

lows that
(
H i−1(Γ,Dr)−

)
r
satisfies the Mittag–Leffler condition. Thus, R1 lim←−rH

i−1(Γ,Dr)− =

0 for every i− 1 ≤ n− 2 proving the desired isomorphism. □

Definition 4.7. Define

µ ∈ Hn−1(Γ,D(X,Z[1/m]))−

to be the class corresponding to (µr)r via the isomorphism of Proposition 4.6.

Remark 4.8. The class µ viewed as a class with coefficients in Zp-valued measures on X is

equal to the restriction of the classes considered in [BKL18, Definition 1.8.4] to measures on

primitive vectors on Znp .

4.3. Cocycle with coefficients in R-distributions. Using the differential form cEψ intro-

duced in Section 3, which represents the Eisenstein class, we give an explicit representative of

the image of µr ∈ Hn−1(Γ,D(Xr,Z[1/m])) in Hn−1(Γ,D(Xr,R)). This will be used to lift µ

to a class valued in measures of total mass zero and to compare our constructions to special

values of L-functions.

Lemma 4.9. Let r ≥ 1 and let z ∈X be an arbitrary point. The map

cv∗r cEψ : Γ
n
r −→ R, (γ0, . . . , γn−1) 7−→

∫
∆(γ0z,...,γn−1z)

v∗r cEψ,

where ∆(γ0z, . . . , γn−1z) denotes the geodesic simplex in X with vertices {γiz}i, defines a

group cocycle and represents the class cr ∈ Hn−1(Γr,R).

Proof. The form v∗r cEψ on X is closed and invariant under the action of Γr. It follows from

there that cv∗r cEψ is a group cocycle and its cohomology class is independent of the choice of

point z ∈X .

We proceed to see that the class of cv∗r cEψ is cr. For this, note that Theorem 3.7 im-

plies that v∗r cEψ descends to a closed differential form on Γr(q)\X representing v∗rzr ∈
Hn−1(Γr(q)\X ,R). Thus, the image of v∗rzr by the first map in the isomorphism (10) (with

coefficients in R) is represented by the restriction of cv∗r cEψ to Γr(q)
n. In particular, it follows

from the definition of cr that [cv∗r cEψ ] = cr. □
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Fix z ∈X an arbitrary point. Define a cocycle

µv∗r cEψ : Γ
n −→ D(Xr,R), (γ0, . . . , γn−1) 7−→

(
x̄ 7−→

∫
∆(γ0z,...,γn−1z)

(x/pr)∗cEψ

)
,

where x ∈ Zn is a lift of x̄ ∈ Xr, z ∈ X denotes a fixed arbitrary base point, and

∆(γ0z, . . . , γn−1z) is defined as in the lemma above.

Proposition 4.10. We have [µv∗r cEψ ] = µr when viewed as classes in Hn−1(Γ,D(Xr,R)).

Proof. First observe that µv∗r cEψ is a group cocycle. This follows from the fact that cEψ is

closed and invariant under Γ. Now, the proposition follows from observing that [µv∗r cEψ ] maps

to [cv∗r cEψ ] via the isomorphism given by Shapiro’s lemma

Hn−1(Γ,D(Xr,R))
∼−−→ Hn−1(Γr,R)

described in (11), Lemma 4.9, and the definition of µr (see Definition 4.3). □

Consider the Γ-equivariant morphism given by taking the total mass of a distribution

D(X1,R) −→ R, λ 7−→
∑
x∈X1

λ(x).

Corollary 4.11. The corestriction map Hn−1(Γ1,R)→ Hn−1(Γ,R) maps c1 to 0. In partic-

ular, the morphism induced by taking the total mass of a measure

Hn−1(Γ1,D(X1,R)) −→ Hn−1(Γ,R)

maps µ1 to 0.

Proof. The corestriction map can be written as

Hn−1(Γ1,R)
∼−−→ Hn−1(Γ,D(X1,R)) −→ Hn−1(Γ,R),

where the first map is given by the inverse of the map given by Shapiro’s lemma, and the

second one is the map induced by taking the total mass of a measure (see [Bro82, Chapter

III, Section 9 (A)]). In view of this observation and of Proposition 4.10, it is enough to prove

that the image of [µv∗1cEψ ] by the second map is trivial. For that, observe that such image is

represented by the cocycle

(γ0, . . . , γn−1) 7−→
∫
∆(γ0z,...,γn−1z)

∑
x̄∈X1

(x/p)∗cEψ.

It follows from Proposition 3.10 that the sum of differential forms in the integral is equal to

zero, giving the desired result. □

4.4. Lifting to measures of total mass zero. To construct rigid classes, it is useful to lift

the class µ to a class with coefficients in measures of total mass zero. Let D0 := D0(X,Z[1/m])

be the sub-module of D := D(X,Z[1/m]) consisting of measures λ ∈ D such that λ(X) = 0.

Consider the short exact sequence

0 −→ D0 −→ D −→ Z[1/m] −→ 0. (15)

Proposition 4.12. The image of µ by the map Hn−1(Γ,D)→ Hn−1(Γ,Z[1/m]) is torsion.
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Proof. The result follows from Proposition 4.11. □

As we explained above, w = diag(1,−1, 1, . . . , 1) ∈ GLn(Z) acts on the cohomology groups

H i(Γ,Z[1/m]), H i(Γ,D0), and H
i(Γ,D). Moreover, (15) yields a long exact sequence

0 = Hn−2(Γ,Q)− −→ Hn−1(Γ,D0)
−
Q −→ Hn−1(Γ,D)−Q −→ Hn−1(Γ,Q)−,

where the subindex denotes taking the tensor product with Q over Z[1/m] and we used Lemma

4.5 for the vanishing of Hn−2(Γ,Q)−. Thus, by Proposition 4.12, µ admits a unique lift to a

class in Hn−1(Γ,D0)
−
Q.

Definition 4.13. Let

µ0 ∈ Hn−1(Γ,D0(X,Z[1/m]))−Q (16)

be a a lift of µ ∈ Hn−1(Γ,D)Q.

Remark 4.14. If a is any integer prime to p, we denote [a]∗ as the GLn(Z)-equivariant operator
on D(Xr) or D(X) given by pushforward of measures along the multiplication-by-a map Xr →
Xr (resp. X → X). Then Remark 2.10 implies that for any c and d coprime to p and each

other

([c]−1
∗ − cn)dµr = ([d]−1

∗ − dn)cµr,

where the pre-subscripts, as before, denote the class associated to the corresponding smooth-

ings. Then Proposition 4.6 implies the same for the inverse limit class µ. Note that the

pullback [a]∗ on the cohomology of the torus induces [a]−1
∗ on the distributions over torsion

specializations. From there, we deduce that, up to torsion,

([c]−1
∗ − cn)dµ0 = ([d]−1

∗ − dn)cµ0.

5. Drinfeld’s symmetric domain and log-rigid classes

In this section, we introduce Drinfeld’s p-adic symmetric domain Xp. Then, we define a lift

from measures on X = Znp −pZnp of total mass zero to log-rigid analytic functions on Xp. This

leads to construct a log-rigid class JE,L as the image of the class µ0 ∈ Hn−1(Γ,D0(X,Z[1/m]))Q

of the previous section by such lift. We conclude by defining the evaluation of JE,L at points

τ ∈Xp attached to totally real fields where p is inert.

5.1. Drinfeld’s domain and rigid functions. Drinfeld’s p-adic symmetric domain is de-

fined as Xp := Pn−1(Cp)−
⋃
H∈HH, where H is the set of all Qp-rational hyperplanes. It has

the structure of a rigid analytic space, which we proceed to describe following [SS91].

For a given H ∈ H, let ℓH be an equation of H such that its coefficients form a unimodular

vector in Cnp . Also, if z ∈ Pn−1(Cp), we will always assume z = [(z0, . . . , zn−1)] is represented

by a vector with unimodular coordinates. For m ≥ 1, define

X ≤m
p := {z ∈ Pn−1(Cp) | ordp(ℓH(z)) ≤ m, for all H ∈ H}.

The family {X ≤m
p }m forms an admissible covering of Xp by open affinoid subdomains.

The ring of rigid functions on X ≤m
p can be described as follows. Let Hm be the set of

equivalence classes of H modulo pm. Also, fix H̄m a set of representatives for the equivalence
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classes inHm+1 containing the coordinate hyperplanesHi = {zi = 0} for every i = 0, . . . , n−1.
For H,H ′ ∈ H, define the function fH,H′ : Xp → Cp

fH,H′(z) :=
ℓH(z)

ℓH′(z)
.

Then, observe that we can describe

X ≤m
p = {z ∈Xp | ordp(fH,H′(z)) ≥ −m for all H,H ′ ∈ H̄m}.

Let Am be the affinoid Qp-algebra obtained as the quotient of the free Tate algebra over Qp

in the indeterminates {TH,H′}H,H′∈H̄m
modulo the closed ideal generated by

TH,H − pm, for H ∈ H̄m
TH,H′TH′,H′′ − pmTH,H′′ , for H,H ′, H ′′ ∈ H̄m,

TH,Hj −
r−1∑
i=0

λiTHi,Hj , if ℓH(z) =

n−1∑
i=0

λizi for H ∈ H̄m and 0 ≤ j ≤ n− 1.

The previous descriptions of X ≤m
p and Am lead to the following result.

Proposition 5.1. Denote by A≤m the ring of rigid analytic functions on X ≤m
p . Then, we

have an isomorphism of Qp-algebras

Am
∼−−→ A≤m, TH,H′ 7−→ pmfH,H′ .

In particular, it induces an isomorphism of rigid spaces X ≤m
p

∼−−→ Sp(Am).

Proof. See proof of Proposition 4 of [SS91]. □

In particular, A≤m is a Banach algebra with respect to the supremum norm.

Definition 5.2. The ring of rigid analytic functions on Xp, denoted by A, is the space of

functions f : Xp → Cp such that for every m, their restriction to X ≤m
p belongs to A≤m.

We will also consider a larger space of functions on Xp, called log-rigid analytic functions.

Let logp : C×
p → Cp be the branch of the p-adic logarithm satisfying logp(p) = 0. A function

f : X ≤m
p → Cp is log-rigid analytic on X ≤m

p if it can be written as

f = f0 +
∑

H,H′∈H
cH,H′ logp(fH,H′(z)),

where f0 ∈ A≤m and cH,H′ ∈ Qp are all but finitely many equal to 0. Denote the space of

log-rigid analytic functions on X ≤m
p by A≤m

L .

Definition 5.3. The space of log-rigid analytic functions on Xp, denoted by AL, is the space

of functions f : Xp → Cp such that for every m, their restriction to X ≤m
p belongs to A≤m

L .

The following lemma will be useful to study log-rigid functions in the next sections.

Lemma 5.4. Let m ≥ 1, and let H,H ′ ∈ H be hyperplanes with equations ℓH and ℓH′ which

are congruent modulo pm+1. Then, the function

f : X ≤m
p −→ Cp, z 7−→ logp

(
fH,H′(z)

)
is rigid analytic on X ≤m

p .
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Proof. Observe that we can write

f(z) = logp

(
1− ℓH′(z)− ℓH(z)

ℓH′(z)

)
.

Moreover, since ℓH ≡ ℓH′ mod pm+1 and z ∈X ≤m
p , we have

ordp

(
ℓH′(z)− ℓH(z)

ℓH′(z)

)
≥ 1.

Therefore,

f(z) =
∑
k≥1

1

k

(
ℓH′(z)− ℓH(z)

ℓH′(z)

)k
,

which is rigid analytic on X ≤m
p . □

Observe that matrix multiplication induces a right action of SLn(Qp) on Xp given as follows.

For g ∈ SLn(Qp) and z ∈Xp represented by a vector in Cnp , that we also denote by z, we have

(z, g) := [gtz],

where gt ∈ SLn(Qp) denotes the transpose of g. This induces a left action of SLn(Qp) on the

space of Cp-valued functions on Xp. If g ∈ SLn(Qp), f is a function on Xp, and z ∈Xp

(g · f)(z) := f(gtz).

This action preserves the subspaces A and AL.

5.2. Lifts from measures to functions on Xp. Recall that Xp consists of the points in

Pn−1(Cp) that do not belong to a Qp-rational hyperplane. On the other hand, a point in

X = Znp − pZnp gives the equation of a Qp-rational hyperplane. This suggests considering the

two-variable function(
Cnp −

⋃
H∈H

H

)
× X −→ Cp, (z, x) 7−→ logp(z

t · x),

Integration with respect to the variable x ∈ X will induce a map from total mass zero measures

on X to functions on Xp.

Lemma 5.5. Let λ ∈ D0(X,Zp). The function F : Xp −→ Cp given by

z 7−→ F (z) :=

∫
X
logp(z

t · x)dλ,

where z in the right hand side denotes an arbitrary representative in Cnp of z ∈ Xp, is well-

defined and belongs to AL.

Proof. For every r ≥ 1, fix Vr a set of representatives in Zn of Xr = (Z/prZ)n − (pZ/prZ)n

and define

fr : Xp −→ Cp, z 7−→
∑
v∈Vr

λ(Uv/pr) logp(z
t · v),

where Uv/pr ⊂ X is as in (13). Observe that since λ(X) = 0, fr(z) is independent of the

choice of representative of z in Cnp , showing that fr is a well-defined function. For the rest

of the proof we will assume that the representative of z (also denoted z) is chosen so that its

coordinates are unimodular. We follow the next steps:
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• F is a well-defined function on Xp. Indeed, for z ∈ Cnp −
⋃
H∈HH, the function

x ∈ X 7→ logp(z
t · x) is continuous on the compact set X. Thus, the integral defining

F (z) converges and we have pointwise convergence

F (z) = lim
r→+∞

fr(z).

• The sequence (fr |X ≤m
p

) converges to F|X ≤m
p

with respect to the sup norm for m ≥ 1.

To simplify the notation, denote by (fr) and F the restrictions of these functions

to X ≤m
p . To prove that (fr)r converges to F with respect to the sup norm it is

enough to see that (fr)r is Cauchy with respect to this norm. Observe that, if we let

π : Vr+1 ↠ Vr be the lift of the reduction modulo pr map Xr+1 ↠ Xr and use that λ

is a measure, we have

fr+1(z)− fr(z) =
∑

v∈Vr+1

λ(Uv/pr+1) logp

(
zt · v

zt · π(v)

)

=
∑

v∈Vr+1

λ(Uv/pr+1) logp

(
1 +

zt · (v − π(v))
zt · π(v)

)
.

Since v ≡ π(v) mod pr, we deduce that for every z ∈X ≤m
p

ordp

(
zt · (v − π(v))
zt · π(v)

)
≥ r −m,

Thus, if r > m, we can use the power series expansion of log(1 + x) to deduce that

ordp(fr+1(z)− fr(z)) ≥ r −m for all z ∈X ≤m
p

It follows from there that (fr)r is Cauchy.

• F ∈ AL. Let m ≥ 1 and denote by (fr)r and F the restrictions of these functions to

X ≤m
p . It is enough to see that F belongs to A≤m

L . With this aim, write

F =

(
lim

r→+∞
(fr − fm+1)

)
+ fm+1.

We claim that limr→+∞(fr − fm+1) is a rigid analytic function. Indeed, we can write

fr(z)− fm+1(z) =
∑

v∈Vr+1

λ(Uv/pr+1) logp

(
zt · v

zt · πr−(m+1)(v)

)
.

Since v ≡ πr−(m+1)(v) mod pm+1, it follows from Lemma 5.4, that fr − fm+1 is rigid

analytic on X ≤m
p . Then, since the sequence (fr − fm+1)r converges with respect to

the sup norm by the previous point of this proof, and A≤m is complete with respect

to this norm, we deduce the desired claim.

On the other hand, since λ has total mass zero, we have that fm+1 ∈ A≤m
L , as it

can be written as a linear combination of logp(fH,H′(z)) for Qp-rational hyperplanes

H,H ′ ∈ H. Hence, we deduce that F ∈ A≤m
L and we are done.

□

In view of the previous lemma, we can define a lift from measures of total mass zero to

log-rigid analytic functions on Xp.
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Definition 5.6. Let ST be the morphism given by

ST: D0(X,Z[1/m]) −→ AL, λ 7−→
(
z 7−→

∫
X
logp(z

t · x)dλ
)
.

The morphism ST is Γ-equivariant. Therefore, it induces a map in cohomology

ST: Hn−1(Γ,D0(X,Z[1/m])) −→ Hn−1(Γ,AL).

Using this map, we obtain our desired log-rigid analytic class.

Definition 5.7. Let µ0 ∈ Hn−1(Γ,D0(X,Z[1/m]))Q be as in (16). Define

JE,L := ST(µ0) ∈ Hn−1(Γ,AL)Q.

As with the cocycles µ0, we have the following independence-of-c result, where we here, as

before, denote dependence on the smoothing with a pre-subscript.

Proposition 5.8. If c, d are coprime to each other and also to p, we have

(1− dn)cJE,L = (1− cn)dJE,L.

Proof. For any prime-to-p scalar a, we have ST ◦ [a]∗ = ST, as if λ ∈ D0(X,Z[1/m])∫
X
logp(z

t · x) d([a]∗λ) =
∫
X
logp a+ logp(z

t · x) dλ =

∫
X
logp(z

t · x) dλ

with the last equality by λ(X) = 0. Then the result follows by passing to group cohomology

for Γ and applying Remark 4.14. □

In particular, (1− cn)−1
cJE,L is independent of c, though this introduces denominators.

Remark 5.9. Suppose n = 2 and consider JDR ∈ H1(SL2(Z),A×)− a lift of (the restriction

to SL2(Z) of) JDR ∈ H1(SL2(Z[1/p]),A×/C×
p )

− constructed in [DPV24]. By comparing the

constructions of JDR and JE,L, we deduce JE,L = logp(JDR).

5.3. Evaluation at totally real fields where p is inert. Let F be a totally real field of

degree n where p is inert and denote by σ1, . . . , σn the collection of embeddings of F into R.
Let a be an integral ideal of F of norm coprime to pc. Fix {τ1, . . . , τn} an oriented Z-basis of
a−1, in the sense that the square matrix (σi(τj))i,j has positive determinant, and let τ ∈ Fn

be the column vector whose ith entry is equal to τi. The vector τ induces an isomorphism of

Q-vector spaces

Qn ∼−−→ F, x 7−→ τ t · x.
The action of multiplication by F× on F , which is Q-linear, gives an embedding

F ↪−→ Mn(Q), α 7−→ Aα (17)

determined by the following property: for α ∈ F and x ∈ Qn, α(τ t · x) = τ t · (Aαx).

Lemma 5.10. The element τ ∈ Pn−1(Cp) belongs to Xp and is fixed by F 1 ↪−→ SLn(Q).

Proof. The coordinates of τ give a Q-basis of F . Since p is inert in F , the coordinates of τ

also form a Qp-basis of the completion of F at p. In particular, they are independent over Qp.

In other words, τ ∈ Xp. Finally, for every α ∈ F we have Atατ = ατ by the property stated

below (20). In particular, τ ∈Xp is fixed by the action of F 1 ↪−→ SLn(Q). □
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Let UF be the subgroup of totally positive units in O×
F . We view UF as a subgroup of Γ.

Consider the following morphism in cohomology induced by evaluation at τ

Hn−1(Γ,AL)
evτ−−→ Hn−1(UF ,Cp).

By Dirichlet’s unit theorem, UF ≃ Zn−1. Therefore, Hn−1(UF ,Z) ≃ Z, and we can fix a

generator of this group cUF ∈ Hn−1(UF ,Z).

Definition 5.11. Consider the same notation as above, and let J ∈ Hn−1(Γ,AL)Q. Define

the evaluation of J at [τ ] ∈Xp by the cap product

J [τ ] := cUF ⌢ evτ (J) ∈ Cp.

Observe that, since JE,L = ST(µ0), it follows from the description of the map ST that

JE,L[τ ] ∈ Fp. We also note that this definition depends, up to a sign, of the choice of

generator cUF ∈ Hn−1(UF ,Z). In the next section, we will make a precise choice of generator

when comparing the local trace of these values to the local trace of p-adic logarithms of

Gross–Stark units.

6. Traces of values of the log-rigid class and the Gross–Stark Conjecture

Let F be a totally real field where p is inert, let a be an integral ideal of F coprime to pc,

and fix τ ∈ Fn a vector whose entries give an oriented Z-basis of a−1, which yields a point

τ ∈ Xp. Recall the log-rigid analytic class JE,L constructed in the previous section and the

value JE,L[τ ] ∈ Fp. In this section, we prove

TrFp/QpJE,L[τ ] = −L
′
p(1[a],p, 0),

where Lp(1[a],p, s) denotes a p-adic partial zeta function attached to the class of a in the narrow

Hilbert class group of F . From this expression and the rank 1 Gross–Stark conjecture, we

obtain the equality

TrFp/QpJE,L[τ ] = TrFp/Qp logp(u
σa)

for uσa a Gross-Stark unit in the narrow Hilbert class field of F attached to the class of a.

6.1. p-adic L-functions and Gross–Stark conjecture. We state the the Gross–Stark

conjecture in a simple setting. For more details, we refer the reader to [Das08, Section 2]. We

begin by introducing the following notation. For an integral ideal f of F , denote by Gf the

narrow ray class group modulo f. It is obtained by taking the quotient of the set of integral

ideals in F which are prime to f by the relation

b ∼f c if and only if bc−1 = (λ) for λ ∈ 1 + fc−1 totally positive.

Then, if ε is a Q̄-valued function on Gf, we let

L(ε, s) :=
∑

(b,f)=1

ε(b)Nb−s,

where the sum is over integral ideals which are coprime to f. This sum converges for s ∈ C
such that Re(s) > 1 and it can be extended via analytic continuation to a meromorphic

function at C with at most a pole at s = 1, that we will still denote by L(ε, s). Recall that c
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is a positive integer prime to p and denote by εc the function on Gf given by εc(b) = ε((c)b).

For k ∈ Z≥1, consider

∆c(ε, 1− k) := L(ε, 1− k)− cnkL(εc, 1− k).

It is result of Klingen and Siegel that ∆c(ε, 1 − k) ∈ Q(ε), where Q(ε) denotes the field

generated by the values of ε. Deligne–Ribet and Cassou–Noguès refined this statement by

studying the integrality properties of these values. Their study results in the existence of

p-adic analytic functions interpolating these values, which we proceed to outline for the case

of partial zeta functions.

Let G := lim←−r≥1
Gpr , where the limit is taken with respect to the natural projection maps

Gpr+1 → Gpr , let Ha be the open subset of G consisting of the pre-image of a via the natural

map G → G1, and denote by 1[a],p : G → Z the characteristic function of Ha. If ε : G → Z is

locally constant, it factors through Gpr for some r ≥ 1. We then define L(ε, s) by viewing ε

as a function on Gpr , which is independent of the choice of r.

Theorem 6.1. For ε : Ha → Z locally constant, consider the product ε1[a],p and view it as a

locally constant function on G.

(1) If k ≥ 1, we have ∆c(ε1[a],p, 1− k) ∈ Z[1/c].
(2) The distribution µa : ε 7→ ∆c(ε1[a],p, 0) defines a measure on Ha.

(3) The function

Lp(1[a],p, ·) : Zp −→ Zp, s 7−→
∫
Ha

⟨Nb⟩−sdµa(b)

is analytic and is characterized by the following interpolation property: for every in-

teger k ≥ 1 such that k ≡ 1 mod [F (µ2p) : F ],

Lp(1[a],p, 1− k) = ∆c(1[a],p, 1− k). (18)

Proof. See Theorem 0.5 of [DR80]. □

Observe that L(1[a],p, s) is a partial zeta function with the Euler factor corresponding to p

removed. This implies that ∆c(1[a],p, 0) = 0 and, by (18), Lp(1[a],p, 0) = 0 as well. The Gross–

Stark conjecture gives an arithmetic interpretation for the value of the derivative L′
p(1[a],p, 0)

with respect to s at s = 0. For that, let H be the narrow Hilbert class field of F and consider

the following subgroup of p-units in H

OH [1/p]×− := {x ∈ H× | |x|q = 1 ∀q ∤ p},

where q runs over all archimedean and nonarchimedean places of H not dividing p. Fix p a

prime of H dividing p.

Proposition 6.2. There exists a unique element u ∈ OH [1/p]×− ⊗Q satisfying

ordp(u
σa) = ∆c(1[a], 0) for all a coprime to p,

where 1[a] denotes the characteristic function of [a] on G1 and, here and from now on, σa ∈
Gal (H/F ) denotes the Frobenius element associated to a.
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Remark 6.3. If every prime factor of c is greater than n + 1, the Brumer–Stark conjecture,

proven in [DK23] and [Das+23], implies that in fact u ∈ OH [1/p]×−. Indeed, the quantities

∆c(ε, 1 − k) can be written as a linear combination of values of (smoothed) partial zeta

functions ζS,T (σ, 1 − k) considered in [Das08] for T running over subsets of the set of prime

ideals of F dividing cOF . Under the condition on c given above, each of these subsets satisfies

the assumptions to apply the proof of Brumer–Stark, see [Das+23, Section 1.1].

Since pOF splits completely on H, we have H ⊂ Hp = Fp.

Theorem 6.4 (Gross–Stark conjecture). Let u be as in Proposition 6.2. We have

L′
p(1[a],p, 0) = − logp(NFp/Qpu

σa) for all a coprime to p.

Proof. See [DDP11] and [Ven15]. □

6.2. Periods of the Eisenstein class along tori attached to totally real fields. We use

the differential forms representing the Eisenstein class of Section 3 to prove that pullbacks of

the Eisenstein class by torsion sections encode special values of zeta functions of totally real

fields. A general version of the result was proven in [BCG20, Section 12.6] using an adelic

framework, and we specialize their results and outline the proof below for the cases that will

be relevant for us. Our calculations are similar to those in Section 4.2 of [BCG23].

Recall that F is a totally real field of degree n where p is inert, a is an integral ideal of F

prime to pc, and τ ∈ Fn is a column vector whose entries give a positively oriented Z-basis of
a−1. As we saw in the previous section, τ induces a Q-linear isomorphism

β : Qn ∼−−→ F, x 7−→ τ t · x. (19)

The action of multiplication by F× on F , which is Q-linear, gives an embedding

F ↪−→ Mn(Q), α 7−→ Aα (20)

determined by the following property: for all α ∈ F and x ∈ Qn, α(τ t · x) = τ t · (Aαx). Let

(F ⊗ R)1+ be the subset of totally positive elements of norm 1. The embedding (20) induces

an oriented map (see Section 12.4 of [BCG20] for more details on the orientation)

iτ : (F ⊗ R)1+ −→X .

Denote by UF the subgroup of totally positive units in O×
F . Since UF has rank n − 1 by

Dirichlet’s unit theorem, it follows that

X(F ) := UF \(F ⊗ R)1+ (21)

is a compact oriented manifold of dimension n− 1.

We now introduce a linear combination of pullbacks of the Eisenstein class that we will

integrate along X(F ). For r ≥ 1, let

χ :
(
a−1 − pa−1

)
/pra−1 −→ Q̄

be an O×
F -invariant function, where here and from now on,

(
a−1 − pa−1

)
/pra−1 denotes the

set a−1 − pa−1 modulo the translation action by pra−1. Recall Xr := (Z/prZ)n − (pZ/prZ)n
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and observe that dot product with τ induces a bijection

Xr
∼−−→
(
a−1 − pa−1

)
/pra−1. (22)

We will sometimes view χ as a function on a−1 which is 0 on pa−1, and the rest of their values

are determined by the value of χ on the residue classes modulo pra−1.

Definition 6.5. Consider the same notation as above. Define

Eτ,χ :=
∑
x̄∈Xr

χ(cτ t · x) (x/pr)∗ cEψ ∈ Ωn−1(X ), (23)

For s ∈ C, we define Eτ,χ(s) as above but replacing cEψ by cEψ(s) = Eψ(c
−1Zn, s) −

cnEψ(Zn, s) in the definition.

Lemma 6.6. The differential form Eτ,χ on X is invariant under UF ⊂ Γ, where the inclusion

of UF in Γ is induced by (20).

Proof. For γ ∈ Γ, note that we have γ∗v∗cEψ = (γv)∗cEψ. Then, if γ ∈ UF ⊂ Γ

γ∗Eτ,χ :=
∑
x̄∈Xr

χ(cτ t · x)(γx/pr)∗cEψ

=
∑
x̄∈Xr

χ(cτ t · γ−1x)(x/pr)∗cEψ

=
∑
x̄∈Xr

χ(εcτ t · x)(x/pr)∗cEψ

=
∑
x̄∈Xr

χ(cτ t · x)(x/pr)∗cEψ,

where we used that τ tγ−1 = ετ t, for ε ∈ UF the preimage of γ−1 by (20) and that χ is

UF -invariant. □

Thus, i∗τEτ,χ defines a closed form on X(F ) and we can consider∫
X(F )

i∗τEτ,χ.

We will express this integral in terms of L-values. Observe that we have a bijection((
a−1 − pa−1

)
/pra−1

)
/UF

∼−−→ {b ∈ Gpr | b ∼1 a} ↪−→ Gpr , [λ] 7−→ [a(λ)], (24)

where λ ∈ a−1 is a totally positive element in [λ]. We can use this bijection to consider

χ · 1[a],p : Gpr −−→ Q̄,

where 1[a],p denotes characteristic function of the preimage of [a] ∈ G1 via the projection

Gpr → G1 and χ is viewed as a function on the preimage of [a] in Gpr via the bijection above.

Lemma 6.7. We have

L(χ1[a],p, 0) = lim
s→0

1

2n

∑
α∈UF \a−1

χ(α)sign(Nα)

|Nα|s
,

where on the right hand side, lims→0 denotes evaluation at s = 0 of the analytic continuation.
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Proof. The result can be deduced from equation (7.15) of [Cha07], which is originally due to

Siegel ([Sie79]). □

Theorem 6.8. Consider the same notation as above. Then,∫
X(F )

i∗τEτ,χ = ∆c

(
χ1[a],p, 0

)
.

Proof. For s ∈ C such that Re(s)≫ 0, we have∫
X(F )

i∗τEr,χ(s) =

∫
X(F )

i∗τ

(∑
v̄∈Xr

χ(cτ t · v) (v/pr)∗ cEψ(s)

)

=

∫
X(F )

i∗τ

∑
v̄∈Xr

χ(cτ t · v)

 ∑
λ∈v/pr+c−1Zn

η(λ, s)− cn
∑

λ∈v/pr+Zn
η(λ, s)

 ,

where we recall that η(λ, s) was introduced in Section 3.3. Using that η(v/pr, s) = psη(v, s),

and keeping in mind that we will later be interested in evaluating the analytic continuation

of the expression above at s = 0, it is enough to compute∫
X(F )

i∗τ

∑
v̄∈Xr

χ(cτ t · v)

 ∑
λ∈v+c−1prZn

η(λ, s)− cn
∑

λ∈v+prZn
η(λ, s)


=

∫
X(F )

i∗τ

∑
v̄∈Xr

χ(cτ t · v)

 ∑
x∈β(v)+c−1pra−1

η(β−1x, s)− cn
∑

x∈β(v)+pra−1

η(β−1x, s)


=

∫
X(F )

i∗τ

 ∑
x∈c−1a−1

χ(cx)η(β−1x, s)− cn
∑
x∈a−1

χ(cx)η(β−1x, s)

 .

We can compute the inner sums by first taking representatives of UF \c−1a−1 and UF \a−1,

that we denote by x, and then running over all elements in UF , denoted by u. Hence, we

obtain that the previous expressions can be written as∫
X(F )

i∗τ

 ∑
UF \c−1a−1

∑
UF

χ(cux)η(β−1ux, s)− cn
∑

UF \a−1

∑
UF

χ(cux)η(β−1ux, s)


=

∑
UF \c−1a−1

χ(cx)

∫
(F⊗R)1+

i∗τη(β
−1x, s)− cn

∑
UF \a−1

χ(cx)

∫
(F⊗R)1+

i∗τη(β
−1x, s).

From [BCG20, Section 12.8], we have that for x ∈ F∫
(F⊗R)1+

i∗τη(β
−1x, s) = π−n/22s/2−nΓ

(
s

2n
+

1

2

)n sign(N(x))

|N(x)|s
.

Hence, we deduce∫
X(F )

i∗τEr,χ =
1

2n
lim
s→0

∑
x∈UF \a−1

χ(x)
sign(N(x))

|N(x)|s
− cn

∑
x∈UF \a−1

χ(cx)
sign(N(x))

|N(x)|s
.

Finally, the desired equality follows from Lemma 6.7. □
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6.3. The class µ and p-adic L-functions. We state the relation between the class µ con-

structed in Section 4 and the p-adic L-function Lp(1[a],p, s) introduced above. From there, we

relate TrFp/QpJE,L[τ ] to traces of p-adic logarithms of Gross–Stark units.

Denote by ap the completion of a at p. For χ : a−1
p − pa−1

p → Q̄p a continuous function that

is O×
F -equivariant, define the map

φχ : D(X,Z[1/m]) −→ Q̄p, λ 7−→
∫
X
χ(cτ t · x)dλ.

Since φχ is UF -equivariant, it induces a map in cohomology

φχ : H
n−1(Γ,D(X,Z[1/m])) −→ Hn−1(UF , Q̄p).

Fix the generator cUF ∈ Hn−1(UF ,Z) ≃ Hn−1(X(F ),Z) ≃ Z corresponding to the positive

orientation of X(F ) in (21). We can then consider the cap product

cUF ⌢ φχ(µ) ∈ Q̄p.

To make the notation more transparent, we will write

cUF ⌢ φχ(µ) =

∫
X
χ(cτ t · x)dµ(cUF ).

When χ is locally constant, this quantity relates to special values of partial L-functions in the

following way.

Proposition 6.9. Let χ : a−1
p − pa−1

p ↠
(
a−1 − pa−1

)
/pra−1 → Q̄ be an O×

F -invariant func-

tion. Then, ∫
X
χ(cτ t · x)dµ(cUF ) = ∆c(1[a],pχ, 0).

Proof. Consider the UF -equivariant morphism

φχ,r : D(Xr,Z[1/m]) −→ Q̄p, λr 7−→
∑
x̄∈Xr

χ(cτ t · x)λr(x̄).

Since χ factors through
(
a−1 − pa−1

)
/pra−1, it follows that

cUF ⌢ φχ(µ) = cUF ⌢ φχ,r(µr), (25)

where µr ∈ Hn−1(Γ,D(Xr,Z[1/m])) is the class described in Definition 4.3. In particular,

cUF ⌢ φχ,r(µr) ∈ Q̄. Fix an embedding Q̄ ⊂ C. Then, the right-hand side of (25) can be

computed using a representative of the image of µr in Hn−1(Γ,D(Xr,R)). By Proposition

4.10, such a representative is given by

φr : Γ
n −→ D(Xr,R), (γ0, . . . , γn−1) 7−→

(
x̄ 7−→

∫
∆(γ0z,...,γn−1z)

(x/pr)∗cEψ

)
,

where z ∈X denotes an arbitrary point and ∆(γ0z, . . . , γn−1z) is the geodesic simplex in X

with vertices {γiz}i. Hence, (25) can be written as∫
X(F )

ι∗τ
∑
x̄∈Xr

χ(cτ t · x)(x/pr)∗cEψ =

∫
X(F )

ι∗τEτ,χ,

where X(F ) is given in (21) and Eτ,χ in (23). By Theorem 6.8, the result follows. □
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Let ŪF denote the completion of UF in O×
F,p. The previous proposition has an interpretation

in terms of measures on a−1
p − pa−1

p /ŪF , that we proceed to explain. Cap product with cUF
yields the morphism

Hn−1(UF ,D(X,Z[1/m]) −−→ D(X,Z[1/m])UF .

In addition, if we identify X ∼−→ a−1
p via dot product with τ ∈ Fn, and denote π : a−1

p −pa−1
p ↠

(a−1
p − pa−1

p )/ŪF the quotient map, we can define

h : D(X,Z[1/m])UF −→ D
(
(a−1
p − pa−1

p )/ŪF ,Z[1/m]
)

in the following way: for [µ] ∈ D(X,Z[1/m])UF and V ⊂ (a−1
p −pa−1

p )/ŪF open set, h([λ])(V ) :=

λ(π−1(V )). We can then consider these two maps and view cUF ⌢ µ|UF as an element in

D(a−1
p − pa−1

p /ŪF ,Z[1/m]).

Moreover, the bijection given in (24) considered for every r ≥ 1, induces a homeomorphism

a−1
p − pa−1

p /ŪF
∼−−→ Ha ⊂ G = lim←−Gpr .

Corollary 6.10. Let µa be the measure on Ha considered in Theorem 6.1. Via the homomor-

phism above, we have cUF ⌢ µ|UF = µa. In particular, for s ∈ Zp

Lp(1[a],p, s) =

∫
X

〈
N(a)NFp/Qp(cτ

t · x)
〉−s

dµ(cUF ).

Proof. The equality cUF ⌢ µ|UF = µa follows from the discussion above, Proposition 6.9 and

Theorem 6.1. □

As a consequence, we obtain the relation between the local trace of JE,L[τ ] and the local

trace of the logarithm of a Gross–Stark unit.

Theorem 6.11. Let u ∈ OH [1/p]×− ⊗ Q be the Gross–Stark unit introduced in Proposition

6.2. We have,

TrFp/QpJE,L[τ ] = TrFp/Qp logp(u
σa).

Proof. By viewing D0(X,Z[1/m]) ⊂ D(X,Z[1/m]), we can consider cUF ⌢ φχs(µ0) ∈ Q̄p,

where s ∈ Zp and

χs : a
−1
p − pa−1

p −→ Q̄×
p , α 7−→ ⟨N(a)NFp/Qp(α)⟩

−s.

Moreover, since µ0 is a lift of µ, Corollary 6.10 implies that for every s ∈ Zp,

cUF ⌢ φχs(µ0) = Lp(1[a],p, s).

Then, it follows from the definition of JE,L = ST(µ0), and the fact that µ0 takes values on

measures of total mass zero, that TrFp/QpJE,L[τ ] = −L′
p(1[a],p, 0). Hence, the result follows

from Theorem 6.4. □

7. Conjecture on the values of the log-rigid class

In this section, we make a conjecture on the values of the log-rigid class JE,L at certain

points τ ∈ Xp attached to totally real fields where p is inert. Then, we study the conjecture

for the concrete case that F/Q is Galois and the point τ corresponds to a Gal (F/Q)-stable

ideal of F . Finally, we provide an observation that motivates the conjecture.
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7.1. Conjecture on the values of JE,L[τ ]. Here and for the rest of the section, we consider

the same notation as in Section 6. In particular, let F be a totally real field where p is inert,

let a be an integral ideal of F coprime to pc, and fix τ ∈ Fn a vector whose entries give

an oriented Z-basis of a−1, which yields a point τ ∈ Xp. We can then consider the value

JE,L[τ ] ∈ Fp. Moreover, let H be the narrow Hilbert class field of F , p the fixed prime ideal

of H above p determined by the embedding Q̄ ⊂ Q̄p, and recall that we have the inclusion

H ⊂ Hp = Fp. Also note that the p-adic logarithm can be extended to a map

logp : H
×
p ⊗Q −→ Hp

by linearity. In view of Theorem 6.11, we make the following conjecture.

Conjecture 7.1. Suppose that F is a totally real field where p is inert. Let τ ∈ Xp be as

above and let u ∈ OH [1/p]×−⊗Q be the Gross–Stark unit determined in Proposition 6.2. Then,

JE,L[τ ] = logp(u
σa),

where σa ∈ Gal (H/F ) denotes the Frobenius associated to the class of a.

When n = 2, the conjecture is true by Theorem B of [DPV24] since, as stated in Remark

5.9, we have the equality JE,L = logp(JDR).

7.2. The case of Galois extensions. Suppose that F is Galois over Q. If the narrow

ideal class [a] is Gal (F/Q)-stable, we prove that logp(σau) ∈ Qp. If moreover the ideal a is

Gal (F/Q)-stable, we show that JE,L[τ ] ∈ Qp. Thus, Conjecture 7.1 follows from Theorem

6.11 in the case that a is Gal (F/Q)-stable.

Observe that under these assumptions, H is Galois over Q. Denote by Dp ⊂ Gal (H/Q) the

decomposition group at p. Note that Gal (H/Q), and therefore also Dp, act on OH [1/p]×−⊗Q.

Lemma 7.2. Let u be the Gross–Stark unit as above and let [a] be a narrow ideal class that

is Gal (F/Q)-fixed. For every η ∈ Dp, we have η(σau) = σau in OH [1/p]×− ⊗Q.

Proof. We will use the uniqueness property determining Gross–Stark units given Proposition

6.2. For every ideal b of OF , denote by σb ∈ Gal (H/F ) the corresponding Frobenius and

observe

σbησa(u) = ηη−1σbησa(u) = ηση−1(b)σa(u) = ηση−1(ba)(u),

where we used the Gal (F/Q)-equivariance of the Artin map in the second equality, and the

fact that [a] is Galois fixed in the last one. From there,

ordp(σbησa(u)) = ordp(ηση−1(ba)(u))

= ordp(ση−1(ba)(u))

= ∆c(1[η−1(ba)], 0)

= ∆c(1[ba], 0),

where we used that η̃(p) = p in the second equality, Proposition 6.2 in the second to last

equality, and the last equality follows from L(1[η−1(ba)], s) = L(1[ba], s), which can be verified

from their definition. From the uniqueness asserted in Proposition 6.2, it can be deduced

η(σau) = σau in OH [1/p]×− ⊗Q and we are done. □
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Proposition 7.3. Let u ∈ OH [1/p]×−⊗Q be the Gross–Stark unit introduced above and let [a]

be a narrow ideal class that is Gal (F/Q)-fixed. We have logp(σau) ∈ Qp.

Proof. We will see that for every η̃ ∈ Gal (Hp/Qp), we have η̃ logp(σau) = logp(σau). Consider

the isomorphism given by extending an automorphism in Dp ⊂ Gal (H/Q) to Hp.

Dp
∼−−→ Gal (Hp/Qp), η 7−→ η̃.

Observe that the map induced by the p-adic logarithm

logp : OH [1/p]×− ⊗Q −→ H×
p ⊗Q −→ Hp

satisfies the following invariance property: for every η ∈ Dp and x ∈ OH [1/p]×− ⊗Q, we have

logp(ηx) = η̃ logp(x). Indeed, this follows from the definition of Dp and the Gal (Hp/Qp)-

invariance of the p-adic logarithm on H×
p . Applying this to x = σa(u) and using Lemma 7.2

we obtain the desired result. □

Remark 7.4. Suppose that c satisfies the condition stated in Remark 6.3. Then, u ∈ OH [1/p]×−
and its image under the embedding u ∈ H× ⊂ H×

p = F×
p lands in Qp. Therefore, by Gross–

Stark,

logp(u) =
1

n
L′
p(1[OF ],p, 0).

Since the valuation of u at p is equal to ∆c(1[OF ], 0), we deduce that, up to a root of unity in

F×
p (see [DK24, Remark 2.7] for a discussion on this ambiguity),

u = p∆c(1[OF ],0) exp

(
1

n
L′
p(1[OF ],p, 0)

)
.

This gives an explicit formula for u in terms of L-values, generalizing the type of abelian

extensions of F that can be constructed only from p-adic L-functions, and in particular

Proposition 3.14 of [Gro81] (see also Remark 7 of [DDP11]).

We proceed to study the invariant JE,L[τ ] in the case that the ideal a is Gal (F/Q)-stable.

In this setting, the isomorphism (19) induces an embedding

O×
F ⋊Gal (F/Q) ↪−→ GLn(Z)

determined by the following equations: for every x ∈ Qn, α ∈ F× and σ ∈ Gal (F/Q),

α(τ t · x) = τ tAαx, σ(τ
t · x) = τ tAσx.

Denote D0 := D0(X,Z[1/m]). Recall that GLn(Z) acts on D0 as follows: for g ∈ GLn(Z),
λ ∈ D0, and U ⊂ X compact open

(g · λ)(U) := λ(g−1U).

Consider also the GLn(Z)-module D0(det) := D0 ⊗Z[1/m] Z[1/m](det). We use these actions

and the embedding above to describe an action of O×
F and of Gal (F/Q), on D0 and D0(det).

In particular, since {1}⋊Gal (F/Q) normalizes UF⋊{1}, we have natural actions of Gal (F/Q)

on Hn−1(UF ,D0(det)) as well as on the coinvariants (D0)UF .
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Recall the class µ0 ∈ Hn−1(Γ,D0)Q given in (16). To lighten the notation for the next

proof, by avoiding the appearance of tensor products, let ℓ ∈ Z≥0 be such that ℓµ0 lifts to an

element in Hn−1(Γ,D0). Fix such a lift and denote it by µ̃0 ∈ Hn−1(Γ,D0). Note that

ℓJE,L[τ ] =

∫
X
logp(τ

t · x)dλ ∈ Fp,

where λ := cUF ⌢ µ̃0 ∈ (D0)UF and cUF ∈ Hn−1(UF ,Z) is the oriented fundamental class.

This quantity is independent of the choice of lift µ̃0, as the difference between two such lifts

is torsion.

Lemma 7.5. Let µ̃0 ∈ Hn−1(Γ,D0) and cUF ∈ Hn−1(Γ,Z) be as above. The element λ =

cUF ⌢ µ̃0 ∈ (D0)UF is fixed by Gal (F/Q).

Proof. By Shapiro’s lemma, µ̃0 ∈ Hn−1(Γ,D0)
− admits a unique lift via the isomorphism

given by restriction

Hn−1(GLn(Z),D0(det))
∼−−→ Hn−1(Γ,D0)

−,

that we will also denote by µ̃0. It then follows that the restriction of µ̃0 to UF is Gal (F/Q)-

invariant, as it can be obtained as the image of µ̃0 via the following maps

Hn−1(GLn(Z),D0(det)) −→ Hn−1(UF ⋊Gal (F/Q),D0(det)) −→ Hn−1(UF ,D0(det))
Gal (F/Q).

The result follows as cup product with cUF induces a Gal (F/Q)-equivariant map

Hn−1(UF ,D0(det))
∼−−→ (D0)UF ,

which can be verified via a direct calculation. □

Theorem 7.6. Suppose that the coordinates of τ ∈ Fn given an oriented Z-basis of a

Gal (F/Q)-stable ideal a−1. We have, JE,L[τ ] ∈ Qp.

Proof. We need to see that JE,L[τ ] ∈ Fp is fixed by Gal (Fp/Qp). For every σ̃ ∈ Gal (Fp/Qp)

denote by σ ∈ Gal (F/Q) its restriction to F and note

ℓJE,L[τ ]
σ̃ =

∫
X
logp(σ(τ

t · x))dλ

=

∫
X
logp(τ

tAσx)dλ

=

∫
X
logp(τ

t · x)d(Aσ · λ) = ℓJE,L[τ ],

where in the last equality we used that λ ∈ (D0)Uτ is fixed by Gal (F/Q) by Lemma 7.5. □

Remark 7.7. Observe that in the theorem above, we only used that µ0 is a group cohomology

class for SLn(Z) that belongs to the w = −1 eigenspace. Thus, the theorem can be applied

to other rigid analytic classes.

Corollary 7.8. Suppose that F is a totally real field that is Galois over Q and where p is

inert. Let τ ∈ Fn with coordinates generating a−1, where a is a Gal (F/Q)-stable ideal, and

let u ∈ O[1/p]×− ⊗Q be the Gross–Stark unit of Proposition 6.2. We have,

JE,L[τ ] = logp(u
σa).
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7.3. Example in the Galois case. Consider the same notation as above. In this section,

we give a numerical computation that exemplifies Proposition 7.3, namely the fact that the

conjugates of Gross–Stark units corresponding to Gal (F/Q)-fixed narrow ideal classes belong

to Qp. We used the algorithm developed by Damm–Johnsen, see [Dam24], which is publicly

available. We made minor modifications to the algorithm to output all conjugates of a given

Gross–Stark unit.

Concretely, we take p = 3 and F = Q(
√
D) with D = 689. The narrow Hilbert class field

of F , denoted by H, is a cyclic extension of F of degree 8. The Galois group Gal (H/F ) is

isomorphic tothe narrow Hilbert class group of F , denoted by G1. Denote by FD the set

of binary quadratic forms with integer coefficients and discriminant D. This set is equipped

with a group action of SL2(Z) by linear transformations and we have a bijection

FD/SL2(Z)
∼−−→ G1

[Q] = [a, b, c] 7−→ [aQ] =

[(
a,
−b+

√
D

2

)]
,

where [a, b, c] denotes the class of ax2 + bxy + cy2.

The Gross–Stark units are, up to high p-adic precision, roots of the polynomial

6561x8 − 11340x7 − 882x6 + 4333x5 + 2665x4 + 4333x3 − 882x2 − 11340x+ 6561.

More precisely, for every class [Q] ∈ FD/SL2(Z), the table below gives the image of the

Gross–Stark unit σaQ(u) ∈ H via the embedding H ⊂ Hp = Fp.

Table 1. p = 3, D = 689. Elements in FD/SL2(Z) and their Gross–Stark unit.

[Q] ord([aQ]) σaQ(u) ∈ Fp
[−20, 17, 5] 8 3−2(7283498230698546457 + 20427811426324513506

√
D) +O(339)

[−10, 7, 16] 2 34 · 28799930840163216397 +O(345)

[−10, 17, 10] 4 25613292858296352193 + 34405602800800679412
√
D +O(341)

[−5, 17, 20] 8 32(28389335835840796072 + 1041259434467889369
√
D) +O(343)

[5, 17,−20] 8 3−2(7283498230698546457 + 16045184950846272897
√
D +O(339)

[10, 7,−16] 1 3−4 · 23094469614450736543 +O(337)

[10, 17,−10] 4 25613292858296352193 + 2067393576370106991
√
D +O(341)

[20, 17,−5] 8 32(28389335835840796072 + 35431736942702897034
√
D) +O(343)

Note that σaQ(u) ∈ Qp if and only if [aQ] is 2-torsion in G1. For real quadratic fields, this is

equivalent to the fact that the class [aQ] is Gal (F/Q)-fixed, as predicted by Proposition 7.3.

The work of Damm–Johnsen made it possible to verify this phenomenon in many additional

cases. In these cases, the size of the narrow Hilbert class group ranged from 2 to 20.

7.4. Further comments. We conclude with some observations to support the conjecture

for general n ≥ 2. Denote D := D(X,Z[1/m]) and D0 := D0(X,Z[1/m]). Recall the class
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µ ∈ Hn−1(Γ,D)− constructed in Section 4 and denote by µ|UF its restriction to UF ⊂ Γ.

Consider the UF -equivariant morphism

Ē : D −→ Fp/Z[1/m] logp(O×
F ), λ 7−→

∫
X
logp(cτ

t · x)dλ,

where Z[1/m] logp(O×
F ) denotes the Z[1/m]-span of logp(O×

F ) in Fp. The proof of Theorem

6.11 implies that

cUF ⌢ Ē(µ|UF ) = logp(u
σa) mod Zp logp(O×

F ). (26)

Conjecture 7.1, predicts an expression for logp(u
σa) without the ambiguity Zp logp(O×

F ).

Observe that, if we consider measures of total mass zero, we can define the UF -equivariant

morphism

E : D0 −→ Fp, λ 7−→
∫
X
logp(cτ

t · x)dλ.

Moreover, it follows from Proposition 4.12 that µ|UF lifts to a class in Hn−1(UF ,D0). However,

the lift is not unique. Indeed, the long exact sequence

· · · −→ Hn−2(UF ,Z[1/m])
δ−−→ Hn−1(UF ,D0) −→ Hn−1(UF ,D) −→ · · ·

shows that a lift of µ|UF is well-defined up to the image of δ. Since UF ≃ Zn−1 by Dirichlet’s

unit theorem, we have a natural isomorphism

Hn−2(UF ,Z[1/m]) ≃ H1(UF ,Z[1/m]) ≃ UF ⊗ Z[1/m]. (27)

This leads to the following proposition.

Proposition 7.9. The map

Hn−2(UF ,Z[1/m]) −−→ Fp, ε 7−→ cUF ⌢ E(δ(ε))

has image equal to Z[1/m] logp(UF ). More precisely, via the natural isomorphism given in

(27), it is equal to logp : UF ⊗ Z[1/m]
∼−→ Z[1/m] logp(UF ).

In other words, the process of lifting µ|UF to a class valued in total mass zero measures

allows to compute its image under E and construct an element in Fp. However, since the lift

is only well-defined up to UF ⊗Z[1/m], the elements we construct in Fp are only well-defined

up to Z[1/m] logp(UF ). Thus, we obtain a similar ambiguity for the Gross–Stark unit as the

one appearing on the formula of the Gross–Stark conjecture.

However, in this paper, we worked with cohomology classes for Γ, instead of for UF , to

define our invariants. In this way, we obtained that µ ∈ Hn−1(Γ,D)−Q has a unique lift

µ0 ∈ Hn−1(Γ,D0)
−
Q. Indeed, as explained in Section 4.4, this follows from the long exact

sequence

Hn−2(Γ,Z[1/m])− −→ Hn−1(Γ,D0)
− −→ Hn−1(Γ,D)− −→ Hn−1(Γ,Z[1/m])−,

Proposition 4.12, and the fact that Hn−2(Γ,Zp)− is torsion by [LS19]. Then, the restriction

µ0|UF is a preferred lift of µ|UF to Hn−1(UF ,D0(X,Z[1/m])). Hence, using µ0|UF and the map

E , we are able to produce a canonical element in Fp

cUF ⌢ E(µ0|UF ) = JE,L[τ ] ∈ Fp.
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The fact that this construction is unique suggests that the quantity we produced could be a

preferred lift of TrFp/Qp logp(u
σa), and this motivates us to state Conjecture 7.1 above.

We summarize this discussion with the following commutative diagram

torsion Hn−1(Γ,D0)
− Hn−1(Γ,D)−

UF ⊗ Z[1/m] Hn−1(UF ,D0) Hn−1(UF ,D)

Z[1/m] logp(UF ) Fp Fp/(Z[1/m] log(UF )).

cUF⌢E◦δ(·)

δ

cUF⌢E(·) cUF⌢Ē(·)
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